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Linköping University
SE-581 83 Linköping
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Abstract— Augmented reality requires accurate position and
orientation estimates of a camera. In our approach inertial and
visual data are fused using the conditional probability framework
to estimate camera pose. We propose a measurement equation for
2D-3D model correspondence, i.e., detecting known 3D features
of the scene in a camera image. The probability density of this
measurement equation is investigated and results from a first
application are reported.

Index Terms— Augmented reality, 2D-3D model correspon-
dence, Sensor fusion, Vision, Inertial measurements

I. INTRODUCTION

There are many applications in which it is necessary to
overlay a computer-generated object onto a real scene in real-
time. This requires accurate measurements of the position and
orientation (pose) of the camera with respect to the scene.

To compute the pose of the camera, a miniature inertial mea-
surement unit (IMU) attached to the camera is here considered
as the main sensor. It consists of three accelerometers and three
gyroscopes, which are integrated to obtain pose estimates.
However, this leads to a rapid drift in both position and
orientation, in particular for MEMS-based miniature inertial
sensors, so the IMU needs aiding. A natural choice for the
aiding sensor is to use the camera [1]. This option mimic
nature: human beings orient themselves using the vestibular
organ (in the ears) - which is basically an inertial measurement
unit - and the eyes - which are comparable to a camera.

The problem of obtaining real-time pose estimates by fus-
ing both sensors excellently fits the conditional probability
framework. Methods from this framework, e.g., Kalman fil-
ters [2], [3] and particle filters [4], [5], recursively infer new
measurements with knowledge of the system obtained using
past measurements. To do so, the dynamic system has to be
described, typically in the form of a nonlinear state-space
model

xt+1 = f(xt, ut, wt, t), (1a)

yt = h(xt, et, t), (1b)

where xt is the state variable. The state variable contains all
necessary information about the system at time t. The process
model (1a) describes the evolution of the states xt given inputs
ut. The observation model (1b) describes the relation between

the measurements yt and the states. Both the process and the
observation model can be time-varying, indicated with t in (1).
Uncertainty is included by means of the process noise w t
and measurement noise et. Realistic models and associated
uncertainty are essential for the quality of the estimates.

In this paper, we concentrate on modelling the 2D-3D
model correspondence measurement equation (1b) and present
preliminary results using an authentic camera motion. These
results are compared to an existing reference system.

II. CAMERA MOTION MODEL

The kinematics of the camera can be described by the
following continuous time process model
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T consists of camera
position cf and velocity ċf and a quaternion [6] qsf describing
the orientation of the camera. The acceleration as and the
angular velocity ωs from the IMU are used as input signals.
This integration of inertial measurements is known as dead-
reckoning. By assuming that the input signals are constant
between two sampling instants it is straightforward to derive
a discrete time version of (2).

III. USING VISION AS A SENSOR

The measurements from a vision sensor can be used for
camera pose estimation in several ways:

• 2D-3D correspondence: Positions of fixed point features
in the scene and associated uncertainties are contained in
a model. These features can be artificial markers placed
in the scene, but unobtrusive natural features can also
be used. An algorithm that detects a modelled feature
in a camera image defines a line where the camera
must be with respect to the scene. This relation, here
referred to as a 2D-3D model correspondence, can be
used to infer the position and orientation of the camera.
This type of measurement is analogous to angle only
tracking (triangulation). Examples where 2D-3D model
correspondence has been previously used are [7], [8].



• 2D-2D correspondence: Without the scene model a
detected point feature or point of interest (POI) by
itself is useless. However, if the same POI is detected
in sequential images (and the association problem is
resolved unambiguously), the displacement of the POI
gives information on the (position and angular) velocity
[9]. This method can also be applied to lines [10], [11].

In the remainder of this paper 2D-3D model correspondence
will be discussed. The image processing required to detect a
feature and how to associate 2D-features to 3D-features lies
outside the scope of this paper; instead, it focuses on the
associated measurement equation and more specifically on its
probability distribution.

A. Measurements

The camera image is a projection of the scene on to a plane.
For describing this projection the following coordinate systems
are used:

• Fixed (f): This is the reference system, fixed to earth.
Ignoring the earth’s rotation, this is an inertial system.
The (static) features of the scene are modelled in this
coordinate system.

• Camera (c): The coordinate system attached to the
(moving) camera. Its origin is located in the optical centre
of the camera.

• Image (i): The 2D coordinate system of camera images.
Images are projections of the camera scene into this
system.

In this work the projection is modelled by the pinhole camera
model [12]. This projection and the coordinate systems in-
volved are illustrated in Fig. 1. Although the pinhole camera
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Fig. 1. Illustration of the different coordinate systems and how they are
related. Furthermore, the projection ζ of feature z is shown in detail.

model is somewhat simplistic to be realistic, the resulting
equations can be adapted to more complex camera models.
The projection of a feature from the camera coordinate system
to the image coordinate system, z c �→ ζi, with zc = [x, y, z]T

and ζi = [ξ, ψ]T , is given by[
ξ, ψ

]T =
[
fx/z, fy/z

]T
(3)

Expressed in projective space, as is customary within the field
of image processing, this relation is[

ξ, ψ, 1
]T ∼= [

fx, fy, z
]T

(4)

where ∼= means equality up to scale. This scale can be
eliminated from the equation by applying the cross product
operator, that is

a = λb ⇔ a × b = λb × b = 0 (5)

resulting in ⎡
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Note that the first two components of this vector are very
similar to (3). The last component is redundant, as only two
image coordinates are measured. From a probabilistic point
of view (3) is not preferred as the division of two normal
variable results in a Cauchy distribution, which has infinite
second and higher order moments. Hence, (6) will be used in
the subsequent sections.

B. Probability Density Function

Defining a virtual measurement h according to (6)

h(zc, ζi) =
[
zξ − fx
zψ − fy

]
(7)

its probability density function (PDF), ph(h1, h2), is given by∫∫
δ(zξ − fx− h1) δ(zψ − fy − h2)pz(z)pζ(ζ)dzdζ (8)

where δ(·) is Dirac’s delta function. Independent and normal
distributions are assumed for ξ ∼ N(µξ, σ2

ξ ), ψ ∼ N(µψ, σ2
ψ)

and z ∼ N(µz,Σz). Unfortunately, no analytical expression
can be found for (8). Numerical integration is possible, but not
feasible due to the very high number of evaluations required
by an application. The characteristic function [13]

φh(u1, u2) = E[eiu·h] =
∫

eiu·h ph(h)dh (9)

can be derived. From (9) all moments can be calculated by

E[hn1h
m
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(10)

The first two central moments of h, its mean and covariance,
are given by

E[h] =
[
µzµξ − fµx
µzµψ − fµy

]
(11a)

E[h̄2
1] = f2sxx − 2fµξsxz + µ2

ξszz + (µ2
z + szz)sξξ

E[h̄1h̄2] = f2sxy − fµψsxz − fµξsyz + µξµψszz

E[h̄2
2] = f2syy − 2fµψsyz + µ2

ψszz + (µ2
z + szz)sψψ

(11b)

where h̄ = h − µh, µa = E[a] and sab = Cov(a, b). Note
the similarity between (11a) and (7). The third order central
moments of h are given by

E[h̄3
1] = 6µzµξszzsξξ − 6µzfsxzsξξ

E[h̄2
1h̄2] = 3µzµψszzsξξ − 3µzfsyzsξξ

E[h̄1h̄
2
2] = 3µzµξszzsψψ − 3µzfsxzsψψ

E[h̄3
2] = 6µzµψszzsψψ − 6µzfsyzsψψ

(12)



The variances of the image and model can be assumed small
in a practical situation, hence products of covariance terms
are small, i.e. s2 � 1. This implies that the moments in (12)
are negligible small, so a normal approximation with mean
and covariance according to (11) is correct up to 3rd order. A
comparison with a numerical solution, see Fig. 2 for a typical
example, shows almost identical densities. Therefore, it is
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Fig. 2. The marginal PDF of h1 (solid) compared to its normal approximation
(dashed).

argued that, for practical applications, a normal approximation
can be used to adequately describe the PDF of h.

C. Measurement Equation

The features positions in the scene are expressed using the
fixed coordinate system. Hence, these positions have to be
transformed into the camera coordinate system in order to
use (7). This transformation zf �→ zc has the form

zc = Rcf [zf − cf ] (13)

where cf is the position of the camera in the fixed coordinate
system and Rcf is the rotation matrix from the fixed system
to the camera system. The coordinate system transformation
affects the covariance matrix as well,

Σzc = RcfΣzf
RTcf (14)

Substituting these transformations into (7) results in an implicit
measurement equation for 2D-3D model correspondence

0 = h(Rcf [zf − cf ], ζi) + e (15)

with e ∼ N(0,Σh) and Σh given by (11b).

IV. APPLICATION

The 2D-3D model correspondence measurement equation
has been applied to track a camera held by a running cam-
eraman, which is moving rapidly, hence it is quite hard to
track. The process of tracking here refer to estimating the
position and orientation. The camera is fitted with a Xsens
MT9 IMU which provides acceleration and angular velocity
at 100 Hz. A camera pose reference is provided by the free-
D system [14], which allows to benchmark tracking accuracy.
For testing purposes an artificial scene model, consisting of

a sphere of 100 features of which on average 14 are visible,
is used. The image measurements were generated at 25 Hz
by projecting the scene model using the reference camera
pose. Both the 2D and 3D feature data were corrupted using
white noise with standard deviations of 10−3 m and 10−2 m
respectively.

The camera pose has been estimated using an Extended
Kalman Filter (EKF) [3]. This filter use the measured inertial
data as input signals in the process model and the artificial
visual data as measurements. Fig. 3(a) shows typical results
for position and orientation. Only one horizontal position (x)
and orientation (heading ψ) are shown, the other positions and
orientations show similar behaviour. Fig. 3(a) clearly shows
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(a) Overview
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Fig. 3. Pose estimates using 2D-3D model correspondence and inertial
measurements (dashed) compared to reference system (solid) for a running
cameraman. From the 6 DOFs only horizontal position (x) and heading (ψ)
are shown.

that tracking of rapid and large movements is possible using
2D-3D model correspondence. Looking in more detail to the
results, see Fig. 3(b), one sees that the orientation is very
accurate. The position responds a little late. This delay is likely
to be the result of the poorly observable velocities inherent to
using only 2D-3D model correspondence measurements.

The next step will be to use image processing for the visual
measurements and improve the inertial sensor error model.



V. CONCLUSION

In this paper a measurement equation for 2D-3D model
correspondence is proposed together with an evaluation based
on realistic data. The probability density function of the
measurement equation could not be calculated analytically, but
it is shown that that it can be adequately approximated by a
normal probability density function. This approximation has
correct central moments up to 3rd order and a comparison with
numerical approximations shows almost identical probability
densities. These results provide a theoretical foundation for
using 2D-3D model correspondence for pose estimation within
the conditional probability framework and, more specifically,
for usage in (Extended) Kalman filters.

The derived measurement equation has been implemented
in an Extended Kalman Filter using authentic inertial measure-
ments and simulated 2D-3D model correspondence measure-
ments. Comparing the results to the reference system shows
stable and accurate position and orientation tracking over an
extended period of time for camera that undergoes fast motion.
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