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Abstract: Recursive parameter estimation algorithms can be recast in a Kalman filter
setting with different choices of parameter random walk covariance matrix Q. In the
(unrealistic) case where the designed Q is equal to the true one, the Kalman filter
covariance matrix P can be used as the covariance matrix of the parameter estimation
error. However, often Q is chosen to get an appropriate time constant of the filter and
P is only instrumental. A problem of practical interest is to avoid windup in P during
periods of poor excitation, leading to uncertain estimates and long transients when
the data becomes exciting. Here we survey different methods to avoid windup, with
the goal to accept temporarily longer time constants in the directions of the parameter
space where no or poor excitation appears. A low-dimensional example, motivated by
a practically important application, illustrates the ideas.
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1. INTRODUCTION

We consider signals generated by linear regression
models

y(t) = ϕ(t)T θ(t) + e(t), Ro = Cov(e(t)). (1)

The estimation model is assumed to be of the
correct linear regression structure and a random
walk model of the parameter variation:

θ(t + 1) = θ(t) + v(t), Q = Cov(v(t)), (2a)

y(t) = ϕ(t)T θ(t) + e(t), R = Cov(e(t)).
(2b)

The Kalman filter applied to this model gives

θ̂(t) = θ̂(t− 1) + K(t)ε(t) (3a)

ε(t) = [y(t)− ϕ(t)T θ̂(t− 1)] (3b)

K(t) =
P (t− 1)ϕ(t)

R(t) + ϕ(t)TP (t− 1)ϕ(t)
(3c)

P (t) = P (t− 1)− P (t− 1)ϕ(t)ϕ(t)T P (t− 1)
R(t) + ϕ(t)TP (t)ϕ(t)

+ Q(t). (3d)

In the case v(t) and e(t) are white noise se-
quences with Gaussian distributions, the Kalman
filter provides the best estimate in the sense of a
minimal conditional estimation error covariance
matrix. If v(t) and e(t) are non-gaussian the
Kalman filter is still the best linear estimator, see
e.g. (Anderson and Moore, 1979). One can easily
show that the well-known recursive least squares



(RLS) and least means square (LMS) algorithm
is included as special cases of the Kalman filter
corresponding to specific assumptions about the
covariance matrix Q(t) of the parameter varia-
tions, see e.g. (Gunnarsson, 1991) and (Ljung and
Gunnarsson, 1990).

The problem in using the Kalman filter as a track-
ing algorithm (which in practice means that Q
is chosen as a constant positive definite matrix,
not necessarily the true value) is windup of the
matrix P when signals are poorly exciting. This
means that some of the eigenvalues of P tends to
unacceptable large values. One then gets numer-
ical problems and high sensitivity against noise.
The same problem arises with the RLS method
when a constant forgetting factor is used, see e.g.
(Åström and Wittenmark, 1995).

Different approaches to avoid windup include:

• Force the eigenvalues of P (t) to lie in a given
interval [λmin, λmax]. This can be achieved
by making a factorization P = UDUT (us-
ing Bierman’s UD factorization algorithm for
example) and increasing D by dividing by
the forgetting factor and limit the result to
the specified interval. This algorithm is called
selective forgetting (SF) and is described in
(Parkum et al., 1992). An algorithm with
similar properties is proposed in (Cao and
Schwartz, 1999).

• (Andersson and Broman, 1998) suggested
to use a forgetting factor algorithm with
different forgetting factors in the parameter
recursion and P recursion. Faster forgetting
is applied to P to avoid windup, which is
motivated by speech signals.

• Add a positive definite matrix to the in-
formation matrix P−1(t), to assure that it
is always invertible (so called Levenberg-
Marquardt regularization). This method is
discussed in (Gunnarsson, 1996).

• In the algorithm suggested by (Hägglund,
1983) the forgetting of old data is made in the
same direction as incoming data and in such
a way that the matrix P is driven toward
a matrix proportional to the identity matrix
when there is poor excitation.

• Consider the filter as a control system, where
the goal is to achieve a pre-specified P (t).
One possibility is to use

Q(t) =
Pdϕ(t)ϕT (t)Pd

R(t) + ϕ(t)T Pdϕ(t)
. (4)

where Pd is the desired convergence point for
the matrix P . This approach is in the sequel
called the adaptive Kalman filter (AKF) al-
gorithm.

2. THEORY

We will here take a closer look at the discrete time
Ricatti equation (3d) in the adaptive algorithms.
We have here restricted ourself to the case ny = 1
to simplify notation. The idea with using (4)
is to expand the ’covariance’ ellipse only in the
direction where excitation comes, and keeping
the filter’s sensitivity in the other directions and
thus avoiding (eigenvalue) windup. Now Pd is
easily seen to be a stationary point of the Ricatti
equation, so

Pd = Pd − Pdϕ(t)ϕ(t)T Pd

R(t) + ϕ(t)T Pdϕ(t)
+ Q(t).

The matrix inversion lemma applied to Pd −Q(t)
gives

(Pd −Q(t))−1 = P−1
d + ϕ(t)R(t)−1ϕ(t)T

⇒ Q(t) = Pd − (P−1
d + ϕ(t)R(t)−1ϕ(t)T )−1.

Similarly, the original recursive solution to the
least squares equations can be written (or, apply
the matrix inversion lemma in the same way as
above):

(P (t + 1)−Q(t))−1 = P (t)−1 + ϕ(t)R(t)−1ϕ(t)T

⇒ Q(t) = P (t + 1) − (P (t)−1 + ϕ(t)R(t)−1ϕ(t)T )−1.

By equating these two expressions for Q(t), we get

P (t + 1)− Pd =

(P (t)−1 + ϕ(t)R(t)−1ϕ(t)T )−1

− (P−1
d + ϕ(t)R(t)−1ϕ(t)T )−1

= (P (t)−1 + ϕ(t)R(t)−1ϕ(t)T )−1

× (
P−1

d − P (t)−1
)
(P−1

d + ϕ(t)R(t)−1ϕ(t)T )−1

= (I + P (t)ϕ(t)R(t)−1ϕ(t)T )−1 (P (t) − Pd)

× (I + ϕ(t)R(t)−1ϕ(t)TPd)−1.

Denote A(P ) = I + P (t)ϕ(t)R(t)−1ϕ(t)T . Then
the covariance error e(t) = P (t) − Pd evolves as

e(t + 1) = A(P (t))−1e(t)A(Pd)−T . (5)

The stability of (5) can be concluded from Theo-
rem 7.4 of (Jazwinski, 1970). From this theorem
we know that the time-varying Kalman filter is
uniformly exponentially stable provided the un-
derlying system (2) is completely observable and
controllable. This is true even if Q(t) and R(t) in
(3) are not reflecting the true covariances since
the result is algebraic in nature. Since the state
transition matrix is the unit matrix the conditions
are the following. There exists positive constants
c, C and N such that

cI ≤
k+N∑

j=k

ϕ(j)ϕT (j) ≤ CI, ∀k (6)

cI ≤
k+N∑

j=k

Q(j) ≤ CI, ∀k (7)



The lower bound in (6) is the usual persistence of
excitation condition. If (6) is satisfied and Pd(0) >
0 it follows from (4) that also (7) is satisfied.

The error recursion can be seen as a closed loop
control system. The closed loop is approximately
(since A(P (t)) depends on the controlled quan-
tity) a first order system, which means that we
can interpret the controller as a P-controller, con-
trolling the system in Figure 1.

�Σ ✲ Control ✲Q(t)
KF ✲P (t)

✛−1
✻

✲Pd

Fig. 1. Adaptive filtering as a control problem

3. NUMERICAL ILLUSTRATION

A simplified problem, yet common in practice, is
to fit a straight line to two-dimensional data using
the model:

y(t) = aϕ1(t) + bϕ2(t) + e(t). (8)

As one of our motivations, (8) can model the con-
trol valves in a series of cascade coupled flotation
tanks. Here ϕ1(t) =

√
h(t) and ϕ2(t) = u(t)

√
h(t)

where u(t) is the control signal for the valve and
h(t) is the level height difference over the valve (a
measured quantity). The output y(t) is the flow
through the valve. This model has been found
to give a good local description in the vicinity
of some operating point. To adapt the model for
different working points (which changes at un-
known time instances) an algorithm for tracking
of the time varying parameters a and b can be
employed. Another use of parameter estimation is
for detection of deviations in the parameters from
the nominal ones, for which the controller was de-
signed. The reason can e.g be wear or mechanical
problems in the valve. Too large deviations would
then indicate a severe loss in control performance.
Here windup is certainly a problem. When the
level set points in the tanks are constant and no or
only small disturbances are acting on the process
very little information is gained about the param-
eter values. It is then necessary to reduce the rate
of forgetting of old data to avoid an increased
noise sensitivity an consequently inaccurate es-
timates in certain directions. The consequences
of this phenomenon would otherwise be a large
bias (caused by noise in measured level h) and
a stochastic uncertainty in the orientation of the
plane (8) (we only know that it goes through the
point (y(t), ϕ1(t), ϕ2(t)) but not the inclination).

An example of a realization is shown in Figure
2, where for simplicity ϕ1(t) ≡ 1 and ϕ2(t) =
u(t). The chosen u(t) is poorly exciting around

sample numbers 75 and 175, respectively. We
will throughout this study assume that the true
parameters are constant in time for simplicity,
and comment on the implications of the results
for the time-varying case. The off-line parameter
estimates are illustrated in Figure 2 both as a
linear model in a scatter plot of data and in the
parameter space with a covariance ellipse. The
covariance matrix P (t) is only instrumental here,
and should be interpreted as a time constant of
the filter; in directions where it is thin, the time
constant is long and where it is thick is is short,
leading to a too sensitive estimator.
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Fig. 2. Input u(t) to the model (8), scatter plot of
(u(t), y(t)) with an off-line estimated linear
model, and estimate θ̂N in the parameter
(a, b) space with uncertainty ellipse PN .

Using the Kalman filter as a recursive estimator
with Q = 0.2I2 gives the result in Figure 3. The
dashed line shows the ’confidence interval’ of each
parameter, which does not reflect the fact that the
uncertainty of the difference of the parameters is
poor. The last subplot shows the eigenvalues of
P (t), which better illuminate the lack of excitation
around 75 and 175, respectively. A snapshot of
the estimator at sample 30 and 75, respectively,
shows that the former one has a more circular
covariance shape, while the latter is uncertain of
the difference a − b, see Figure 4. Note that the
estimation error is clearly biased in this direction
for this noise realization as can be expected to be
the case in average.

4. DIFFERENT TECHNIQUES TO AVOID
WINDUP

The goal of avoiding windup is to prevent an
unbounded increase of the eigenvalues of the ma-
trix P in case of poorly exciting signals. A lot of
techniques have been suggested in the literature,
many of them however very closely related. Here
we compare the proposed AKF algorithm with



0.5

1

1.5

2
Estimated a

1.5

2

2.5
Estimated b

0 20 40 60 80 100 120 140 160 180 200
0

5

10
Eigenvalues of P

Time [sampels]

Fig. 3. Recursive parameter estimates with ’confi-
dence intervals’ as defined by

√
P (i,i)(t), and

a plot of the eigenvalues of P (t).
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Fig. 4. Snapshot of parameter estimate at two
time instants when KF is used.

the SF algorithm mentioned in the introduction.
The design parameters are chosen to λmin = 0.8,
λmax = 1.2 and Pd = I2. These parameter choices
have been made such that the ’confidence inter-
val’ is approximately the same for all the three
algorithms when there is excitation.

Figures 5–8 show the resulting estimates. As com-
pared to the Kalman filter algorithm it is obvious
that in these cases the blow up of the ’covariance’
matrix is prevented. The trade of between noise
attenuation and tracking ability is depending on
the eigenvalues plotted. This can be realized by
studying the dynamics for the estimation error

θ̃(t) = θ0(t) − θ̂(t)

where θ0(t) is the true parameter vector at time
t. From (3a)–(3d) we get

θ̃(t) = (I − P̄ (t)ϕ(t)ϕT (t))θ̃(t− 1) + v(t− 1)
− P̄ (t)ϕ(t)e(t)

where P̄ is given by
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Fig. 5. Recursive parameter estimates using the
AKF algorithm with ’confidence intervals’
as defined by

√
P (i,i)(t), and a plot of the

eigenvalues of P (t). Here Pd = I.
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Fig. 6. Snapshot of parameter estimate at two
time instants when the AKF algorithm is
used.
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Fig. 7. Recursive parameter estimates using the
SF algorithm with ’confidence intervals’ as
defined by

√
P (i,i)(t), and a plot of the eigen-

values of P (t).
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Fig. 8. Snapshot of parameter estimate at two
time instants when the SF algorithm is used.

P̄ (t) =
P (t− 1)

R(t) + ϕ(t)TP (t− 1)ϕ(t)

Taking expectation of both sides neglecting cer-
tain dependencies we get

Eθ̃(t) = E(I − P̄ (t)Z)θ̃(t− 1)

where Z = Eϕ(t)ϕT (t).

It is clear that for the KF algorithm the eigenval-
ues are inevitable fluctuating, the size depending
on the excitation level, whereas the behaviour for
SF and AKF algorithm is quite similar. The AKF
algorithm shows however a smoother convergence
of the eigenvalues.

5. TRACKING ABILITY

In this section the tracking behavior is studied.
The b parameter in (8) is changed at two different
time instants, one when there is good excitation
at t = 30s and the other when excitation is poor
at t = 75s. The result is shown in figure 9.

The conclusions are that we automatically get
better tracking when we have good excitation.
Compare this to standard adaptive algorithms
(RLS, LMS, KF) where the tracking time constant
is basically fixed (for RLS this is completely true),
and the uncertainty decreases when the excita-
tion is good. These are two completely different
paradigms.

6. THE BENEFIT OF CHANGE DETECTION

The compromise between noise attenuation and
tracking speed is fundamental in adaptive filter-
ing. If one wishes to have accurate estimates (i.e
good noise attenuation) it is necessary to average
over many data points which implies a low forget-
ting rate and consequently a slow filter. To speed
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Fig. 9. Tracking ability of the KF (solid), AKF
(dashed) and SF (dotted).

up the adaptation rate in case of fast changes in
the true parameters it is therefore desirable to
combine the filter with a change detector. When
an abrupt change is detected the forgetting rate is
temporarily increased and the estimates converge
faster to the true values. Here the CUSUM detec-
tor, see e.g (Basseville and Nikiforov, 1993) and
(Gustafsson, 2000), is employed, which is given by

g(t) = max(g(t− 1) + s(t) − v, 0)
if g(t) > h, then alarm and g(t) = 0

where g(t) is the test statistics, h is the alarm
threshold, s(t) is an input distance measure and
ν is a drift parameter necessary to prevent false
alarm due to the random walk drift in g(t) when
s(t) is white noise. To detect abrupt parameter
changes we here use s(t) = e(t). This means
that we will detect a change in the mean of the
residuals in the filter.

One important question is to decide how to mod-
ify the tracking algorithm when an abrupt change
has been detected. In this case when the change
is known to occur in the b parameter (i.e knowl-
edge based fault isolation) a natural modification
is to increase P (2, 2) by a factor of 10 when a
fault have been detected. This gives a fast fault
identification.

In Figure 10 the tracking behaviour for the
three algorithms are shown when combined with
CUSUM detector (alarm times 76s and 31s re-
spectively). As compared to Figure 9 the tracking
speed is clearly increased when the jump occurs,
most notable when excitation is poor.

7. CONCLUSIONS

Conventional adaptive algorithms for recursive
parameter estimation, as recursive least squares,
least mean square and the Kalman filter give a
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Fig. 10. Tracking ability of the KF (solid), AKF
(dashed) and SF (dotted) algorithm when
CUSUM detector is used.

filter with basically constant tracking speed and a
parameter uncertainy that varies with excitation.
The better excitation, the better estimates. In
many applications the excitation varies a lot over
time, and one wants to avoid drift in the estimates
and preferably get a specified estimation accu-
racy in case the parameters are constant. This is
achieved with the random walk covariance matrix
in (4) and using a KF. The price to achieve this,
is that the tracking gain varies with excitation,
so it takes longer time to track changes when the
excitation is poor.

However, the algorithm is computational sim-
ple (as compared to many other proposed algo-
rithms), and intuitive to tune, since one decides
the (relative) accuracy of the estimated parame-
ters directly. Furthermore, this is exactly what is
needed in change detection, where one wants to
fix the false alarm rate (FAR), and then one takes
the power to detect changes and time to detection
the chosen FAR implies. The FAR is computed
when the parameters do not change, and for that
reason we want the parameter uncertainty to be
constant and independent of excitation, and thus
we accept longer time to detection and larger
required changes when the excitation is poor. This
again motivates the use of AKF.

The proposed concept was evaluated and com-
pared to other approaches in a simulation study,
and we pointed out the possibility to use change
detection to speed up tracking.
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Åström, K.J. and B. Wittenmark (1995). Adaptive
Control, second edition. Addison Wesley.


