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A feedback control scheme for reversing a truck
and trailer vehicle

Claudio Altafini, Alberto Speranzon and Bo Wahlberg

Abstract— A control scheme is proposed for stabilization of
backward driving along simple paths for a miniaturized ve-
hicle composed of a truck and a two-axle trailer. The paths
chosen are straight lines and arcs of circles. When revers-
ing, the truck and trailer under exam can be modeled as an
unstable nonlinear system with state and input saturations.
The simplified goal of stabilizing along a trajectory (instead
of a point) allows to consider a system with controllable
linearization. Still, the combination of instability and satu-
rations makes the task impossible with a single controller.
In fact, the system cannot be driven backward from all ini-
tial states because of the jack-knife effects between the parts
of the multibody vehicle, sometimes it is necessary to drive
forward to enter in a specific region of attraction. This leads
to the use of hybrid controllers. The scheme has been imple-
mented and successfully used to reverse the radio-controlled
vehicle.

Keywords— Multibody wheeled vehicle, backward driving,
jack knife, state and input saturation, hybrid automata.

I. INTRODUCTION

This paper describes a feedback control scheme used to
stabilize the backward motion of the radio-controlled truck
and trailer shown in Figure 1. The miniaturized vehicle is a

Fig. 1.

The radio-controlled truck and trailer

(1:16) scale of a real commercial vehicle and reproduces in
detail the geometry of the full-scale one; it has four axles,
actuated front steering and actuated second axle to govern
the longitudinal motion. Like the real one, it presents satu-
rations on the steering angle and on the two relative angles
between the bodies. It is equipped with potentiometers and
differential encoders so that full state feedback is possible.
Our control task is to drive the system backward along a
preassigned straight line, avoiding jack-knive effects on the
angles.
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There is a moderate literature on backward steering con-
trol of wheeled multiple vehicles reporting on experimental
results achieved with different control techniques and with
different kinds of vehicles, mainly expecially built labora-
tory mobile robots, see for example [15], [18], [20], [23],
[30]. Numerous papers treat the backing problem with
tools spanning from neural network [25], fuzzy control [11],
[16], [30], learning, genetic algorithms and expert systems
[6], [12], [17], [26]. Only a few works make use of more
theoretical tools steaming from the literature on control of
kinematic vehicles (overviewed for example in [5], [19]), see
[7], [18], [29]. According to such formalism, our system is
a general 3-trailer, general because of the kingpin hitch-
ing between the second axle and the dolly. The off-axle
connection is important here because it indicates that the
system is not differentially flat [9] neither feedback lineariz-
able, and so simple motion planning techniques, like those
based on algebraic tools [24] cannot be applied. See also
[29] for reverse control of a truck with trailer via feedback
linearization in the simpler case of no off-axle hitching.

From a system theory point of view, the control prob-
lem is quite challenging: it is an unstable nonlinear system
with state and input constraints. The “reduced” control
goal of stabilization along a line (instead of a point) al-
lows to consider a system with controllable linearization,
so that local asymptotic stability can be achieved via Ja-
cobian linearization. Still, the combination of instability
and saturations results in so-called jack-knife effects on the
two relative angles between the truck and the dolly and
between the dolly and the semitrailer. This makes the task
of backward driving impossible to solve with a single con-
troller. The scheme we use here is based on the observa-
tion that the system of equations is homogeneous in one of
the inputs (the longitudinal velocity v). Homogeneity here
means that the sign of v alone discriminates between for-
ward and backward motion. The former, unlike reversing,
is open loop stable, which implies that we can use it in or-
der to get close enough to the equilibrium before switching
to backward motion. The scheme is formalized in a switch-
ing controller with a logic variable that allows switching
between the two different modes (forward and backward),
each of them governed by a linear state feedback designed
via linear quadratic techniques on the Jacobian lineariza-
tions. Switching in the logic variable occurs when the in-
tegral curve of the closed loop system hits suitably defined
switching surfaces. There is a certain freedom in the de-
sign of the two switching surfaces, the important condition
is that they do not touch each other. The criterion we fol-
low here is that the reversing mode can be activated only
when the system is entered inside the region of attraction of
the local stabilizing controller. Since the nonlinear system
is subject to saturations, very little can be said analytically
about the region of convergence of a controller. However,
an ellipsoid playing the role of invariant set for the closed
loop saturated system can be identified by numerical meth-
ods. The second switching surface is meant to “inform”
the controller that backward motion is going unstable and
that a reallignement of the relative angles is needed (ac-
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complished by moving forward). In the nominal system
this second switching surface is never in use; however it is
sometimes usefull in practice in order to reject disturbances
and sensor errors. Furthermore, since the equilibrium oc-
curs along a trajectory instead of a rest point, the (possi-
bly destabilizing) perturbations affecting the system have
to be considered as nonvanishing. In synthesis, the switch-
ing can be seen as an extra feedback loop around the two
different closed loop modes. The switching surfaces and
the switching logic are designed in such a way that the
desired equilibrium inside the backward motion regime is
given the character of global attractor from all the initial
conditions in a prespecified domain. This switching scheme
is described in Section IV. Once the local controllers for
the different regimes of motion are available (linear feed-
back design in presence of saturation for forward/backward
motion along lines/arcs is treated in Section III), there is
a certain freedom in designing the logic loop. The choice
above corresponds to the most elementary case of hybrid
automaton (two states, two trasition rules) for the logic
loop. As an example, in Section V we describe another
simple enough scheme based on combinations of three dif-
ferent finite states. Both logic designs were implemented
and successfully used to reverse the real vehicle. A few
experimental tests are described in Section VI.

II. KINEMATIC EQUATIONS AND LINEARIZATION

A. Kinematic model

Call (z3, y3) the cartesian coordinates of the midpoint
of the rearmost axle, 63 its absolute orientation angle, (33
and [ the relative orientation angles respectively between
the rearmost trailer body and the dolly and between the
dolly and the truck body. Ls, Lo, My, L; are the lengths
of the different parts of the body as indicated in Figure 2.
The inputs are the steering angle a and the longitudinal

Fig. 2. The kinematic model of the truck and trailer

velocity at the second axle v. The differential equations

describing the kinematics are:

M
v cos B3 cos Ba <1 + L—l tan (85 tan a) cos B3 (1)
1

T3 =
. M, .
y3 = wcosfzcosfPy |1+ I tan B9 tan a | sin 03 (2)
1
. i ‘ M
0 = vw 1+ — tan f tana (3)
L Ly
. 1 M
B3 = wcosfBs (L_z <tan By — L—ll tan a) (4)
i M
_ Suzf3 <1 + L_ll tan (s tan a))
. tana  sin B9 M,
., = — Lt 5
5P v < I I + oL cos By ana) (5)

Call p = [yz 03 33 BQ]T the configuration state obtained
neglecting the longitudinal component z3. In a compact
way, the state equations are written as:

p =v(A(p) + B(p, a)) (6)

The sign of v decides the direction of motion, v < 0 cor-
responding to backward motion. The entire state is mea-
sured via two potentiometers on the relative angles $2 and
[3, and a pair of optical encoders on the two wheels of the
rearmost axle.

A.1. State and input saturations.
s and B3 present hard constrains:

Both the relative angles

‘52| S 525 =0.6 rad, ‘53| S 535 =1.3rad (7)

These limitations are due to the front and rear body touch-
ing each other and to the dolly touching the wheels. They
are particularly important since for back-up maneuvers the
equilibrium point is unstable and jack-knife effects appear
on both angles. The other two states do not present satu-
rations, however for practical reasons of limited space when
maneuvering, it is convenient to assume the following

Ysl Sys, =T5em 03] <63, = g rad

Summarizing, the domain of definition of p is

D = (~ys,, y3.) X (=0s,, 05,) x (=B3,, B3,) x (=B2,, B2,)
(8)

Also the input has a saturation:
la] < ay = 0.43 rad 9)

The steering driver tolerates very quick variations, so we do
not assume any slew rate limitation in the steering signal.

B. Jacobian linearization along trajectories

The system (6) is homogeneous in the longitudinal input
v. Fixing v as a given nonnull function means having a
drift component, which gives a nonvanishing term to the
differential equations of the system. The steering angle
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« can be used to give asymptotic stability to the system
along a trajectory. The trajectories which admit a constant
equilibrium point in this way are those corresponding to
straight lines or arcs of circles. The first type of equilib-
rium involves 4 of the 5 states of (1)-(5), for example the
vector p, while for the circular trajectories only the relative
posture p = [f3, Bg]T has a constant equilibrium point in
the system (6) (or a different basis, like that corresponding
to a Frenet frame must be chosen, see [5], [27] for details).

B.1. Straight line linearization. The equilibrium point
of p is the origin p, = 0 and it corresponds to a nominal
value of the steering input a, = 0. The linearized system
is

p = v (Ap + Ba) (10)
where
01 O 0 0
00 -~ 0 0
A=y o M 1 B=| (11)
Ls L21 LQﬁJJIVﬁ
00 0 -z 1,
B.2. Linearization along a circular trajectory.  Consider
the subsystem of (6) relative to p:
p = v(A(p) + B(p, o)) (12)

Proposition 1: The equilibrium point of (12) corre-
sponding to a given steering angle «, is:

B2, = arctan(M;y/r1) + arctan (Ly/r2) (13)
636 = arctan (’I'3/L3) (14)
where r; = taﬁlae ., re = P+ M?-12 and

r3 = \/r3 — L2 are the radii of the circular trajectories fol-
lowed by the midpoints P;, P, and P; of the axles (see
Fig.3).

Proof: At steady state, with nominal steering an-
gle a., all the axles follow concentric circular trajectories.
Look at Figure 3. All the calculations are straightforward

Fig. 3. Equilibrium point along an arc of circle.

from trigonometry, starting from a fixed a.. |
The linearization of (12) around p. = [3, £2.]" and a.
is now given by

f):v(/i(f)—f)e)—l—B(a—ae)) (15)

where
cos 32, cos B3, cos B2, sin B2, sin 83, My /=
o 2L3 3 L22 + 2L3 e 4 L_llf(pe) tan a,
0 _ COSsze (1 + ]g—ll tan s, tan oze)

and

- in 8 0s B2, sin 3
f( e) _ smL22e __cos gzzm 3,

M- cos B2, sin B2, sin 83, 2
5 {_L_ll( oot )(1+tan ae)-l

L L% (1 + Ag—; cosﬂze) (1 + tan? ) J

III. LOCAL CONTROLLERS FOR BACKWARD AND
FORWARD MOTION

In this Section, we describe the local controllers to be
used in the different regimes of motion: drive forward or
backward and linearize along a straight line or an arc of
circle.

A. Reversing along a line for the Jacobian linearization

Assume v is a given negative constant.

A.1. The linear quadratic controller. Consider the
straight line backing case. The linearization (10) is open-
loop unstable: the characteristic polynomial of the uncon-
trolled system is

—pA) = &2 2 v
det (s —vA) =s <S+L2> <S+L3>

Since (10) is controllable, the origin of the nonlinear system
(6) can be made an asymptotically stable equilibrium by
linear state feedback. We treat it as a linear quadratic
optimization problem and in the weight assignment we use
the rule of thumb of trying to have decreasing closed-loop
bandwidths when moving from the inner loop to the outer
one in a nested loopshaping design. In fact, the relative
displacement y3 comes after a cascade of two integrators
from the relative angles as can be seen on the linearization
(11). It turns out that such a heuristic reasoning is very
important in the practical implementation in order to deal
with the saturations.

Calling Kp = BPp the gain proposed by the solution of
the LQ problem, where Ppg is the solution of the Lyapunov
equation, the closed loop linear system p = v (A — BKg) p
has two real and two complex conjugated eigenvalues; all
three real parts are distinct. This is enough to say that
the unconstrained linear closed-loop system forms a con-
traction map for positive times, max;>g |[e(A=BK#)t|| = 1,
where || - || is the operator norm. In other words, the el-
lipsoids of initial conditions containing the origin are pos-
itively invariant sets [2] for the closed loop linear system.
Such ellipsoids are level surfaces of the quadratic Lyapunov
function Vg = p” Pgp.

(16)

A.2. Qualitative analysis of the basin of attraction. It is
in general difficult to draw conclusions on the invariance
properties of the flow of a nonlinear system. If in addi-
tion one takes into account the state and input constraints
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(7)-(9), then an analytic description becomes almost im-
possible [10]. Therefore, in order to obtain estimates of the
region of attraction of the linear controller a« = —Kgp and
of the contractivity of the resulting integral curves, we rely
on the numerical simulation of the closed-loop behavior of
the original nonlinear system (6), paired with the linear
controller K g:
p=7p(p) =

v(A(p) + B(p,

—Kgp)) (17)

In order to obtain a graphical representation of the results,
in the following we neglect the y3 component of the state
space, which is by far the less critical one with the LQ
controller in use.

The cloud of initial conditions that represents the re-
gion of attraction closely resembles an ellipsoid in p =
[03 B3 B2]T space. The fitting of an ellipsoid & strictly
contained in the set of succesfull initial conditions can be
done by direct investigation, see Figure 4 (left). The prin-
cipal axes q = [q1 g2 q3]7 of the ellipsoid are related to p
by an orthogonal transformation:

p=Req ReeSOM)
Calling €1, €5 and e3 the semiaxes of c‘j, the ellipsoid is
given by the algebraic equation

2
g:{q_wq_uq_g:l}
€3

18
e (18)

Taking into account also the y3 component of the initial
conditions, the ellipsoid £ € R* is given by

2 2
_2+E_.2+_2+_2_1} (19)
with €4 > ¢;, i =1, 2, 3. In D the difference with respect
to Figure 4 (left) can hardly be appreciated.

From Figure 4 (left), we draw the qualitative conclusion
that for the closed-loop nonlinear system Eisa positively
invariant set,.

B. Stabilization for forward motion

When v > 0, in (16) the two unstable poles move on
the open left half of the complex plane. Considering the
subsystem p means neglecting one of the two poles in the
origin. The origin of p is asymptotically stabilizable by
linear feedback and this time convergence for the nonlin-
ear system in (—%, %) x (—1.3, 1.3) x (—0.6, 0.6) is a less
critical problem. The reason for neglecting y3 when moving
forward is again the same: the closed loop mode relative
to y3 has a natural time constant higher of several orders
of magnitude when compared to the other states.

Assume for example v = 1. Extracting from (11) the
three dimensional system (121 B) linearization around the
origin of (3)-(5), it is possible to choose a gain K such that
the closed loop system p = 'U(A BKp)p is asymptotically
stable and has three distinct real modes. The practical
rule here for the selection of the eigenvalues is to try to

JANUARY 2001; REVISED MAY 2001, AND AUG 2001

have all 3 closed-loop poles of the same order of magnitude.
The unavoidable input saturation will not destroy stability
anyway. Assuming no control on ys, the variation in y3 due
to the forward closed-loop is hard to compute explicitly, but
a worst case analysis can give an upper bound on it.

Proposition 2: Assume the task of the forward controller
Kp is to steer the system (A, E) inside the ellipsoid &,.
The variation on ys starting from any admissible initial
condition po = [y, 03, B3, P2,]7 is bounded by

p|costlsz, — costl
|Ays| < | — i (20)
B3, in (4 = BE )|
with p = |1+ ]g—ll tan o, tan as| and 63, = /pEmax-
Proof: From (2), if u = ‘1 + ]Z"—ll tan Ay, tan a; | then
Y3 < plsins(t)] (21)

We need a bound on the value of 83(¢) and to quantify
the settling time ¢4 of the #3 mode from 63, to its entering
into the ellipsoid &,. Since for the forward motion stabil-
ity is not a problem not even in presence of saturations,
deriving a bound on the settling time of 63 we consider
only the linearized system. The stable closed loop system

p = (A — BKp)p has three distinct real modes. Its inte-

(A-BKp )tz

gral curves p(t) = e Po can be bounded as follows:

le™ s (A=BR st g 1y < J[p(E)]]o < fle P (A=BRR) sty

with I3 the 3-dimensional identity matrix. Since there are
no multiple closed loop eigenvalues, also the §3 mode alone
is bounded by the slowest mode of the closed loop

165(8)] < ‘ef‘Anﬂn(A*Bf(F)‘tego‘

In order to compute t5, we need to have a value of 3(¢)
{67 Peb = p}.
The circle Awin (Pe ) IIBII3 = miniz1,2 s(@)lIBI = p (do
not count vy) is contained inside gp, therefore calling

N~ i N o 1 o
Vmin = m1n1:1,273(l/z) = maXi:1,2,3(_Ei) = E? for the 93

variable alone 63, = \/p/Pmin = V/pémax does the job. The

desired bound on the settling time is then

which is certainly inside the ellipsoid c‘:'p

6
|030‘

Amin (4~ BEr)|
Integrating (21) from 0 to #s:
¢ o
lys(t) — ys,| < ,U/ sin (ef‘k"‘i“(AfBKF”T%o) ‘ dr
0

i.e.

In

(22)

7 ‘cos (67|Am‘“(A73KF)|7030) — cos b3,
‘630>\min(1£i -
I ‘cos 63, — cos 030‘

630 i (4 — BE )|

|Ays|

IN

BEp)|
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|
Since tg is inversely proportional to the smallest eigenvalue
of the closed loop, the more the slowest mode (i.e. 63) is
“speeded up” by K the sooner p enters inside £,. Ob-
viously, moving eigenvalues deeper in the left half of the
complex plane implies more problems with the input satu-
ration.

The bound (20) can be used to characterize the region of
attraction in D for an ellipsoid like fp as attractor set for
the forward motion case. Neglecting the input saturation,
it basically coincides with D except for a cut in the y3
direction.

Corollary 1: In D, the region of attraction to an ellipsoid
fp of the controller K is given by

D (=ys, + Ays,, ys, — Ayz,) x (=03, 03,) x

X (3, Ba,) x (—Pa., B2.)

p =

(23)

‘ + yory tanﬁgs tan ag | |cos 03 —cos flz, |

|03, Amin(A—BKr)]|

Such a restriction is not really drastic; in numbers, with
our choice of K, it amounts to about 30 cm. Furthermore,
one can add that Ays, is a worst case bound and that the

choice of y3, = 75 cm is purely arbitrary.

where Ays_(p) =

C. Reversing along an arc of circle (alignment control)

If instead of p or p only the backward stabilization of
the relative angles p = [83 2] is required, then a lineariza-
tion like (15) can be used and the desired equilibrium point
Pe can be indifferently the origin or a pair of constant an-
gles like in (13)-(14). In this case, the truck and trailer
will be stabilized along a circular trajectory as computed
in Proposition 1. We can consider the circular trajectories
corresponding to e.g. |a.| < ae, = %as (see Proposition
1 for the corresponding radii), for which the equilibrium
point is compatible with the system constraints and a cer-
tain margin is left around it before reaching the steering ac-
tuator saturation. The controller « = —Kpgp can be com-
puted like in Section III-A by another LQ problem. The
region of attraction of the equilibrium is an ellipse in the
p plane, for each value of . in |a.| < a,. If a Frenet
frame is chosen on the arc of circle [27], then the encoders
information can be used to attain local stabilization of p
(and not just of p) along the desired arc.

IV. SWITCHING CONTROLLER

The region of attraction of the backward controller is
only a subset £ of the entire domain D. Starting from out-
side E it is necessary to first drive forward for example
with a controller like K until the system enters inside é
and only then switch to backward motion. When revers-
ing, the main manifestation of a destabilizing perturbation
is a jack-knife effect on the relative angles. Just like on a
full-scale truck and trailer vehicle, the only way to recover
from such a situation is to move forward and try again. So,
in order to guarantee stability of the backward motion in
D and not only inside the ellipsoid & for the nominal model

and in order to cope with the perturbations, one single con-
troller is not enough. The switching variable between the
two controllers is the longitudinal velocity v. For example

we assume that v € {—1, +1} 7. The backward regime is
selected by v = —1 and the forward one by v = +1. Since
the longitudinal input v is a control input, if we assume that
v € T then v becomes a controlled logic variable. More-
over, if the selection of the logic value of v is made according
to a partition of the state space, the overall system with
multiple controllers becomes a feedback controlled system.
This is feasible in our case since we have on-line full state
information available.

A. Selection of the two switching surfaces

Two are the switching surfaces that delimit the parti-
tion of the state space, and their crossing in a prescribed
direction by the flow of the system induces a sign change in
v. This, in its turn, causes the inversion of the direction of
motion and induces the activation of the corresponding lin-
ear state feedback controller. These switching surfaces, call
them S_; and S;_ have to be chosen such that they give
to the point p = 0 of the backward motion the character
of global attractor (in D). Since in both regimes the origin
is the closed-loop local asymptotically stable equilibrium
point, we choose both S_; and S;_ as closed hypersur-
faces in R? containing the origin in their interior.

D
60 8
40 V7
/ S+_
20 :
3 g
= o / S_+
] e3
g <
=20
-40
-60
-10
Bs
beta3 (grad)
.beta2 (grad) BZ
Fig. 4. Left: the succesful initial conditions and the fitted ellipsoid

&. Right: the switching surfaces (in R3).

The switching surface from forward to backward motion:
S4+— . From Section III-A, S;_ has to be contained inside
£. The simplest choice is to consider S _ = &, for some p
such that % < p < 1. The trade-off is the following;:

o if S;_ is large (p — 1) the system will be sensitive to
disturbances and more easily destabilized by perturbations
(meaning more switches can occur);

o if Sy is small (p — 1) the forward regime will be very
long, which is often unacceptable for practical implemen-
tations.
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Ellipsoids smaller that S% are also not recommendable
for other reasons, like the possibility of being completely
“jumped over” in case of relevant sensor error.

A.1. The switching surface from backward to forward mo-
tion: S_4 . Such a switching surface has to “tell” the
system that backing is not going well and the trailers need
to be realigned. The choice is quite flexible, the only con-
straint is that S;_, S_ and the sides of D must not inter-
sect. In particular the set distance between Sy_ and S_
gives the hysteresis between the two regimes. If this dis-
tance is positive, problems like chattering will be avoided.
One simple choice for S_ is for example to use a cube in
R* which is a rescaling of D by a factor less than 1.

B. Control logic for v

D is divided into three nonintersecting regions:
e C_ = region inside S;_ where v = —1;
e C = region between S_; and S4_ where v can be either
+1 or —1;
« C, = region outside S_; (C; = DN (CUC_)") where
v =+1.
Changes on v occur only at crossing with the rules of the
finite state machine of Figure 5.

exit S,

Backward
closed loop
v=-1

p=%(p)

Forward
closed loop
v=+1

b= %(p)

\/

enter Sy

Fig. 5. The hybrid automaton associated with the control logic.

C. Convergence for the nominal and perturbed system

For the nominal system we can assert the following;:

Theorem 1: Under the assumptions of invariance of &,
the system (6) with the two controllers Ky and Kp , re-
spectively for the cases v = —1 and v = +1, and with the
feedback rule of Figure 5 for v € Z, asymptotically coverges
to the origin in backward motion from any inital condition
in D,.

Proof:  From the analysis of Section III and looking

at the switching rules of Fig. 5, the following order relation
is the only possible one for the system:

Cy — C — C_
v=+1 v=+1 v=—1

In fact, from any po € D,, the controller Kp steers the
system inside S;_ and S;_ is a positively invariant set
for the controller Kp. In the two regions C4 and C the
controller Kpg stabilizes only p. Once S;_ is fixed so is
D,, and in D, the corresponding excursion on y3 cannot
exit D by Corollary 1. ||

So for the nominal system the switching surface S_; is
never in use. Due to the unstable equilibrium point, the
effect of perturbations is critical in C_. Since the whole
stabilization developed here occurs along a trajectory, we

cannot expect the perturbations affecting the system to be
vanishing at the equilibrium point of (17). For example,
the two potentiometers for the measure of the relative an-
gles B2 and B3 introduce an error of +4° also at steady
state. Similarly, all the disturbances affecting the real sys-
tem can be considered nonvanishing. When a perturbation
is large enough to pull the state out of £ the system di-
verges. Trying to quantify the amplitude of the destabiliz-
ing pertubations and, consequently, trying to inferr total
stability for a class of bounded perturbations is very hard
in our situation because of the input saturation involved.
The destabilized system keeps driving backwards until it
hits the S_4 surface. After that, it inverts the direction
of motion and tries again to converge inside Sy_ with the
forward controller. In this part, stability is not undermined
by the pertubations because the system is open-loop sta-
ble, but perhaps the convergence rate (and therefore the
settling time t; and Ays) can be.

As said above, if the S_4 and S;_ do not touch each
other, degenerate switching phenomena (normally referred
to as Zeno chattering) do not occur. Furthermore, also
the different pole placement philosophy adopted in the two
controllers Kr and Kg (in one the critical mode, the 63
mode, is slow, in the other it is instead faster) is meant to
avoid a chattering type of behavior (like keep moving the
system back and forth between the same points on S_ ; and
S4+-) which can happen if the two closed-loops resemble
each other.

V. ANOTHER SWITCHING SCHEME

At the switching C A C_, if |0s] is large, instead of the
controller K one can think of using a different strategy,
based on realigning only the £, and (3 angles leaving 63
free, and then recover 3 if needed by reversing along an
arc of circle with Kg. Neglecting @3 in the forward motion
means reducing considerably its duration, as the 63 mode
is the slowest of the three. This strategy allows to greatly
increase the convergence rate when ys is large and y3 - 63 >
0. A typical situation is shown in Figure 6. The modes
needed for its implementation are three:

1. forward control of 35 and fs;

2. reverse along arc of circle;

3. reverse along straight line.

Assume v = —1, 3 > 0 and y3 > 0 (Figure 6). Call p

Fig. 6. Calculation of the arc of circle for reverse motion.
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the state on the switching surface S, and &3 the cor-
responding coordinate on the reference line. The arc of
circle tangent to both the line through the point (z3, y3)
of orientation 53 and to the straight line y3 = 0 is
unique it has radius 73 = Us___ and center of rotation

93
<.’I73 B 373(1+cos 0_3) 73

sin 03 tan 5~
sin 03

9-3). Since v = —1, we take
=z

" sin 9~3 tan
the length of the arc from P; to the axis y3 = 0, 73 53
as duration of the reversing along arc of circle mode i.e. as
time between the switch v : +1 — —1 and the switch
from reversing along arc of circle to reversing along straight
line. The S_4 switching surface remains in use while for
the switching v : +1 — —1 we consider only the £, 33
angles: S;_ = {f3/23 + 83 /5 = 1} with £, and &5 of the
same order of magnitude. The forward controller then is a
reduced version of Ky with only two nonnull gains. The
reduced system (12) with v = +1, p, = [0 0]7 is asymptot-
ically stabilizable and the duration of the forward motion
between S_, and S, _ is normally quite short compared
to that of Section IV. Calling # the time at which the flow
of the system hits S, _, the complete hybrid automaton is
depicted in Figure 7.

exit S,

Backward
straight line

Forward
relative angles
control

{enter S }
verl and
= no{ |g,>8,,and (y,6,) >0
{ enter S }

an
{10,>0,,81 (y;6,)>0

v=+1

Backward
arc of circle

HI6]

Fig. 7. The new hybrid automaton.

VI. PRACTICAL IMPLEMENTATION AND EXPERIMENTAL
RESULTS

For the truck and trailer shown in Figure 1, the controller
was implemented using a commercial version of PC/104. It
was written in C-language and used at a frequency of about
10Hz since the velocity of the system was very low. Fig. 8-9
present the result of a simple real maneuver. The switch-
ing scheme used is the two-state automaton described in
Section IV. The vehicle starts with saturated relative an-
gles and first drives forward in order to realign itself, then
reverses along the reference line. Notice that since the 63
mode is slower than those of the relative angles, most of
the forward motion is needed to get A3 inside the ellipsoid
Si—. It is instructive to compare (Figure 9, right) the ac-
tivity of the feedback input when the open loop system is
stable (upper plot) and when it is unstable (lower plot).
The experimental validity of the heuristic ellipsoid £ was
verified by several trials. For the backward controller Kpg
alone, some of the unsucessful initial conditions belonging
to the quadrant (A3 = 0, 82 < 0, B3 < 0) are shown in
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Fig. 8. Experiment # 1: sketch of the motion of the vehicle. The

dotted line represents the path followed by the (z3,ys) point.
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Fig. 9. Experiment # 1: relative angles 83 and 32 (left) and steering
input « (right).

Fig. 10: they all lay outside £. In the same picture the
switched integral curve used in the experiment of Fig. 8 is
also reported. In this experiment we use Sy = /5. As
expected, after entering inside £, the trajectory does not
escape anymore. The second experiment (Fig. 11) shows
part of the switching scheme described in Section V. Start-
ing from a jack-knife position, the vehicle moves forward,
realigns the relative angles and then reverses along an arc of
circle until hitting the desired reference line. At this point
the third state (reversing along the straight line) takes over
(not shown in the experiment). Notice how the forward
part of the motion is shorter than in the first experiment
as only the two relative angles are considered in the re-
alignment.

REFERENCES

[1] B. Anderson and J.B Moore. Optimal control. Linear quadratic
methods. Prentice Hall, 1989.

[2] F.Blanchini. Set invariance in control (Survey paper). Automatica
35:1747-1767, 1999.

[3] P.Bolzern, R.M. De Santis, A Locatelli and D. Masiocchi. Path-
tracking for articulated vehicles with off-axle hitching. IEEFE
Transaction on Control Systems Technology, 6:515-523,1998.

[4] F. Bullo and R. Murray. Experimental comparison of trajectory
trackers for a car with trailers. IFAC World Congress, San Fran-
cisco, CA, 1996.

[5] C. Canudas de Wit. Trends in mobile robot and vehicle con-
trol. In K.P. Valavanis and B. Siciliano (eds), Control problems
in robotics. Lecture notes in control and information sciences,
Springer-Verlag, 1998.

[6] K. Chellapilla. Evolving nonlinear controllers for backing up a



8 SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, JANUARY 2001; REVISED MAY 2001, AND AUG 2001

theta3

beta3

beta2
Fig. 10. The trajectory of Fig. 8 in the p space and the ellipsoid £.

The points + represent initial conditions from which the back-
wards controller alone fails to converge on experimental trials.

FORWARD

T T
-1000 [¢] 1000 2000 3000
x axis (mm)

\
-2000

2000

i
@
=3
S
T

BACKWARD

yaxis (mm)
=
a )
3 S
3 ]
T T

|

-1000 0 1000 2000 3000
x axis (mm)

Fig. 11. Experiment # 2: sketch of the motion of the vehicle. The
dotted line represents (z3,ya).

truck-and-trailer using evolutionary programming. Evolutionary
Programming VII.7th International Conference, p.417-26, 1998.

[7] A.W. Divelbiss and J. Wen. Nonholonomic path planning with
inequality constraints. Proc. 1994 IEEE Int. Conf. on Robotics
and Automation, p.52-57.

[8] J De Dona. Input Constrained linear control. PhD thesis, Depart-
ment of Electrical and Computer Engineering, The University of
Newcastle, Australia. February 2000.

[9] M. Fliess, J. Levine, P. Martin and P. Rouchon. Flatness and
defect of nonlinear systems: introductory theory and examples.
Int. Journal of Control, 61(6):1327-1361, 1995.

[10] E.G. Gilbert and K.T. Tan. Linear systems with state and con-
trol constraints: the theory and application of maximal output ad-
missible set. IEEE Transactions on Automatic Control, 36:1008-
1020, 1991.

[11] S. K. Halgamuge, T.A. Runkler and M. Glesner. A hierarchi-
cal hybrid fuzzy controller for realtime reverse driving support
of vehilces with long trailers. Proc. of the Third IEEE Confer-
ence on Fuzzy Systems.IEEE World Congress on Computational
Intelligence p.1207-1210, 1994.

[12] D.F. Hougen, M. Gini and J. Slagle. Rapid unsupervised con-
nectionist learning for backing a robot with two trailers. Proc.
1997 TEEE Int. Conf. on Robotics and Automation, p.2950-2955,
Albuquerque, NM.

[13] R.E. Jenkins and B.P. Yuhas. A simplified neural network solu-
tion through problem decomposition: the case of the truck backer-
upper. IEEE Transactions on Neural Networks, 4:718-720, 1993.

[14] R. E. Kalman. When is a linear control system optimal? Trans.
of the ASMFE, Journal of Basic Engineering, p.51-60, March 1964.

[15] D.H Kim and J.H Oh. Experiments of backward tracking control
for trailer systems. Proc. 1999 TEEE Int. Conf. on Robotics and
Automation, p.19-22, Detroit, MI.

[16] G.S. Kong and B. Kosko. Adaptive fuzzy systems for backing up
a truck and trailer. IEEE Trans. on Neural Networks,3:211-223,
1992.

[17] J.R. Koza. A genetic approach to finding a controller to back up a
tractor-trailer truck. Proc. of 1992 American Control Conference,
p.2307-11,1992.

[18] F. Lamiraux and J.P. Laumond. A practical approach to feed-
back control for a mobile robot with trailer. Proc. 1998 IEEE
Int. Conf. on Robotics and Automation, p.3291-3296, L.euven Bel-
gium.

[19] J.P. Laumond (ed). Robot Motion Planning and Control, Lec-
ture notes in control and information sciences, Springer-Verlag,
1998.

[20] W. Li, T. Tsubouchi and S. Yuta. On a manipulative difficulty
of a mobile robot with multiple trailers for pushing and towing.
Proc. 1999 IEEE Int. Conf. on Robotics and Automation, p.13-18,
Detroit, MI.

[21] D. Liberzon and A. S. Morse. Basic problems in stability and de-
sign of switched systems. IEEE Control Systems Magazine, 19:59-
70,1999.

[22] W.H Ma and H Peng. Worst-case maneuvers for the roll-over and
jackknife of articulated vehicles. Proc. of the American Control
Conference, p.2263-2267, Philadelphia, PN, 1998.

[23] Y Nakamura, H. Ezaki, Y. Tan; W. Chung. Design of steering
mechanism and control of nonholonomic trailer systems. Proc.
2000 TEEE Int. Conf. on Robotics and Automation, p.247 - 254,
San Francisco, CA.

[24] M. van Nieuwstadt and R. Murray. Real time trajectory genera-
tion for differentially flat systems. International Journal of Robust
and Nonlinear Control,8:995-1020,1998.

[25] D. Nguyen and B-Widrow. The truck backer-upper: an exam-
ple of self-learning in neural networks. Proc. of SPIE vo0l.1293,
pt.1,p.596-602, 1990.

[26] R. Parra-Loera and D.J. Corelis. Expert system controller for
backing-up a truck-trailer system in a constrained space. Proc. of
the 37th Midwest Symposium on Circuits and Systems p.1357-
1361,1995.

[27] C. Samson. Control of chained systems: application to path-
following and time-varying point stabilization of mobile robots.
IEEE Trans. on Automatic Control, 40,64-77, 1995.

[28] O. J. Sgrdalen. Conversion of the kinematics of a car with n
trailers into chained form. Proc. IEEE Int. Conf. on Robotics and
Automation, p.382-387, Atlanta, Georgia, 1993.

[29] M. Sampei, T. Tamura, T. Kobayashi and N. Shibui. Arbitrary
path tracking control of articulated vehicles using nonlinear con-
trol theory. IEEE Transaction on Control Systems Technology,
3, 125-131, 1995.

[30] K. Tanaka, T. Taniguchi and H.O. Wang. Trajectory control
of an articulated vehicle with triple trailers. Proc. 1999 IEEE
International Conference on Control Applications, p.1673-8.

[31] D. Tilbury, R. Murray and S. Sastry. Trajectory generation for
the N-trailer problem using Goursat normal form. IEEE Trans.
on Automatic Control, 40,802-819,1995.



