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For kinematically redundant robotic manipulators, the extra degrees of freedom available
allows freedom in the generation of the trajectories of the end-effector. In this paper, for
this scope, we use techniques for motion control of rigid bodies on Riemannian manifolds
(and Lie groups in particular) to design workspace control algorithms for the end-effector
of the robotic chain and then to pull them back to joint space, all respecting the different
geometric structures of the two underlying model spaces. The trajectory planner makes
use of geometric splines. Examples of the different kinds of curves that are obtained via
the De Casteljau algorithm in correspondence of different metric structures in SE(3) are
reported. The feedback module, instead, consists of a Lyapunov based PD controller de-
fined from a suitable notion of error distance on the Lie group. The motivating application
of our work is a holonomic mobile manipulator for which simulation results are described
in detail. © 2003 Wiley Periodicals, Inc.

1. INTRODUCTION

The main scope of this paper is to explore the use of

the geometric methods for trajectory generation1–6

and tracking7–9 to design more effective workspace

motion control algorithms for holonomic mobile ma-

nipulators. Like the platform under consideration

here, most mobile manipulators will have kinemati-

cally redundant degrees of freedom, making it more
important to generate the best possible trajectory for
the end-effector. Furthermore, while the model space
for the joint space is essentially the Euclidean space,
the workspace is intrinsically a Lie group, the so-
called Special Euclidean group, so that coordinate
based methods fail to satisfy any intrinsic criterion of
optimality (beside having other well-known prob-
lems, like singularities, which are not intrinsic but in-
duced by the parametrization chosen). The tools de-
scribed in the following are needed to perform
motion control in a way coherent with the geometry
of the Lie group. In particular, the error between a
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reference trajectory and a true one has to be defined
according to the group operation. Unlike the joint
space which is Abelian, SE(3) is noncommutative
and therefore the group operation is ‘‘multiplication’’
(here matrix product). Using exponential maps, it is
possible to describe the mapping between the two
different model spaces, i.e., to map the ‘‘additive’’
group structure of the joint space to the ‘‘multiplica-
tive’’ one of the workspace. The formalism employed
here essentially allows us to go in the opposite direc-
tion without having to resort to local coordinates for
SE(3).

The basic task that is required to the system is to
be able to move the end-effector (both rotate and
translate) from two given points belonging to the
reachable workspace. For an open kinematic chain,
the problem of planning a motion is composed of two
parts: the first is to find a suitable trajectory for the
end effector, the second is to translate this trajectory
into a corresponding trajectory for the joints of the
manipulator, to be used as reference input to the sys-
tem via the Euler-Lagrange equations. This is the in-
verse kinematics in joint space. Alternatively, one
could consider the workspace Euler-Lagrange equa-
tions (or their reduced version, the Euler-Poincaré
equations obtained by ‘‘factorizing out’’ the group
symmetry), compute the corresponding workspace
generalized torques and map those back to joint
space. This last scheme is the one examined in detail.
Since a mechanical system is a second order system,
its nominal trajectory, in order to be feasible for a con-
trol input in the class of piecewise continuous signals,
has to be at least C1. The trajectories considered here
for the nominal path of the end-effector are C1 geo-
metric splines that can be generated either from op-
timal control or from closed form algorithms. In par-
ticular one such closed form method, called the De
Casteljau algorithm, is analyzed in detail, expanding
previous work10,5 in which the algorithm was inves-
tigated for generic Riemannian manifolds and com-
pact Lie groups, for which a natural (i.e., biinvariant)
Riemannian structure exists. On the obtained trajec-
tory in SE(3), a feedforward workspace generalized
torque and a Lyapunov based PD controller are cal-
culated using the tools developed in ref. 7. The con-
trollers are then pulled back to joint space. Problems
of excessive magnitude of the joint torques, con-
nected with passages of the joint variables in prox-
imity of a singularity of the robotic chain, can be
taken care of in standard ways.

As mentioned above, the motivating application
for this work is a holonomic mobile manipulator, i.e.,
a robotic arm mounted on the top of a wheeled mo-

bile platform, which provides extra reachability to the

end-effector and for which we would like to design a

classical two degree of freedom control structure in

geometric terms. Compared to the arm, a mobile base

is usually slower, coarser and its odometry is subject

to drift that obviously propagates through the arm

when doing end-effector pose estimate. Furthermore,

a mobile manipulator is normally meant to be used

for less repetitive and more diverse tasks than a static

one. The consequence is that the widely used open

loop control schemes based only on inverse

kinematics/dynamics and relying only on the joint

measurements are usually not enough, and one needs

to integrate extra sensor information which is natu-

rally available in workspace, hence providing extra

motivation for workspace control schemes.

The mathematical background is presented in

Section 2. Section 3 discusses the generation of trajec-

tories on SE(3) and Section 4 contains the synthesis

of a workspace controller, followed by a quick com-

parison with a joint space controller in Section 5. The

application to a holonomic mobile manipulator is

treated in Section 6.

2. RIEMANNIAN GEOMETRY ON SE„3…

The Special Euclidean Group SE(3) is the Lie group of

isometric transformations of R3 and in homogeneous

coordinates it is given by

SE�3 ��� g �Gl4�R�, g��R p

0 1
� ,R�SO�3 �, p�R

3�
with SO(3)��R�Gl3(R) s.t. RRT

�I3 and det R

��1� the group of rotations. The Lie algebra of SE(3)

is

se�3 ��� X �M4�R�, X�� �̂ v

0 0
� , �̂�so�3 �, v�R

3�
with so(3)���̂ �M3(R) s.t. �̂T

���̂� and •̂ : R3

→so(3) such that �̂����� , ���R
3.

The elements of se(3) have the physical interpre-

tation of velocities with respect to a choice of frame.

In particular, deriving g�SE(3), the kinematic equa-

tions can assume two useful forms:
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ġ�Xs g and ġ=g Xb Xs, Xb
�se(3) (1)

called respectively right- and left-invariant representa-
tions. In the right-invariant representation, the infini-
tesimal generator Xs is called the spatial velocity

Xs
�� �̂s vs

0 0
�

because it represents the velocity of g translated to
the identity and expressed in an inertial frame. In-
variance here is with respect to a matrix multiplica-
tion from the right and means invariance to the choice
of the body fixed frame. Considering the rotation and
translation components of the kinematic equations,
the right-invariant representation looks like

Ṙ��̂s R ,

ṗ��̂s p�vs.

Similarly, the left-invariant representation expresses
invariance to change of the inertial frame and Xb

�se(3),

Xb
�� �̂b vb

0 0
� ,

is called body velocity. The first order kinematic equa-
tions are then

Ṙ�R�̂b,

(2)

ṗ�R vb.

The relation between spatial and body velocity at
g�SE(3) is expressed by the adjoint map
Adg(Y)=gYg−1

� Y�se(3) that gives the change of ba-
sis on the Lie algebra: Xs

�Adg(Xb)=gXbg−1 and Xb

�Adg−1(Xs). The derivation of the adjoint map with
respect to g�e tX, X�se(3), at the identity of the
group

adX=
d

dt
(AdetX)�

t=0

,

gives the Lie bracket adX(Y)=[X, Y]=X Y−Y X, i.e., the
bilinear form defining the Lie algebra. The Lie brack-
ets of the basis elements A1 , . . . ,A6 of se(3) are

expressed in terms of the structural constants c ij
k :

�A i , A j��c ij
k Ak . The linear representations of the op-

erators Adg(•) and adX(•) are

Adg�� R 0

p̂R R
� , adX�� �̂ 0

v̂ �̂
� . (3)

For a vector Y�se(3), if Y�(Y)∨
�	Y�R

6, then
Adg(Y)�Adg	Y and adX(Y)�adX	Y , from which it
is clear that Adg is an algebra homomorphism:

Adg�X , Y���AdgX , AdgY� and Adgh�AdgAdh .

2.1. Metric Properties of SE„3…

The Levi decomposition gives the semidirect product
SE(3)�SO(3) � R

3 with SO(3) compact semi-
simple and R

3 Abelian. Semidirect product means
that SE(3), as a manifold, can be considered the di-
rect product SO(3)�R

3, but its group structure in-
cludes the action of SO(3) on R

3 by isometries. For a
Lie group, a metric is defined on the Lie algebra and
then translated to the whole tangent bundle by left/
right translation. Therefore it is automatically left or
right invariant, but not necessarily both. Given two
left-invariant vector fields X , Y�se(3) and g
�SE(3), 
gX , gY��
X , Y�, which means that the
metric coefficients M ij are constant with respect to left
invariant frames.

On SO(3), by Cartan second criterion, the Killing
form

K :so�3 ��so�3 �→R

�X , Y ��K�X , Y ��tr�adX adY�

is symmetric, negative definite and Ad-invariant (or
bi-invariant):

K�X , Y ��K�AdgX ,AdgY � �g�SO�3 �.

Therefore, 
• ,•����K(• ,•) is a Riemannian metric.
The inner product in R

3 characterizes SE(3) as its
uniquely defined group of motions, but does not de-
termine univocally its metric structure. In fact, it is
known that in SE(3) there is no Ad-invariant Rie-
mannian metric, which implies that there is no natu-
ral way of transporting vector fields between points
of SE(3) and that there is no natural concept of dis-
tance on SE(3).11–13 The two most common ap-
proaches to tackle this obstruction are
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(1) Ad-invariant pseudo-Riemannian structure
(2) double geodesic.

The first consists in choosing an inner product which
is nondegenerate but that can assume both negative
and positive values. This corresponds to having
curves with both negative and positive energy and
gives as geodesics the so-called screw motions. In the
second case, instead, the group structure of SE(3) is
disregarded in favor of a Cartesian product of two
distinct groups (rotations and translations). Either
choice has advantages and disadvantages, according
to the task in mind.

Both metric structures are characterized by a qua-
dratic symmetric matrix so that if X , Y�se(3),


X , Y����X �∨�TM�Y �∨. (4)

From now on, we will often omit the ‘‘∨’’ when con-
sidering the R

6-representation of a vector field in
se(3). The Ad-invariant pseudo-Riemannian structure
consists in insisting on the notion of one-parameter
subgroups by using the quadratic form in SE(3)
(combination of Killing form and Klein form)

MAd���I I

I 0
� (5)

whose eigenvalues are nondegenerate but can be ei-
ther positive or negative according to the values of �
and  . Its geodesics are the screw motions. The double
geodesic approach is based on discarding the group
structure of SE(3) and consider separately the bi-
invariant metric of SO(3) and the Euclidean metric of
R

3. The corresponding quadratic form is

Mdg���I 0

0 I
� . (6)

Although a representation of se(3) based on disre-
garding the group structure is neither right nor left
invariant, the right (or left) invariance of the metric is
preserved. Consider for example the left-invariant
representation of the system. Discarding the group
structure, we have that the left-invariant equations
for g�(R ,p) are

Ṙ�R�̂b,

(7)

ṗ�vb.

Changing body frame from g to g0g , where g0

�(R0 , p0), we get

g0g��R0R , R0p�p0�.

Deriving the two components,

d

dt
�R0R , R0p�p0��R0�Ṙ , ṗ ���R0R�̂b, R0vb�,

we reobtain (7). Applying the same change of body
frame in the group structure, left-invariance gives

d

dt
�g0g ��g0gXb

or Eq. (2) in components. The only difference between
(7) and (2) is the left action SO(3)→Aut(R3) given by
the rotation R in R

3 which does not modify lengths.

2.2. Riemannian Connection on SE„3…

The natural affine connection that can be associated
to an Ad-invariant nondegenerate symmetric (0, 2)-
tensor is called the (0)-connection and is studied by
Cartan in ref. 14. However, since the quadratic form
MAd is nondegenerate but not positive definite, it is
not compatible with the standard definition of kinetic
energy of a rigid body in SE(3) because of the nega-
tive energy that can be associated to MAd along cer-
tain trajectories. Therefore we neglect it and concen-
trate instead on Mdg . Because of the lack of bi-
invariance of Mdg , its Riemannian connection, call it

�
dg

, is not among the ‘‘canonical’’ ones studied in the
classical literature,14,15 but rather it can be seen as the
torsion-free metric connection of a trivially reductive
homogeneous space with respect to the left action on
itself and studied accordingly (see, for example, ref.
16, § 13).

The Riemannian connection �
dg

, being defined
from a left-invariant metric, can be extended to left-
invariant vector fields on TSE(3) in such a way that
it retains the left-invariance property along the coor-
dinate directions of an invariant basis. Calling A i the
elements of an orthonormal basis of left-invariant
vector fields,

�
dg

gA i
�gA j��g�

dg

A i
A j�� ij

k gAk (8)
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for all g�SE(3). Since the � ij
k are not tensorial, in

general left invariance of the connection has to be in-
tended with respect to affine transformations, i.e., if
X is an infinitesimal affine transformation and �X the
corresponding local one-parameter group of local
transformations in SE(3) generated by X (see Prop.
1.4, Ch. VI of ref. 17),

�X
� �

dg

YZ �
��

dg

�X(Y)�X�Z � � Y , Z�se�3 �.

For the left-invariant basis, the Christoffel symbols
can be expressed as

� ij
k

�
1
2 Mkl�c lj

mMmi�c li
mMmj�c ij

mMml�.

From (4), a constant metric quadratic form like Mdg ,
interpreted as an inertia tensor, is a map Mdg :se(3)
→se

0(3) the dual of se(3). Using adX
0 , the dual of

adX , defined as (adXZ ;�)�(Z ;adX
0�), where X ,Z

�se(3), ��se
0(3) and (• ; •) indicates the R-valued

standard pairing between a Lie algebra and its dual,
we get


adXZ ,Y���adXZ ;MdgY �

��Z ;adX
0MdgY ��
Z ,Mdg

�1adX
0MdgY� . (9)

Proposition 1: The left-invariant covariant deriva-
tive for (SE(3), Mdg) can be expressed as

�
dg

XY�
1
2 ��X ,Y��Mdg

�1�adX
0MdgY�adY

0MdgX ��.
(10)

Proof: See the Appendix, Section 1. �

From (3), the expressions for the coadjoint and in-

finitesimal coadjoint actions Adg�1
0

and adX
0 are

Adg�1
0

��Adg��T
��R p̂R

0 R
� ,

(11)

adX
0

��
d

dt
Ade�tX

0 �
t�0

���adX�T
����̂ � v̂

0 ��̂
� .

In (10), when we compute the covariant derivative of
X along itself, due to the semidirect action of SO(3)

on R
3 the terms adX

0MdgX are nonnull, even when the

inertia tensor is diagonal with �=. In this case, Mdg

can be pulled out and (with abuse of notation)

adX
0MdgX��adX

0X��� 0

��̂v ���� 0

v�� ��0.

Using (8), we can reduce the transport equation from
TSE(3) to the Lie algebra se(3). The equations we ob-
tain are the so-called Euler-Poincaré equations.18 Con-
sider the left-invariant trajectory �̇(t)��(t)X(t). In
the basis A1 , . . . ,A6 , the infinitesimal generator X
�se(3) is expressed as X(t)�� i(t)A i and its deriva-

tive as Ẋ(t)��̇(t) iA i .

Proposition 2: In SE(3), the Euler-Poincaré equa-
tions corresponding to the metric Mdg are

�̇��X ,

Ẋ�Mdg
�1adX

0MdgX .

Proof: See the Appendix, Section 2. �

3. MOTION GENERATION IN SE„3…

Assuming that the forward kinematics map is surjec-
tive, the forced Euler-Poincaré equations, i.e., the sec-
ond order equations for the robotic chain as seen from
the end-effector, are fully actuated, i.e., six indepen-
dent control inputs are available for such six-
dimensional mechanical system. This simplifies con-
siderably the trajectory generation problem, as any
smooth enough trajectory is feasible for the system
and the Euler-Poincaré equations give almost directly
the corresponding nominal input fFF (see below).

Here we review two methods used to generate C1

trajectories on SE(3). The typical situation is as fol-
lows: given a number of waypoints in TSE(3), we
would like to generate a feasible curve in TSE(3) that
interpolates them. The class of admissible inputs con-
sidered here is piecewise continuous, bounded mea-
surable signals. Consequently, the minimal require-
ment for a feasible trajectory is to be globally C1 (C0

in the velocity phase space) and piecewise smooth.
The loss of smoothness occurs only at the junction
points. Let us concentrate on the trajectory generation
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between two consecutive waypoints characterized by
the boundary data g0 , g f�SE(3) and ġ0

�Tg0
SE(3), ġ f�Tg f

SE(3).

3.1. Optimal Control Approach

The optimal control approach to such a problem is to
consider a second order variational problem with
cost functional the square of the L2 norm of the ac-
celeration:

J�	
0

T 
 �
dg

�̇�̇ , �
dg

�̇�̇ � dt .

The use of variational techniques for trajectory gen-
eration on matrix Lie groups is investigated for ex-
ample in refs. 19, 4, and 6. The main result for generic
Riemannian manifolds is the following theorem.

Theorem 1:2,4 A necessary condition for a C1 curve
�(t)�SE(3), t��0, T� , interpolating the data above to be
an extremum of J is that

�
dg

�̇�
dg

�̇�
dg

�̇�̇�R� �̇ , �
dg

�̇�̇ ��̇�0.

In the above mentioned literature, it is shown how to
construct optimal trajectories from this necessary
condition.

3.2. The De Casteljau Algorithm on SE„3…

Working in R
n, the resulting optimal curves obtained

from Theorem 1 correspond to polynomial splines.
The same trajectories can also be generated in an ana-
lytic way by considering the polygonal support of the
curve, using constructions like the Bézier polynomi-
als or schemes like the De Casteljau algorithm.20

When one tries to extend such methods from R
n to a

noncommutative Lie group, the situation becomes
more complicated, as the different constructions no
longer coincide. In refs. 5 and 10, the generalization of
closed form methods like the De Casteljau algorithm
is investigated for compact Lie groups, for which a
‘‘natural’’ (i.e., completely frame-independent) Rie-
mannian structure exists. The lack of a positive defi-
nite biinvariant metric on SE(3) complicates things
further, as the choice of the metric tensor is task (or
designer) biased. The scope of this subsection is to ex-
tend to the two structures of SE(3) introduced in Sec-
tion 2.1, Ad-invariant pseudo-Riemannian and
double-geodesic, the De Casteljau method. The algo-

rithm used here is taken from ref. 1 and produces a
smooth curve connecting two poses in SE(3) with
given boundary velocities. The advantage of such an
algorithm with respect to the variational approach is
that it gives a curve in closed form, function only of
the boundary data (and of the metric structure), so
that it can be useful in applications in which a (non-
causal) trajectory exactly matching the data is re-
quired. On the other hand, the obtained trajectories
do not seem to be the optimum of any variational
problem.10 The idea is to find a closed form curve
�r(•):�0, 1��SE(3) satisfying the boundary condi-
tions:

�r�0 ��g0 ,
d�r

dt
�

t�0

� ġ0 , �r�1 ��g f ,

d�r

dt
�

t�1

� ġ f . (12)

Here, choosing T�1 as final time is meant to simplify
the calculations. If T�1, the time axis can be rescaled
appropriately afterwards. The basic idea in R

n is to
transform the boundary conditions on the velocity
into intermediate points (called ‘‘control points’’).
The combination of the straight line segments con-
necting the extreme points to the control points gives
the desired polynomial. The generalization to a Rie-
mannian manifold consists in substituting the line
segments, used for the construction in the Euclidean
version, with geodesic arcs. Likewise, a couple of it-
erated combinations of the geodesics give a C� curve,
which shares the same boundary conditions with the
original patching of geodesic arcs.

A sketch of the (left-invariant version of the) al-
gorithm is as follows:

• Transform the first order boundary values in
infinitesimal generators V0

1 and V2
1 (see ref. 10

for the details)

d�r

dt
�

t�0

�3g0V0
1 and

d�r

dt
�

t�1

�3g fV2
1.

• Get the ‘‘control points’’

g1�g0eV0
1

and g2�g fe
�V2

1

,

i.e., the points reached by the time-one one-
parameter arcs from the extremes.
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• Using the logarithmic map, find the velocity
V1

1 s.t.

g2�g1eV1
1

.

The three velocities obtained so far V0
1 , V1

1 , V2
1

�se(3) are constant. Their combination (through the
exponential) gives rise to curves which not anymore
correspond to one-parameter subgroups, but keep
the same boundary values as the C0 patch of geodesic
arcs.

• Construct V0
2(t) and V1

2(t) s.t.

eV0
2
(t)

�e (1�t)V0
1

e tV1
1

, eV1
2
(t)

�e (1�t)V1
1

e tV2
1

, t��0,1� .

• Construct V0
3(t) s.t.

eV0
3
(t)

�e (1�t)V0
2
(t)e tV1

2
(t), t��0,1� .

The velocities V0
2(t), V1

2(t), V0
3(t) are not constant but

correspond to ‘‘polynomial’’ generators

• The interpolating curve is

�r�t ��g0e tV0
1
(t)e tV0

2
(t)e tV0

3

, t��0,1� .

As in SO(3) and SE(3) the exponential and logarith-
mic maps have closed form expressions, and as long
as the data are given in a symmetric fashion (i.e., we
do not have to compute covariant derivatives), the
procedure above requires only linear algebra tools
plus exp and log maps.

By repeating the procedure, C1 (piecewise
smooth) trajectories can be generated from a se-
quence of waypoints in SE(3).

4. WORKSPACE CONTROLLER

While geometric formulations of joint space control
of rigid robotic manipulators are quite common,
workspace equivalent ones seem to be much more
rare. An emblematic example is ref. 21: when it comes
to workspace control (Section 5.4) it falls short of all
the remarkable geometric methods employed up to
that point and develops only a coordinate-based ap-
proach. In fact, intrinsic workspace control requires
some extra tools from Riemannian geometry and the
theory of Lie group to be utilized.

The problem of constructing a controller for a
fully actuated system on a Riemannian manifold is
treated in ref. 7. We recall in this section the main con-
cepts needed and then do the calculations in detail for
our case. The resulting controller is composed of a
feedforward term corresponding to the reference tra-
jectory (�r , �̇r)�SE(3), as seen from the true one,
plus a feedback term constructed from a suitably de-
fined symmetric positive definite function
�(� ,�r):SE(3)�SE(3)→R, which plays the role of
the Lyapunov function. If (� , �̇) is the real trajectory
followed by the end-effector, the ‘‘error distance’’ �
induces a class of maps T between sections of the tan-
gent bundle, named ‘‘transport maps’’ in ref. 7

T(� , �r) :T�SE�3 �→T�r
SE�3 �,

that allow us to map vector fields between T�SE(3)
and T�r

SE(3) in a manner compatible with the one

form induced by � on � and on �r ,

d��� ,�r�����T�� , �r�
0 d��� , �r���r

,

where T
0 is the dual of T. By raising the indexes on

both sides, the transport map T is used to transform
the total derivative of � into derivative w.r.t. the first
factor

d

dt
��� ,�r��d��� ,�r����̇�d��� , �r���r

�̇r

�d��� ,�r���� �̇�T(� , �r)�̇r��d��� , �r���ė ,

where ė�T�SE(3) is called (body frame) velocity er-
ror. The feedforward controller is then given by the
covariant derivative along �

fFF
B

�
D

dt
�T(� , �r)�̇r�

�Mdg� �
dg

�̇T(� , �r)�̇r�
�r fixed

�
d

dt
�T(� , �r)�̇r��

� fixed
� ,

(13)

where the first term is the usual covariant derivative
for a vector field (depending on �) and the second
term expresses how the change in �r is viewed along
�. A Lyapunov based PD controller for the feedback
part is
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fPD
B

��d��� , �r����KD� �̇�T(� , �r)�̇r�. (14)

4.1. Tracking Control on SE„3…

The formulation above for the controller does not
take advantage of the Lie group structure of the
workspace SE(3). In Section 2.2, we saw that when
the configuration space is a Lie group, the Euler-
Lagrange equations can be reduced to Euler-Poincaré
equations by using left-invariance. One can always
assume that also the reference trajectory �r is left-
invariant: �̇r��rXr for some Xr�se(3) (obtained,
tautologically, by writing Xr��r

�1�̇r). Due to the se-
midirect product structure of SE(3), it is not straight-
forward to express directly the Lie algebra evaluated
infinitesimal generators from the motion generation
methods illustred in Section 3. Given left-invariant
reference trajectory and true trajectory �r(t), �(t)
�C�(SE(3)), the right group error8,9 can be defined as
the curve

�e�t ���r
�1�t ���t �. (15)

The problem of comparing the derivatives of left-
invariant curves �̇r��rXr and �̇��X is simpler than
the Riemannian treatment above and is discussed in
ref. 8 for compact groups and in ref. 7 for the SE(3)
case. It can be formulated as follows: �̇r and �̇ live in
T�r

SE(3) and T�SE(3), respectively. Through left-

invariance they are both pulled back to the Lie alge-
bra. However, this does not allow us to compare them
directly. In order to do that, one has to use the adjoint
map of �e which expresses the change of basis in the
Lie algebra, i.e., what one infinitesimal generator Xr

‘‘looks like’’ when the corresponding derivative is
parallel transported to � and then Lie algebra evalu-
ated. For a generic Riemannian manifold, this condi-
tion corresponds to the existence of the transport map
T. Deriving (15)

�̇e�
d

dt
��r

�1����r
�1

d

dt
��r�

��r
�1�X��r

�1�̇r�r
�1���r

�1��X�Ad(�
r
�1�)�1Xr�

��e�X�Ad�
e
�1Xr���eXe , (16)

i.e., also the trajectory for the right error is left-
invariant with respect to a suitable infinitesimal gen-
erator Xe�se(3). Using the adjoint map as in (16), to
transport vectors is, for example, compatible with the
following quadratic error function,

��� , �r�����e ,0�� 1
2tr�K1�I3�Re���

1
2 pe

TK2pe ,
(17)

where �e�(Re , pe)�(RrR , Rr
T(p�pr)). The eigenval-

ues k i of K1�K1
T are chosen such that k i�k j�0 for

i�j and K2�0. For a matrix A , call skew(A)�A
�AT [see ref. 8 or formula (35) and Appendix of
ref. 7].

Proposition 3: For the Riemannian manifold
(SE(3), I) the se(3)-evaluated controller (13) and (14)
corresponding to the right group error (15) and the error
function (17) can be expressed as

fFF��
1
2 �adXAd�

e
�1Xr�adX

0Ad�
e
�1Xr�adAd�

e
�1Xr

0 X �

�Ad�
e
�1Ẋr , (18)

fPD��� skew�K1Re�
T Rr

TK2pe

0 (1�3) 0
��KDXe . (19)

Proof: See the Appendix, Section 3. �

The necessary condition for the existence of such
a controller is that the system is fully actuated on
se(3)0, so that there exists a one-parameter subgroup
corresponding to �e for all � and �r in SE(3).

4.2. Pull-Back of the Controller to Joint Space

When considering the forward kinematics as a map
from the joint space, call it Q, to SE(3), the rectan-
gular Jacobian J(q) has the interpretation of velocity
gain from the joint space velocity q̇�TQ to the work-
space velocities X�(q)�se(3). Similarly, the differen-
tial inverse kinematics can be thought of as the gain
from end-effector generalized forces to joint torques/
forces. Pulling back the obtained controller using the
Moore-Penrose pseudoinverse, the energy along a
workspace trajectory is preserved in joint space. Since
Mdg�I , we have

�q�J†�q�� fFF�fPD�. (20)

In order to deal with large forces exerted in proximity
of a singularity, generalized inverse types of solutions
can be used. The resulting joint space controller is
then
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�q��I�J†�q�J�q���q� (21)

with �q��d� the differential of an auxiliary function
�. Since the inverse kinematics is an immersion map,
problems of instability of the joint space zero dynam-
ics can arise in correspondence of functions � that
take into account only the joint/link variables but not
their velocities.22 One standard solution is then to add
an extra damping term in the �q�, function of the error
of the joint space velocities with respect to a reference
joint velocity profile.23 More on redundacy resolution
in geometric terms is discussed in ref. 24.

5. JOINT SPACE CONTROLLER

Alternatively to the scheme above, a controller can be
synthesized directly in joint space. Since the joint
space Q has the structure of a vector space, the deri-
vation of a joint space controller is more intuitive and
is well-known in the literature. In this case, the ref-
erence trajectory (�r ,�̇r)�TSE(3) can be pulled back
to joint space through the differential inverse kine-
matics, so that a reference trajectory (qr ,q̇r)�TQ is
obtained. The joint space acceleration is �q̇r

q̇r , with �

the Riemannian connection associated to the gener-
alized intertia matrix M(q) of the robotic chain. The
corresponding feedforward controller is

�qr
�M�q��q̇r

q̇r (22)

or, in coordinates, (�r) l�M lkq̈r
k
�� ij

k q̇r
i q̇r

j . Unlike
SE(3), a Euclidean space comes with an Abelian
group structure, with addition as the group opera-
tion. In the case at hand here, it implies that the joint
space error looks like q�qr and a feedback controller
is easily constructed out of it. Check the existing lit-
erature for the feedback schemes normally adopted
in this case. This design is more suited to con-
trol methods that rely exclusively on the joint space
measurements.

6. APPLICATION TO A MOBILE MANIPULATOR

The motivating application for this work is a holo-
nomic mobile manipulator, see for example the spe-
cial issue of the Journal of Robotic Systems, November
1996, or refs. 25–31 for a survey of the state of the art
on mobile manipulation. The use of a mobile base ex-
tends considerably the workspace volume employ-
able in ordinary operations, but it worsens its preci-

sion of execution with respect to a static manipulator.
Furthermore, if nonrepetitive tasks are to be per-
formed, it is much more conjecturable that extra sen-
sors for the measurement of workspace quantities
have to be available. These facts, together with the
practical considerations that mobile manipulators are
more likely to have redundant degrees of freedom
than their static cousins, make the development of
workspace control algorithms more desirable than
before.

The mobile manipulator under examination in
this work is composed of a six degree of freedom ro-
botic arm (Puma 560) mounted on the top of a Nomad
XR4000 holonomic mobile base, (see Figure 1). The
platform Nomad XR4000 has four independently
controlled castor wheels that allow holonomic move-
ments like following a straight line while rotating
and, as it is often the case with the existing mobile
platforms, the low level control of the wheels (each of
them has two actuators) as well as their coordination
is not accessible to the user. If one adds that the plat-
form works with a bandwidth of one or two orders of
magnitude slower than the arm, the overall conse-
quence is that the dynamics of the base are less ac-
curate than in the arm. Also this fact calls for extra
sensors to be integrated in the motion control algo-
rithms and the natural place to do this is the work-
space. The control structure that we want to use for
the system is a two degree of freedom scheme com-
posed of an open loop module and a tracking con-
troller. The module for the trajectory generation of the
whole coordinated system has to work at the lower
frequency, as at higher bandwidth only the six joints
of the arm are accessible. When generating input

Figure 1. The mobile manipulator under investigation:
Puma 560 arm and Nomad XR4000 mobile platform.
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trajectories for the joints, in order to have a feasible
trajectory for the joint forces/torques and not to ex-
cite the structural vibrations of the composed system
it is important to have smooth enough trajectories for
the end-effector, along which to apply inverse
kinematic/dynamic schemes. This is accomplished
here by using geometric splines on SE(3). The curve
is produced by applying the De Casteljau algorithm
studied in Section 3.2 which gives a smooth combi-
nation of exponentials on the group that is C1 at the
junctions and admits a closed form expression. The
numerical construction of a geometric spline is
treated in Section 6.2, where a simple method to
sample the curve is shown. While the geometric
spline is meant to represent the ‘‘macroscopic’’ mo-
tion, in order to perform the numerical integration it
is convenient to transform it into a composition of
piecewise screw motions at the sampling frequency
of the controller. In fact, while the spine itself corre-
sponds to a time-varying infinitesimal generator,
screw motions represent one-parameter curves, i.e.,
integral curves of constant vector fields from given
initial conditions and are more suited for straightfor-
ward numerical integration. Indeed, this is the situ-
ation in which the formalism of exponential coordi-
nates fits naturally, since it is based on representing
any motion as an (explicit) integral of some linear dif-
ferential equation from a specified initial condition.
Using a similar type of discretization, also the work-
space feedback controller can be synthesized in a nu-
merical scheme. This is done in Section 6.3.

6.1. Kinematic Structure of the Mobile Manipulator

Kinematically, a mobile manipulator is an open chain.
If the base is holonomic, the motion of the end effec-
tor can be easily factorized into the product of rigid
body transformations of one degree of freedom joints
or links. The base of a holonomic mobile robot can be
modeled as two prismatic links plus a rotational joint
and the arm with six joints. The forward kinematics
of a robotic arm is represented by the map

� :Q��R�2
��T�7

→SE�3 �, (23)

q��q1¯q9��g���q�,

where the seven-dimensional torus T7 is composed of
seven rotational joints. The first joint of the arm and
the rotational joint of the platform are coaxial, there-
fore, at the kinematic level, only the difference of the
two joint variables is considered. Overall, the joint

space of the system has eight independent degrees of
freedom. Notice, however, that as the two coaxial
joints belong to different components, for control pur-
poses it is sometimes necessary to keep them separate
(when, for example, the arm and base are controlled
at different bandwidths, not in this study).

Since dimQ�dimSE(3)�6, in a generic pose the
surjectivity requirement is not a restriction. Further-
more, since the metric Mdg splits rotations from trans-
lations, it is also possible to define a manifold with
boundary, contained in SE(3), in which � is always
onto. The boundaries concern the vertical directions
of R3, upper and lower limited by the extendibility of
the arm.

6.2. Open Loop Controller along a Geometric

Spline

Given the boundary data (12), we want to produce a
vector of control inputs that steers the manipulator
from g0 to g f respecting the desired velocity condi-
tions ġ0 and ġ f , in the case of perfect tracking and of
no model error. The algorithm used is then as follows:

(1) By means of the De Casteljau algorithm, com-
pute a closed form smooth trajectory for the
end-effector in SE(3) from the boundary con-
ditions.

(2) Interpolate the global trajectory according to
a given sampling rate 1/T .

(3) On each sampling interval, compute the cor-
responding screw motion and the constant
velocity that produces it.

Once we have piecewise constant infinitesimal gen-
erators, the trajectory can be used indifferently in
workspace or joint space feedforward schemes, ob-
taining the corresponding generalized torques by
means of a discrete derivative. As an example, we
discuss the joint space feedforward controller in
Section 6.2.3.

6.2.1. Trajectory Generation with the De Casteljau

Algorithm

Simulations results for the SE(3) trajectory resulting
from the variational problem of Section 3.1 are exten-
sively treated in refs. 6 and 13 and will not be re-
peated here. Instead, we show some examples of tra-
jectories that can be obtained with the De Casteljau
algorithm. The two cases above for the metric of
SE(3) lead to different curves because the geodesics
are different. In the pseudo-Riemannian case, the
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velocities V0
1 , V1

1 and V2
1 correspond to twists in se(3)

and are obtained through the exponential and loga-
rithmic maps. In the double-geodesic case, instead,
we need to split all the data g i�SE(3) into (R i ,p i)
�SO(3)�R

3, use the metrics in SO(3) and R
3 to con-

struct the various �̂ j
i
�so(3) and v j

i
�R

3, and then re-
combine them in homogeneous representations

��̂ j
i ,v j

i��� �̂ j
i v j

i

0 0
��se�3 �.

The curves one obtains in the two cases are different.
In particular, in the double geodesic case, it is possible
to maintain the idea of straight line independent of
the amount of the rotation, provided that the differ-
ence of the two end positions p0 and p f is aligned with
the direction of both boundary tangent vectors of the
translational part, see Figure 2(a). The price to pay is
that the curve is not left invariant with respect to a
coordinate transformation, since we ‘‘forget’’ about a
rotation in the Euclidean part. In general, the more
consistent is the rotation component of the desired
motion (with respect to the translational part), the
more the two curves will look different (compare Fig-
ures 3 and 4).

6.2.2. Sample and Hold in SE(3): Piecewise Screw

Motion Curve

Sampling the workspace kinematics with frequency
1/T means setting a tangent vector at the sampling

time kT and maintaining it constant until (k�1)T .
The ‘‘macroscopic’’ trajectory �r(t) has to be decom-
posed accordingly, taking into account the group
structure of SE(3). At kT , the reference end-effector
pose �r(kT) is known from the previous iteration and
the desired pose at (k�1)T , �r(kT�T), can be cal-
culated from the closed form trajectory generator al-
gorithm. The constant infinitesimal generator of the
one-parameter curve connecting �r(kT) and �r(kT
�T) can be obtained through the logarithmic map:

Vk�logSE(3)��r
�1�kT ��r�kT�T ��, (24)

so that, parametrizing the screw motion by �
��0,1� , we get (see Figure 5)

�r�kT��T ���r�kT �eVk�T ���0,1� . (25)

Vk can be thought of as a Lie algebra evaluated dis-
crete derivative operator and the ‘‘sampling’’ scheme
applied here resembles a first order sample and hold.
The main difference, however, with respect to the
classical first order sample and hold is that as
�r(kT�T) is given, the ‘‘prediction’’ step is not open
loop but it is controlled by the desired reference tra-
jectory. The trajectory resulting after the sampling is
a composition of parts of one-parameter curves, i.e.,
a continuous piecewise screw motion trajectory.

6.2.3. Numerical Algorithm for the Joint Space

Feedforward Controller

The inverse kinematic and dynamic maps be-
tween joint space and workspace need to be solved

Figure 2. The two curves generated by the De Casteljau algorithm in the special situation in which the translational
components of the boundary data lie on the same direction of the translational boundary velocities.
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numerically for redundant manipulators. The ques-
tion of how to discretize a geometric structure re-
quires special care and is treated for example in refs.
32 and 33 for mechanical structures on Lie groups.
Here we discuss briefly only the simplest case, the
discretization of the differential inverse kinematics.
For the joint space open loop control scheme, the al-
gorithm of Section 6.2 must be completed by the fol-
lowing steps:

(4) Invert the system along each screw motion.
(5) Compute the feedforward generalized

torques from (22).

Once the initial conditions �(0) and the correspond-
ing zeros of the joint angle vector q are fixed, the joint
coordinates can be obtained by numerical integration

qk�1�qk��J�q��†VkT . (26)

An extra weight can be added to the joints: the result-
ing weighted pseudoinverse solution can, for ex-
ample, reflect the different inertia of the two parts of
the system. All the well-known redundancy resolu-
tion methods can be used to deal with the rectangular
Jacobian, see refs. 34 and 35.

The joint velocity corresponding to Vk is

Figure 3. The two curves generated by the De Casteljau algorithm in a generic case.

Figure 4. The two curves generated by the De Casteljau algorithm in another generic case.
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q̇k=J†(q)Vk and the corresponding acceleration can be
obtained by a further discretization (this time on the
vector space TqQ) and the reference torques then
from (22).

6.2.4. Simulations

We saw above that the different metric structures re-
sult in different splines curves. For the robotic chain
(23) with the initial joint angles depicted in Figure 6,
a similar example to the one of Figure 2 of the dif-
ferent �r obtained for the same boundary data in the
two cases is shown in Figures 7 and 8. Both inverse
kinematics are computed considering the general
least square version of (26), with the condition num-

ber as secondary objective function. Notice the differ-
ence in the base trajectories between Figures 7 and 8.

6.3. Workspace Control

In this section we want to show how the workspace
feedback controller of Proposition 3 behaves for the
mobile manipulator, using as open loop trajectory the
same type of spline of Section 6.2.1. Figure 9 gives the
pictorial representation of the group error (15) and of
why we need to use the transport map. In order to
transform (18) and (19) into a numerical algorithm,
the same type of discretization explained in Section
6.2.2 can be used for the vector fields on SE(3). For-
mulas (24) and (25) give already the Lie algebra
evaluated infinitesimal generators. The computation

of Ẋr in (18) requires the second order discretization
to be carried out on the ‘‘Lie group side’’ of the for-
ward kinematics. Since se(3) is a vector space, then a
naive discretization is possible and this is what we
use here. However, as mentioned above, since we
have a mechanical system on a Lie group, a more geo-
metric numerical algorithm should be used, like
those described in refs. 32 and 33. Once fFF and fPD are
discretized, they can be mapped back to joint space
via (20) and (21) without extra complications.

Figure 5. First order sample and hold on the Lie group
generating a piecewise screw motion.

Figure 6. Initial configuration.

Figure 7. Nominal motion corresponding to the double geodesic metric.
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6.3.1. Simulations

In Figure 10, the combined effect of fFF and fPD is
shown along the same type of spline used in Figure
7. Notice that the high gain chosen here makes the er-
ror to be recovered very promptly with quite an
abrupt movement of the end-effector that propagates
down to the platform. Afterwards, only the feedfor-
ward controller essentially drives the system and in
fact also the trajectory of the base becomes smooth as
it is desirable. While the reaction of the feedback com-
ponent can be reduced on the end-effector by tuning
K1 , K2 and KD , its effect on the base can be indepen-
dently reduced or eliminated by changing the
weights on the pseudoinversion.

7. CONCLUSION

Given a redundant robotic chain, a workspace con-
troller can be synthesized for the Euler-Lagrange
equations that can be associated to the end-effector on

SE(3). The global geometric perspective implies that
the use of local coordinates in the description of rigid
body motion of the end-effector can be avoided. The
use of workspace control algorithms is meant to ex-
ploit more in depth the Riemannian structure of the
workspace, including its Lie group symmetry, for
both motion planning and stabilization purposes.
Furthermore, from a more practical point of view, it
provides a framework in which extra sensor informa-
tion (other than joint measurements) can be easily in-
serted and force control easily performed. The main
advantage of the geometric workspace control is,
however, that it allows us to design (and stabilize) in
a natural way any type of end-effector trajectories,
thus making full use of the redundant degrees of free-
dom of the robot.

APPENDIX A: PROOFS

1. Proof of Proposition 1

Adapting Theorem 3.3 in Chap. X of ref. 17 to the case
of trivially reductive homogeneous spaces given by
the left action of a Lie group on itself, the Riemannian
connection for Mdg is expressed as

�XY�
1
2 �X ,Y��U�X ,Y �,

where U(X ,Y) is the symmetric bilinear mapping
se(3)�se(3)→se(3) defined by


U�X ,Y �,Z��
1
2 �
adZX ,Y��
X ,adZY� � (A1)

for all X ,Y ,Z�se(3). Using (9) to extract Z from both
terms on the right hand side of expression (A1), the
result follows (see also ref. 36, Appendix 2). �

Figure 8. Nominal motion corresponding to the Ad-invariant metric.

Figure 9. Reference, true and error trajectory for a work-
space feedback controller.
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2. Proof of Proposition 2

Call B i�L�
0
A i��A i , i�1,.. . ,6, the basis of T�SE(3)

obtained by left translation of A1 , . . . ,A6 . Since
X�X(t) is time varying, (8) cannot be applied di-
rectly. The expression for the transport equation
along �(t) is

0�
D

dt
� �̇ ���

dg

�̇(t)�̇�t ���
dg

�X(t)�X�t �

��
dg

� i(t)B i
� j�t �B j��L�̇� j�B j�� i� j�

dg

B i
B j

��̇ jB j�� i� j��
dg

A i
A j by �8 �

���̇ jA j�
1
2 �� i� j��A i ,A j�

�Mdg
�1adA i

0 MdgA j

�Mdg
�1adA j

0 MdgA i� by �10�

���̇ jA j�
1
2 ���� iA i ,� jA j�

�Mdg
�1ad� iA i

0
Mdg�

jA j�Mdg
�1ad� jA j

0
Mdg�

iA i�.

Therefore

�
dg

�̇(t)�̇�t ����Ẋ��
dg

XX ��0. (A2)

Expression (A2) is well-known in the literature, see
for example, ref. 37, p. 429. The result follows from
it. �

3. Proof of Proposition 3

The expression for the controller (18) and (19) could
be obtained directly from ref. 7. However, for the sake

of clarity and continuity of exposition, we would

rather reobtain such result. While �̇e�T�e
SE(3), the

transport map has to be evaluated along the � curve:

ė��̇�T(� ,�r)�̇r��Xe��r�̇e�T�SE�3 �.

Therefore, from (16), T �̇r=�Ad�
e
−1Xr and

�
dg

�̇T�̇r
�
�rfixed��

dg

�X�Ad�
e
�1Xr .

Calling Yr�Ad�
e
−1Xr�se(3) the infinitesimal generator

Xr as seen from � and considering the left invariant

basis A1 , . . . ,A6 of se(3), X and Yr admit the coordi-

nate expressions X�a iA i and Yr�b iA i or, in the basis

B1 , . . .B6 of T�SE(3), �X��a iA i�a iB i and �Yr

��b iA i�b iB i :

�
dg

�̇T�̇r
�
�rfixed

��L �̇bk
�a ib j� ij

k �Bk

��� dbk

dt
Ak��

dg

XYr� ���Ẏr��
dg

XYr�

��� d

dt
�Ad�

r
�1�Xr���

dg

XAd�
r
�1�Xr� �

�rfixed

.

Using formula (9.3.6) of ref. 18

Figure 10. Feedforward and PD controls for a reference trajectory (dotted line) like that of Figure 2.
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d

dt
�Ad�

r
�1�Xr��

�rfixed

�Ad��1���Ad�X ,Ad�r
Xr��0 �

��adXAd�
e
�1Xr ,

and, using Eq. (10),

�
dg

XAd�
r
�1�Xr

�
�rfixed

�
1
2 �adXAd�

e
�1Xr�Mdg

�1adX
0MdgAd�

e
�1Xr

�Mdg
�1adAd�

e
�1MdgXr

0 X �.

The second term in (13) is

d

dt
�T�̇r��

�fixed

�
d

dt
� �̇r�e��

d

dt
��Ad�

e
�1Xr�

��Ad�
e
�1Ẋr

from (9.3.4) of ref. 18. Concerning the feedback con-
troller, using the left-invariance of ė��Xe , the real
valued total derivative (d/dt) � uniquely defines the
covector ��se*(3)�R

6 corresponding to d��� as �
�d���� so that

d

dt
��d���ė��Xe

�
1
2L�̇� tr�K1�I3�Rr

TR ����p�pr�
TRrK2Rr

T�p�pr��

�skew�K1Rr
TR �T�̂e�pe

TK2Rrve

���skew�K1Rr
TR �T�∨ pe

TK2Rr�Xe
∨ .

From (14), the derivative part of the controller KDė
��KDXe is already left-invariant. Since Mdg=I and fFF

B

is left invariant, the expression (18) follows. Further-
more, lowering indices on � leaves � invariant, there-
fore also (19) follows. �
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