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For multiqubit density operators in a suitable tensorial basis, we show that a num-
ber of nonunitary operations used in the detection and synthesis of entanglement
are classifiable as reflection symmetries, i.e., orientation changing rotations. While
one-qubit reflections correspond to antiunitary symmetries, as is known, for ex-
ample, from the partial transposition criterion, reflections on the joint density of
two or more qubits are not accounted for by the Wigner theorem and are well-posed
only for sufficiently mixed states. One example of such nonlocal reflections is the
unconditional NOT operation on a multiparty density, i.e., an operation yeilding
another density and such that the sum of the two is the identity operator. This
nonphysical operation is admissible only for sufficiently mixed states. © 2006
American Institute of Physics. �DOI: 10.1063/1.2181827�

. INTRODUCTION

The Wigner theorem asserts that unitary and antiunitary operations exhaust all possible sym-
etric transformations applicable to the wave function of a quantum mechanical system. The

nitary transformations are physically associated with forward-in-time evolution, and antiunitary
ith backward-in-time evolution �see, for example, Ref. 1�. The characteristic feature of this last

lass is the presence of a conjugation operation on a wave function or a transposition operation on
density operator. It is known2 that the geometric interpretation of the time reversing operation for
density operator in a two-dimensional Hilbert space �also known as “qubit”� is a reflection, i.e.,

n orientation-changing rotation in O−�3�=O�3� \SO�3� of the corresponding Bloch vector.
A closely related operation, variously known as a spin flip,3 �unconditional� NOT operation, or

niversal inverter,4 changes the sign of the entire Bloch vector. In this sense it corresponds
eometrically to inversion in the origin, which is widely known as the parity operation.5 For a
ingle isolated qubit these operations are indistinguishable from equivalent orientation preserving
perations, since O�3� and SO�3� both act transitively on the Bloch sphere, but for multiqubit
ystems they correspond to partially antiunitary transformations such as the “partial transposition,”
hich can be used to detect bipartite entanglement.6 This highlights the intrinsically “discrete”
ature of such tests and their invariance under LOCC �local operations and classical communica-
ion�.

In this paper we introduce a more general class of involutory “symmetry” operations, and
rgue that these are likewise useful in studying the multiparty nonseparability of density operators.
hese operations are most easily described in terms of the Stokes tensor7–9 and its “unfolding” to

he so-called real density matrix,10 both of which are equivalent, as carrier spaces, to the coherence
ector.11,12 All these representations parametrize the real linear space of multiqubit density opera-
ors by the expectation values of all possible tensor products of the Pauli operators, differing only
n their notations and indexing systems. The Stokes tensor indexing has the advantage of making

he “affine” structure of the set of n-qubit density operators Dn explicit, whereas the real density
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atrix has the advantages that both the matrix itself, as well as any operations on it which are
iagonal with respect to the Stokes tensor, can be displayed as a compact two-dimensional �2D�
able on a printed page �see below for examples�.

As is well known, unitary operations on the usual Hermitian density operator induces
rientation-preserving rotations of the coherence vector, and thereby also norm-preserving linear
roup actions on the Stokes tensor and/or real density matrix �loc. cit.�. In the following, we shall
requently use the term “density,” without further qualification, to indicate an equivalence class of
robability distributions over an ensemble of multiqubit systems which all give rise to the same
ensity operator, irrespective of how this is represented �as a Hermitian matrix, or a Stokes tensor,
tc.�.

We now distinguish the following two types of nonunitary but norm-preserving operations on
multiqubit Stokes tensor:

i� local reflections applied simultaneously to two or more qubits;
ii� “nonlocal” reflections, i.e., reflections applied to the joint density of two or more qubits.

he two cases are qualitatively different: while �i� is equivalent, up to local unitary operations, to
ultiqubit partial transposition, �ii� is a genuinely new operation and does not correspond to any

ocal operation on two or more qubits. In particular, the total reflection of all components of the
tokes tensor other than the expectation value of the identity does not correspond to time-reversal
i.e., to the total transpose of the density matrix� but rather to a multiparty NOT operation.

Reflections on more than one qubit are nonunitary operations that do not necessarily yield
alid �positive semidefinite� density operators. However, it can be shown that any mixed state with
igenvalues “small enough” is still a density operator when it is totally reflected. In other words,
otal reflection is a nonunitary involution which preserves such sufficiently mixed sets of density
perators. On this set, total reflection behaves like a antiunitary operation in the sense that it
reserves the Hermitian structure, the trace and the �Hilbert-Schmidt� inner product. This tells us
hat for general mixed states there are more symmetries to be exploited than those of Wigner
heorem.

For three qubits, the set of density operators admitting a total reflection includes, for example,
he unextendible product basis �UPB� states used in Ref. 13 to generate a bound entangled density
perator with all positive partial transpositions �PPT�. The “complement” operation that turns a
eparable density into the bound entangled UPB state is in fact a total reflection of the type �ii�
bove. The various entanglement measures �the concurrence, the negativity and the tangle among
hem� that rely on the use of spin-flip operations are also examples of application of multiple
ne-qubit reflections of the type �i�. In between local and total reflections lies a class of “nonlocal
et partial” reflections which also belong to the class �ii� above. These maps resemble very closely
hose used in the so-called reduction criterion.14,15

Besides their unifying mathematical �group theoretic� character, we see reflections as a new
ool to “probe” the structure of the set of multiparticle density operators, in particular its nonsepa-
able regions, by means of operations analogous, but inequivalent, to partial transposition. Hope-
ully this will eventually lead to a better understanding of bound entanglement in multipartite
ystems.

I. ONE QUBIT: TRANSPOSITION AND TIME-REVERSAL

For a single qubit with density operator ��D1�C2�2, the Stokes tensor is the affine 3-vector
�0 �� T�T, where �0=tr��� /�2=1/�2 and �� = ��1 �2 �3�T is the Bloch vector of the qubit times �2.
hus �summing over repeated indices� we have �=� j� j where � j =� j /�2 are the rescaled Pauli
atrices �j=1,2 ,3�, �0=12 /�2, and � j =tr��� j�. In this notation, the real density matrix is given
y
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� = ���� � �2��0 �2

�1 �3� . �1�

he Stokes tensor is readily recovered from this by applying the “col”16 �or reshaping17� operator
o it and dividing by �2. As is well known, unitary transformations of � by U�SU�2�, namely
�U†, induce rotations of the corresponding Bloch vector. This geometric interpretation will now
e extended to antiunitary transformations.18,19

Any antiunitary operation can be written as the product of a unitary operation and complex

onjugation K. Given a pure state with wave vector 	�
=c0 	0
+c1 	1
 �c0 ,c1�C�, let 	�̃
 be the

ave vector obtained by means of K alone: 	�̃
=K 	�
=c0
* 	0
+c1

* 	1
. The corresponding density

atrix is �= 	�
�� 	 =� j,k=0
1,1 cjck

* 	 j
�k	, so that 	�̃
��̃ 	 =� j,k=0
1,1 cj

*ck 	 j
�k 	 = �	�
�� 	 �T. Since any density
atrix is a convex combination of pure state density matrices, the effect of K on a general � is to

ranspose it, i.e., �T=K�K†=�0�0+�1�1−�2�2+�3�3. As indicated, this is simply a change in the
ign of the �2 component of the Bloch vector, i.e., ��1 −�2 �3�T.

The rotation group O�3�, of course, has two connected components, one of which preserves
he orientation of a frame �namely SO�3�, which contains the identity operator 13�, and one of
hich changes its orientation �denoted here by O−�3�, to which −13 belongs�. This topological

tructure is illustrated in Fig. 1. A reflection is a rotation which does not preserve orientation. The
anonical example is spatial inversion, which is defined as multiplication by RS�−13. Any reflec-
ion R�O−�3� is obtained by multiplying RS with a rotation in SO�3�. For example, the reflection
sed in the transpose, RT=diag�1,−1,1�, can be written as the product of a spatial inversion with
rotation by � about the y axis.

For any vector �� , spatial inversion maps �� to its antipode −�� =RS��� � on a sphere of radius
��  =���1�2+ ��2�2+ ��3�2. It follows from this together with the above that, for density matrices,
S�UK�K†U†=�0�0−�1�1−�2�2−�3�3 where U= i�2�SU�2� rotates the Bloch vector by �
bout the y axis. In addition, it is easily shown that the eigenvalues of � are given by

eig��� = � 1
�2

� 1
�2

± �� �� . �2�

ince reflections, like rotations in SO�3�, are length preserving actions on the Bloch sphere, we see
hat the eigenvalues are preserved under reflections: eig��S�=eig��T�=eig���. For pure states, an
mportant difference between RS and RT is that RS maps any ket 	�
 to an orthogonal one, whereas

T does not. In other words, spatial inversion corresponds exactly to the spin-flip operation.3,20

Both the transposition and the spin-flip can also be defined in terms of the real density matrix,
sing the componentwise �also known as Hadamard, or sometimes Schur� matrix product “�.” In

FIG. 1. Topological structure of the rotation group O�3�.
he case of the transpose, this is simply
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���T� = �2�1 − 1

1 1
� � ��0 �2

�1 �3� . �3�

s shown in Ref. 16, an operator sum representation is obtained from the singular value decom-
osition of the sign matrix �left-hand factor�, leading to

���T� = ����	0
�0	 − �2�3����	1
�1	 . �4�

or the spin-flip, on the other hand, it is easily seen that

���S� = �2� 1 − 1

− 1 − 1
� � ��0 �2

�1 �3� = 2	0
�0	 − ���� . �5�

hese alternative representations of transposition and spin-flip will be useful in studying multiqu-
it reflections below.

For a single qubit the notion of reflection admits a further interpretation in terms of “co-
ompletely positive” �co-CP� maps. From the Størmer-Woronowicz theorem, any positive 2�2
ap � is decomposable as

� = c�1 + �1 − c��2 � T �0 � c � 1� , �6�

here �1, �2 are completely positive �CP� maps and T is transposition. The composition �2 �T is
alled a co-CP map. For the Bloch vector, the CP maps form a semigroup in the group of
rientation-preserving affine maps GL+�3,R��R3, where GL+�3,R�= �g�GL�3,R3� 	det�g�	0�
nd “�” denotes its semidirect product with the translation group R3.17,21,22 Unital CP maps live
n the GL+�3,R� component, while unital co-CP maps live in the other component, GL−�3,R�

�g�GL�3,R3� 	det�g�
0�. Restricting further to symmetries �i.e., trace- and norm-preserving
aps�, one gets rotations and reflections as above.

II. TWO QUBITS: PARTIAL TRANSPOSITION, PARTIAL TIME REVERSAL, MULTIPLE
OCAL REFLECTIONS AND TOTAL REFLECTIONS

For two qubits, a complete basis for the space of density matrices D2�C4�4 is given by

jk=� j � �k �j ,k� �0,1 ,2 ,3��. This basis is also orthonormal relative to the Hilbert-Schmidt inner
roduct, i.e., tr�� jk�lm�=� jl�km for all j ,k , l ,m� �0,1 ,2 ,3�. For a given density matrix �, the
-basis defines a real, rank 2 tensor � jk which gives a contravariant representation of the same
ensity, �=� jk� jk. Viewed as a 16-vector, � jk is affine, i.e., �00=tr���00�=1/2, and it is bounded
y the 15-dimensional sphere in R16 of radius 1,

tr��2� = tr��� jk� jk�2� = �
j,k=0

3,3

�� jk�2 � 1, �7�

ith equality if and only if the state is pure.
A two-qubit density matrix � is said to be separable if it can be written as a convex combi-

ation �=�r=1
s wr�A,r � �B,r for some set of real numbers wr0 such that �r=0

s wr=1, where �A,r,

B,r are all single-qubit density matrices. A necessary and sufficient condition for the separability
f a two-qubit density is provided by the positive partial transpose �PPT� criterion of Peres6 and
orodecki.23 The partial transpose of a two-qubit density matrix � with respect to the first �left�

ubsystem A is defined as �TA ��K � 12���K � 12�†, and similarly �TB ��12 � K���12 � K�†. Each
artial transpose is still a well-defined �i.e., positive semidefinite� density operator if and only if �
s separable. The PPT criterion may be viewed as a check on the feasibility of the “partial time
everse” operation:18,19 changing the time arrow of one of the subsystems alone.

In terms of the Stokes tensor � jk, the description of partial transposition is very intuitive and
elies on the observation that �2=−�2

T is the only Pauli matrix with imaginary elements.
TA
Proposition 1: For two qubits, the partial transpose operations on the density matrix � and

5 Feb 2008 to 147.122.4.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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TB act on the Stokes tensor � jk by changing the sign of all elements bearing the index “2” in the
orresponding subsystem:

�TA = �0k�0k + �1k�1k − �2k�2k + �3k�3k, �8a�

�TB = � j0� j0 + � j1� j1 − � j2� j2 + � j3� j3. �8b�

he verification is just a straightforward calculation, which may be found in Table I. Note also that
or the “total” transpose �T �=��TA�TB� we have instead

� jk
T = � jk if j,k � 2 or j = k = 2, �9a�

� jk
T = − � jk if j = 2 or k = 2, j � k , �9b�

howing that �22 behaves differently under partial or total transposition.
The PPT separability test of Peres-Horodecki relies essentially on the decomposability prop-

rty �6�: any 1-qubit positive but not CP map, when applied to a 2-qubit density, returns a density
f and only if the original density is separable. Restricting from positive maps to symmetry
perations is the same as restricting to local reflections. In fact, the map �8a� can be thought of as

he linear transformation R̄T � 14, where R̄T is the following affine orientation-changing three-

imensional rotation: R̄T=diag�1,RT�=diag�1,1 ,−1 ,1�. Since all single qubit reflections are uni-

arily equivalent, any matrix R�O−�3� can be used in place of RT. Indeed, if R̄=diag�1,R�, then
ocal operations from the same connected component of O�3� satisfy

eig��R̄ � 14����� = eig��R̄T � 14����� , �10�

here the notation must be interpreted as follows: the matrix R̄ � 14 acts on the 16-vector � jk and

he resulting 16-vector provides the coefficients in the sum over the basis elements � jk, i.e., �R̄
¯ lm jk

TABLE I. Action �sign changes� of the rotations and reflections involving

R̄T, R̄S, and R̄S,16 on the components of the 2-qubit Stokes tensor � jk.

� jk R̄T � 14 14 � R̄T R̄T � R̄T R̄S � 14 14 � R̄S R̄S � R̄S R̄S,16

�00 + + + + + + +
�01 + + + + − − −
�02 + − − + − − −
�03 + + + + − − −
�10 + + + − + − −
�11 + + + − − + −
�12 + − − − − + −
�13 + + + − − + −
�20 − + − − + − −
�21 − + − − − + −
�22 − − + − − + −
�23 − + − − − + −
�30 + + + − + − −
�31 + + + − − + −
�32 + − − − − + −
�33 + + + − − + −

# sign changes 4 4 6 12 12 6 15
� 14����= ��R � 14� jk � ��lm.

5 Feb 2008 to 147.122.4.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Equation �10� shows that all reflections are positive but not completely positive. Thus we can
eformulate the PPT criterion for the separability of two qubits as follows:

Theorem 1: A two-qubit density matrix � is separable if and only if �R̄ � 14���� is a density
atrix for any R�O−�3�.

A particularly simple such map is R̄S=diag�1,RS�, where RS is the spin-flip operation from the

receding section. It is easily seen that �R̄S � 14����=2�0k�0k−�, so that the sign is changed in all
lements � jk except those appearing in the reduced density matrix of the second qubit �i.e., the
0k�.

The �total� transpose �T of � corresponds to the matrix R̄T,16= R̄T � R̄T=diag�1,RT,15� with

T,15=diag�1,−1,1 ,1 ,1 ,−1 ,1 ,−1 ,−1,1 ,−1 ,1 ,1 ,−1 ,1��SO�15�, where the minus signs corre-
pond to the six basis elements obeying �9b�. Since the determinant of this matrix is positive, for

wo qubits the transpose is an orientation-preserving operation. Up to local operations R̄T � R̄T is

quivalent to the “double local reflection” �or double spin-flip� map R̄S � R̄S. The difference be-

ween R̄S � 14 and R̄S � R̄S is easily understood by looking at Figs. 2 and 3. �In Figs. 2–4, the two
ectors contained in the smaller spheres correspond to the Bloch vectors � j0 and �0k of the two
educed density matrices, the third vector �double arrow� to the two-body correlation part of the

tokes tensor � jk, j ,k�0.� While R̄S � 14 leaves the reduced density of the second qubit un-

hanged �Fig. 2�, the correlation part remains unchanged under the action of R̄S � R̄S because its
ign is flipped twice �Fig. 3�. It may be shown, however, that both are positive but not-completely-
ositive maps.

All the “local” maps in O�3� mentioned so far are orientation-preserving when acting on two
ubits, even though they all have at least one factor that is orientation-changing when acting on a

ingle, isolated qubit: det�R̄T � 14�=det�R̄T � R̄T�=det�R̄S � 14�=det�R̄S � R̄S�=1. The recovery of
parity” whenever an orientation-changing map is applied to two or more qubits is due to the

FIG. 2. �Color online� Reflections on a 2-qubit density matrix: the single qubit reflection R̄S � 14 �PPT test�.

IG. 3. �Color online� Reflections on a 2-qubit density matrix: the double local reflection R̄S � R̄S �which is equivalent to

he total transpose under LOCC�.
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a
q

H

q
=
a
n

f
r
w
d

w
	
t

t

R̄
�
s

r

T
i
L

I

d
w

032104-7 Reflection symmetries for multiqubit densities J. Math. Phys. 47, 032104 �2006�

Downloaded 1
ffine structure of the Hilbert space of a qubit �resulting in a affine Bloch vector�, itself a conse-
uence of the trace-preserving condition,

�1

O�3� � � �1

O�3� � � �1

SO�15� � .

ence the question arises: do there exist any orientation-changing symmetric operations on two

ubits? One such map is the 2-qubit total reflection R̄S,16=diag�1,−115�, −115�O�15� \SO�15�
O−�15�. Its action �see Fig. 4� corresponds to changing the sign of the entire tensor � jk except for
ffine component �00=1/2, thus the name total reflection. This nonlocal operation is genuinely
ew and inequivalent to any composition of local symmetric operations.

The most significant difference between total transpose and total reflection is that whereas the
ormer map preserves the eigenvalues of the density matrix, the latter does not. Indeed, the total
eflection is not even a positive map, since it converts the density matrix of any pure state to one
ith eigenvalues �1,1 ,1 ,−1� /2. This fact is readily established by writing the total reflection
irectly in terms of the Hermitian density matrix as

R̄S,16��� = 1
214 − � , �11�

hich makes it clear that it holds for the density matrices of the basis states 	00
�00 	 , 	01
�01 	 ,
10
�10	, and 	11
�11	, and that the total reflection commutes with arbitrary two-sided unitary
ransformations of �.

The changes in the signs of the elements of the Stokes tensor are summarized in Table I for all

he discrete symmetric operations mentioned in this section. It may be observed that R̄S � R̄S and

T,16= R̄T � R̄T both have an even number of “−” signs �6�, whereas R̄S,16 has an odd number
namely 15�, thus confirming that a total reflection on a two-qubit joint density is inequivalent to
uch operations.

In terms of density matrices, the positive-but-not-completely-positive operation R̄S � R̄S cor-
esponds to

R̄S � R̄S��� = ��2 � �2��*��2 � �2� = 4�22�
*�22. �12�

he transformed density matrix ��� R̄S � R̄S��� is frequently found in entanglement measures,
ncluding the concurrence C���=max�0,�1−�2−�3−�4� �where � j �eig����� �Ref. 24�� and the
orentzian metric tr�����= ��00�2−� j=1

3 ���0j�2+ �� j0�2�+� j,k=1
3 �� jk�2.9

V. TWO QUBITS: MATRIX STRUCTURES AND THE COMPUTABLE CROSS-NORM

In this section, we show how the foregoing nonunitary symmetry operations on a two-qubit
ensity matrix can be expressed compactly using the Hadamard product of matrices25 together

FIG. 4. �Color online� Reflections on a 2-qubit density matrix: the total reflection R̄S,16 �a nonlocal operation�.
ith either the Stokes tensor or the real density matrix. We will also show that a non-separability

5 Feb 2008 to 147.122.4.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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riterion called the computable cross-norm26 �or the matrix realignment method27�, which is in-
quivalent to the PPT criterion, can be computed directly from the Stokes tensor without having to
onvert back to the traditional Hermitian representation. For two qubits, the Stokes tensor can also
e viewed as a square array of real numbers, which is related to the real density matrix as follows:

2�
�00 �01 �02 �03

�10 �11 �12 �13

�20 �21 �22 �23

�30 �31 �32 �33
�↔ �

�00 �20 �02 �22

�10 �30 �12 �32

�01 �21 �03 �23

�11 �31 �13 �33
� . �13�

he rearrangement of the elements seen here corresponds to the Choi16 �also known as
eshuffling17� map for n=2 qubits, but for n	2 the Stokes tensor-to-real density matrix map is not
he same as the Choi map; indeed, then the order of the Stokes tensor is greater than 2, so it can
o longer be identified so simply with a matrix.

The real density matrix has the useful feature of preserving the tensor product structure of the
orresponding Hermitian density matrix, i.e., for two qubits: ��� � ���=���� � ������� � ��. It
ollows immediately that a 2-qubit real density matrix can be written as a convex combination of
-qubit real density matrices if and only if the 2-qubit density is separable. A 2�2 real matrix, on
he other hand, is a real density matrix if and only if its upper-left element is unity and the length
f the Bloch vector determined by the remaining elements does not exceed unity �cf. Eq. �2��. It
hould also be noted that, with either the real density matrix or the Stokes tensor, the partial trace
peration involves only discarding elements involving the qubit traced over: no additional opera-
ions are needed as in the Hermitian representation.

As shown previously for the 1-qubit case, we can express involutory symmetry operations by
eans of Hadamard products of the real density matrix with matrices the elements of which are all
1. Moreover, these matrices will be tensor products if and only if the operations that define them
re. This may be seen in the following list of sign matrices for all the operations given in Table I:

R̄T � 14 ↔ �+ 1 − 1

+ 1 + 1
� � �+ 1 + 1

+ 1 + 1
� , �14a�

14 � R̄T ↔ �+ 1 + 1

+ 1 + 1
� � �+ 1 − 1

+ 1 + 1
� , �14b�

R̄T � R̄T ↔ �+ 1 − 1

+ 1 + 1
� � �+ 1 − 1

+ 1 + 1
� , �14c�

R̄S � 14 ↔ �+ 1 − 1

− 1 − 1
� � �+ 1 + 1

+ 1 + 1
� , �14d�

14 � R̄S ↔ �+ 1 + 1

+ 1 + 1
� � �+ 1 − 1

− 1 − 1
� , �14e�

R̄S � R̄S ↔ �+ 1 − 1 � � �+ 1 − 1 � , �14f�

− 1 − 1 − 1 − 1
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R̄S,16 ↔ �
+ 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1
� . �14g�

Note that R̄S,16 is distinguished from the other operations not only by the fact that it is not
rientation-preserving, but also by the fact that it is nonlocal and hence does not preserve the
ensor product structure in the space of �real or Hermitian� density matrices. It is easily seen that
he involutory mapping induced by any tensor product of sign matrices as above must preserve
rientation, but there are many orientation-preserving mappings that are not tensor products,
ncluding the pair given below:

�
+ 1 + 1 + 1 + 1

+ 1 − 1 − 1 + 1

+ 1 − 1 − 1 + 1

+ 1 + 1 + 1 + 1
�↔ �

+ 1 + 1 + 1 − 1

+ 1 + 1 − 1 + 1

+ 1 − 1 + 1 + 1

− 1 + 1 + 1 + 1
� . �15�

s indicated by the double arrow, these two are related by the Choi map, i.e., taking the Hadamard
roduct of one with the real density matrix is the same as taking the Hadamard product of the
ther with the Stokes tensor �cf. Eq. �13��. Tests with randomly generated pure states quickly show
hat neither of these maps is positive, let alone completely positive.

Similarly, one can easily construct many other discrete reflection symmetries which are nei-
her locally nor unitarily equivalent to the total reflection, simply by composing the latter with any
ther nonlocal and nonunitary rotation symmetry. One interesting example is obtained by com-

osing the local reflections R̄S � R̄S with the total reflection R̄S,16 on two qubits, obtaining

�R̄S � R̄S�R̄S,16 ↔ C ��
+ 1 + 1 + 1 − 1

+ 1 + 1 − 1 − 1

+ 1 − 1 + 1 − 1

− 1 − 1 − 1 − 1
� . �16�

he Hadamard product with C changes the sign of the bilinear �two-body� part of the Stokes
ensor. It is, of course, a nonpositive map which takes the Hermitian density matrix of any pure
tate to one with eigenvalues �1,1 ,1 ,−1� /2. This map may also be written quite simply as an
perator sum, as follows:

�−1�C � ����� = �
k=1

3

��k0��k0 + �0k��0k� −
1

2
14. �17�

Finally, we show how a separability test based on the so-called computable cross-norm
CCN�, denoted in what follows by “�,” can be performed directly using the Stokes tensor. The
CN is a lower bound on the cross-norm entanglement measure in a bipartite system, denoted by
�,” which satisfies ����=1 if � is separable and ����	1 if it is not.26 Consequently, ����	1
mplies � is nonseparable, though not vice versa; this condition is neither weaker nor stronger than
he PPT criterion, but inequivalent to it. The CCN � is not itself an entanglement measure, since
t may increase under the partial trace operation, but it has the advantage that it is readily com-
uted as the sum of the singular values �also known as trace class norm� of the reshuffled density
atrix Choi���. For two qubits it can also be computed directly from the Stokes tensor, as shown

y the following:
Proposition 2: For two qubits, the singular values of the Stokes tensor �k�, regarded as a
atrix as in Eq. �13�, are twice those of the reshuffled density matrix Choi���.
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Proof: The reshuffling operation is defined to satisfy Choi��1
T

� �2�= 	�2
��1
T	, where 	�2
 de-

otes the result of applying the reshaping operator to �2, and ��1
T 	 = 	�1
T. The one nonzero singular

alue of this matrix is simply the product of the Hilbert-Schmidt norms of its factors �1  �2.
ecall now that � is factorizable if and only if the corresponding real density matrix ���� is and

hat the linear mapping � /2n/2 preserves the Hilbert-Schmidt norm �where n is the number of
ubits�. Hence 	���2�
����1

T� 	 /2 is the singular value decomposition of the corresponding re-
huffled real density matrix Choi����1

T
� �2�� /2, and its nonzero singular value is

���1�  ���2�  /2= �1  �2. Together with the fact that for two qubits the Stokes tensor and the
eal density matrix are related by the Choi map, this establishes the result for factorizable states.

To prove the general case, we recall that the reshaping map Choi is self-inverse. Thus the
ingular value decomposition of a general matrix Choi���=�k�krksk

T provides a canonical decom-
osition of � into a sum of tensor products �kpk�1k

T
� �2k, where pk=�krk

T 	12
sk
T 	12
. Although pk

ay be negative and the factors �1k
T , �2k of each term in this sum are not necessarily states �i.e.,

on-negative definite�, we are free to apply the composition Choi�� to each term �1k
T

� �2k thereby
btained. Then noting that � also preserves orthogonality and invoking the uniqueness of singular
alue decompositions completes the proof. �

The claim that � is separable implies �����1 can now be established directly, since ���1

� �2�= �1  �2  �1 and � satisfies the triangle inequality just like any norm, so that for any pk

0 summing to unity we have ���kpk�1k � �2k���kpk=1. The singular value decomposition of
hese matrices can be regarded as an extension of the Schmidt composition for pure states to

ixed states. Indeed it can be shown that for pure states Choi��� has a degenerate pair of singular
alues which are equal to twice the product of the corresponding Schmidt coefficients.

. REFLECTIONS ON THREE OR MORE QUBITS

The situation is similar for three �or more� qubits, since the adjoint action �conjugation� still
orresponds to a real “one-sided” rotation of the Stokes tensor, and the rotation group in all
imensions splits into orientation preserving and changing connected components. The main dif-
erence is that the number of inequivalent kinds of rotations and reflections goes us rapidly with
he number of qubits. It is possible, however, to identify some particularly significant involutions.
n the case of three qubits �=� jkl� jkl, the following are some of the new possibilities:

ia� the two-qubit partial transposition R̄T,16 � 14 �and the two others obtained by qubit permuta-
tion�;

ib� the total transposition R̄T,64=diag�1,RT,63� �where RT,63�SO�63� is diagonal with 28 −1’s
and 35 +1’s in it�, which changes the sign of just those elements � jkl with an odd number of
indices equal “2”;

iia� the two-qubit “reflection” R̄S,16 � 14 �and the two others obtained by qubit permutation�—
which is however an orientation-preserving rotation on three qubits;

iib� the total �three-qubit� reflection R̄S,64=diag�1,−163�.

The effect of R̄S,64 on � jkl is to change the sign of the entire tensor except for its constant
omponent �000=1/ �2�2�, showing that it may be expressed as

R̄S,64��� = 2�000�000 − � = 1
418 − � . �18�

his is again a nonlocal operation which admits no factorization into independent one-qubit

perations. Similarly, the action of R̄S,16 � 14 on � jk� is to change the sign of the entire tensor
xcept for the Bloch vector of the 1-qubit reduced density �00�. Items �ia� and �ib� above are
undamentally different from �iia� and �iib�. The first two produce a Hermitian matrix with nega-
ive eigenvalues whenever the density has bipartite entanglement through the cut, whereas the
atter two instead may map even separable densities to Hermitian matrices with negative eigen-

¯
alues. This can be seen looking at the components of the UPB state. If RS,64 is applied to the
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separable� density �UPB−sep= 1
4� j=1

4 	� j
�� j	 with 	� j
= 	01+ 
 , 	1+0
 , 	+01
 , 	−−−
 and 	± 

1��2 �	0
± 	1
�, one gets the bound entangled state �UPB used in Ref. 13. So in this case a

eparable state is reflected into an entangled state. However, no one of the four components
� j
�� j	 taken alone �each is obviously separable� is a density when reflected. Obviously �ib� only
everses the time arrow on any 3-qubit density.

In similar fashion, for any number n	1 of qubits one can define an m-qubit �1
m�n�
onlocal “reflection” R̄S,4m � 14n−m, which is only a true �i.e., orientation-changing� reflection when
he reflection is total �m=n�. Assuming the reflection acts on the first m qubits of an n-qubit
ensity operator �, this may be written as

R̄S,4m � 14n−m��� = 2�0¯0jm+1¯jn�0¯0jm+1¯jn
− � . �19�

hese operations leave the norm of the n-qubit tensor � j1¯jn �i.e., tr��2�� invariant, but need not
reserve the spectrum nor even leave it nonnegative, as we saw above. Hence it is a “generically”
ll-defined operation on the set of density operators of composite systems Dn.

These observations are summarized in the following:

Proposition 3: In Dn, the linear map R̄S,4n �1
n�:

i� preserves the trace and Hermiticity;
ii� preserves the Hilbert-Schmidt inner product;
iii� is neither unitary nor antiunitary;
iv� is not Dn-invariant.

roperties �i� and �ii� together say that R̄S,4n is neither a contraction nor a dilation map, whereas

iv� affirms that R̄S,4n is not a positive map.
Nevertheless, it is possible to specify a simple spectral condition on the density matrix that

uarantees that its total reflection is still non-negative definite.
Theorem 2: Given �=�0. . .0�0. . .0+��Dn �where � is the associated homogeneous tensor�, a

ufficient condition for �̃= R̄S,4n���=�0. . .0�0. . .0−��Dn is that the set of eigenvalues satisfies
ig���� �0,21−n�.

Proof: The proof is based on the well-known fact25 that adding a multiple of the identity c1m

nto an m�m Hermitian matrix A shifts its eigenvalues by c, i.e., eig�A+c1m�=eig�A�+c. Since
he eigenvalues of the random state’s density matrix eig��0. . .0�0. . .0�= �2−n� �with multiplicity 2n�,
e see that eig���� �0,21−n� implies both eig���� �−2−n ,2−n� and eig�−��� �−2−n ,2−n�, so that

ig��̃�� �0,21−n�, as well. �

Hence the linear map R̄S,4n is well-defined �positive� in the subset of densities with eigenval-
es in the interval �0,21−n�.

Corollary 1: A necessary but not sufficient condition for Theorem 2 to hold is that tr��2�
21−n.

Proof: If ��1
, . . . ,��2n are the eigenvalues of �, when Theorem 2 holds it must be r2=��1

2

¯ +��2n
2 �1/2n. Hence r�1/2n/2 and tr��2�= ��0¯0�2+r2�1/2n−1. �

Corollary 2: A necessary but not sufficient condition for �̃ to be a density is that rank���
2n−1.

In fact, only when � is a mixture of at least 2n−1 pure states one can achieve eig���
�0,1 /2n−1�.

On a 3-qubit density, the action of R̄S,16 � 14 is depicted in Fig. 5. Essentially the entire Stokes
ensor changes sign, except for the reduced density trAB���. Its action closely resembles the reduc-
ion criterion of Refs. 14 and 15. That criterion also makes implicit use of nonlocal reflections, but
t is formulated based on a positive map, hence it is well-posed on all of Dn. For a 3-qubit density
t affirms that a necessary condition for separability is 12 � 12 � trAB���−�0 as well as 12

� trA���0 �and likewise for the other indexes�. Since tr�12 � 12 � trAB���−��=3, one difference

etween our partial reflection and the reduction criterion is that the latter is not a trace preserving
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ap. Thus it is not a symmetry in the sense used in the paper. Nonetheless, the reduction criterion

tilizes a positive map which can be used to test separability. In our case R̄S,16 � 14 is not a positive
ap even when restricted to separable states with eigenvalues in �0,1 /4�, in which the 3-qubit

otal reflection R̄S,64 is always well-posed.

We can, however, convert our 2-qubit total reflection R̄S,16 into a “relaxed” total reflection,
amely

R̄S,16
rel ��� = 1

3 �14 − �� , �20�

hich is the same as R̄S,16 applied to the “remixed” density matrix �14 /2+�� /3. Since the remixed
ensity matrix now has eigenvalues in �0,1 /2�, the relaxed reflection is a positive map by Theo-

em 2. It is also easily shown that R̄S,16
rel is not completely positive, and hence provides a necessary

ondition for the separability of an arbitrary 2n�2n, n	2, density matrix. It should be possible to
elax all the reflections described in this paper to positive maps by a similar strategy.

Concerning a total reflection, all pairs � and �̃= R̄S,4n��� satisfying Theorem 2 are complemen-
ary in the sense that their mixture is the random state:

1

2
�� + �̃� =

1

2n12n. �21�

quation �21� implies that R̄S,4n corresponds to a multiparty NOT operation. In fact, also in the
ingle qubit case, the NOT operation corresponds to a change of sign to the homogeneous part
i.e., the Bloch vector� but it is not modifying the sign of the trace part and hence a qubit and its
eflection obey to �21�. Such operation is used for example to map a density operator belonging to
subset of the Hilbert space Dn to its complement in Dn, for example in the UPB construction
entioned above.13,28

I. CONCLUDING REMARKS

Reflections are a natural discrete class of transformations relative to the Stokes tensor and/or
eal density matrix parametrization. Their meaning and relation to LOCC is interesting and calls
or natural generalizations to nonlocal operations in the way explained above. The nonlocal re-
ections, in fact, originate from the nonconnectedness of the group of rotations acting on the
tokes tensor parametrization. In terms of density matrices, this interpretation is not as sharp. As
matter of fact, operations reducible to reflections appear in the PPT test and in the various
easures of entanglement relying upon “spin-flip” operations �like concurrence, negativity and

IG. 5. �Color online� Schematic illustration of the action of a two-qubit reflection R̄S,16 � 14��� on three qubits. One-body
� j00, �0k0 and �00��, two-body �� jk0, � j0� and �0k��, and three-body �� jk�� correlation terms are indicated by single, double,
nd triple arrows. All the signs are changed except for those of �00�.
angle� for what concerns �multiple� 1-qubit reflections. Also nonlocal reflections are used: for
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xample a total reflection corresponds to what is normally referred to as “taking the complement
f a density,” used for example, in the construction of unextendible product basis states.13 Like-
ise, the reduction criterion makes use of a positive map closely related to our nonlocal reflec-

ions.
For the purposes of further understanding the structure of composite quantum systems, we

nd it useful to have a unifying perspective on these nonunitary yet symmetric �in the sense of
igner theorem� transformations.

It is worth pointing out that reflections can be defined in the same terms also for SLOOC
stochastic LOCC�.9,29,30 For the Stokes tensor, in fact, this class of operations relaxes the group of
dmissible local transformations from affine rotations to proper orthochronous local Lorentz trans-
ormations SO�1,3�. The reflected action in O−�3� then corresponds to choosing the other con-
ected component of O�1,3� with the same time direction as SO�1,3� �i.e., with positive “time-
ike” metric element�. Also nonlocal reflections fit in with the group structure of nonlocal filtering
perations. For example, total reflections belong to O�1,4n−1� \SO�1,4n−1�. Note further that the
dea of restricting the set of density operators in order to have a larger set of symmetries is “dual”
o the idea of using group actions that are contractions.31,32

The idea of using reflections does not extend in a straightforward manner to qutrids �nor to
igher dimension quantum systems�, as in this case the admissible parameters live on a rather
omplicated subset of the seven-dimensional sphere33,34 for which the rotation representing trans-
osition is always admissible but spatial inversion may not be. However, the various UPB con-
tructions on 3�3 systems of Ref. 13 correspond to well-defined reflections.

Finally notice that there are many isometries of the Stokes tensor that do not correspond to
eflections relative to any basis; those that do are of course involutions, and it would be interesting
o show that any Stokes tensor isometry which is an involution �and hence is described by a
ymmetric orthogonal matrix� is a reflection relative to some basis.
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