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Path Following With Reduced Off-Tracking for Multibody Wheeled Vehicles
Claudio Altafini

Abstract—Our purpose is to provide a formulation of the
path following problem for multibody kinematic wheeled vehicles
aiming to keep the whole vehicle at a reduced distance from a
given path, i.e., to reduce the off-tracking distance of the vehicle
from the path. In the proposed setting, the stabilization problem
for paths of constant curvature is locally solvable by a simple
linear feedback law. In order to quantify how much cumbersome
a vehicle is along a given path, we provide two different estimates
of the off-tracking bound, i.e., of the minimal clearance that has
to be left around the path in order for the vehicle to pass through
in case of perfect tracking. Experimental results on a miniature
multibody vehicle are reported.

Index Terms—Feedback linearization, multibody wheeled
vehicle, off-tracking distance, path following.

I. INTRODUCTION

T HE MAIN difference between the trajectory tracking and
path following problems for wheeled vehicles is in the idea

of tracking error that they induce, see [9, Ch. 8] or [8] for a
survey. In the trajectory tracking, a reference value of the entire
state of the system is given [16], [22], while in the path following
problem only a curve in the plane is provided as reference but
not a function of time. This implies that there is no concern on
the longitudinal dynamics, i.e., on how fast the path is covered,
but only on the lateral dynamics specified by an appropriate no-
tion of error distance. For kinematic wheeled vehicles, several
different path tracking criteria have been proposed. A possible
approach is, for example, to study the problem as a variant of
the trajectory tracking problem, where a virtual vehicle is placed
on the path to follow. This leads to define the tracking error as
the distance between a point on the real vehicle and the corre-
sponding point on the virtual vehicle and to prove convergence
of the real robot to the virtual one. In [13], for example, this
distance is a look-ahead distance, obtained by means of an ap-
propriate sensor like a camera. Alternatively, in [11] a special
parameterization based on velocity scaling is used.

However, all the research that we are aware of, deal with
the problem of path following for one single given point
of the vehicle: either the middle point of the front wheels
or the middle point of the last axle (like in the flatness or
chained form based methods) or some intermediate point,
like the center of gravity of the vehicle (see, e.g., [14]).
For multiaxis vehicles, a number of situations in which one
single guidepoint is not enough were presented in [1] and [4].

Manuscript received October 29, 2001; revised September 3, 2002. Manu-
script received in final form February 27, 2003. Recommended by Associate
Editor A. Ferrara. This work was supported by the Swedish Foundation for
Strategic Research through the Center for Autonomous Systems at KTH.

The author was with the Division of Optimization and Systems Theory, Royal
Institute of Technology SE-10044, Stockholm, Sweden. He is now with the
SISSA-ISAS International School for Advanced Studies, 34014 Trieste, Italy
(e-mail: altafini@sissa.it).

Digital Object Identifier 10.1109/TCST.2003.813374

They all have in common the need of maintaining thewhole
vehicle at a reduced distance from the path and they can be
represented by a different tracking error condition, based not
on the error distance of one single point but on the sum of
the error distances of the middle points of all the axles of
the vehicle. We call this theoff-tracking distance. For the
so-calledgeneral -trailer, in order to keep track of
distances, we use moving frames, also called Frenet
frames [18]. Such lateral distances are meant to be measurable
quantities (see, for example, the case of the underground
mining truck [10] where wall detecting sensors are available).
In other applications, multiple edge-detection sensors, like
cameras, can be available. The use of multiple sensors for
the lateral distance is documented for example in [15] for
different purposes.

The off-axle hooking of a general-trailer seems to spoil the
nice properties of the standard-trailer like flatness [12] and
chained form [21], making also the problem of stabilizing to a
path more complex, as full state feedback linearization cannot
be achieved. Stabilization problems for general-trailers are
studied for example in [6] and [17]. In particular, in [6] a vir-
tual reference vehicle is used in which the “ghost” vehicle is
the corresponding-trailer without kingpin hitching, for which
exact feedback linearization holds.

In our case, for paths of constant curvature, local asymptotic
stability can be achieved by means of linear controllers based
on Jacobian linearization. In particular, for forward motion the
simplest control law is a first-order high gain output feedback.
Only the proof of stability is hard because the simultaneous use
of many reference frames implies that there is no explicit ex-
pression for the linearization. In fact, we need to resort to the
input-optput feedback linearization techniques used in [3]. It
is important to emphasize that, unlike for example in [20], the
complexity of the controller remains the same regardless of the
number of trailers.

We show that for the case of perfect tracking the distances that
we obtain for the midpoints of the axles, corresponding to the
notion of the system on the output zeroing manifold, provide an
off-tracking bound, i.e., an estimate of what is theminimal width
of the roadthat has to be left on both sides of the planned path
in order to have the vehicle passing through the obstacles (see
[7] for a similar problem formulation). This off-tracking bound
based on the zero dynamics is compared with a simpler one
corresponding to the steady-state off-tracking of the maximum
of curvature encountered along the path.

The simple high gain output feedback controller proposed
in the paper is tested in a practical experiment on a miniatur-
ized (1 : 16 scale) general 3-trailer. Even in presence of realistic
problems like saturation and of limited measurement informa-
tion, it is shown how the “reduced off-tracking” notion is imple-
mentable in practice.
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Fig. 1. Generaln-trailer and the Frenet frames.

We would like to stress the fact that the whole analysis islocal
and to point out that, due to the singularities of the Frenet frame
representation, there is no way to formally prove a well-behaved
transient even for admissible (wrong) initial conditions that are
too close to the limits of the region of attraction.

II. K INEMATIC MODEL FOR THEGENERAL -TRAILER

AND FRENET FRAMES

Notation, modeling assumptions and equations are the same
as [3] and are briefly recapitulated here. The legenda for the
symbols used is (see also Fig. 1):

Number of trailers.
Number of off-hitching ( ).
Indexes of the axles having off-hitching (

).
Midpoint of the th axis
Distance between and the hitching point in
front of it .
Distance between and the hitching point be-
hind it .
Longitudinal velocity of .
Absolute orientation angle.

.
Reference path.
Curvature of the path.
Orthogonal projection of on
Arclength coordinate of the th curvilinear
frame.
Orientation angle of theth frame with respect
to the Cartesian axes
Distance between and .

.

It was shown in [18] and [19] that a frame moving on the
path can be useful to locally describe a point moving on the
plane, instead of a fixed frame. This moving frame, called the
Frenet frame, only requires to describe the distance between
the path and the vehicle, whereas the length covered along
the path can be neglected. An advantage of the Frenet frame

is that it naturally decouples the lateral dynamics from the
longitudinal one, providing a measure of the error from the
path in terms of the (signed) distance; a disadvantage is
that the parameterization used is intrinsically not global for
paths of nonnull curvature. In the Frenet frame, the point

is represented by and by the relative orientation angle
. In our case, we consider Frenet frames moving

on and anchored at . The tracking criterion proposed
consists in taking thesum of the signed distances

(1)

Of the two inputs of the kinematic -trailer, the steering
speed and the translational speed of one of the,
for example , only is considered for the path following
problem, thus obtaining a system with drift. Calling

, the whole configuration state is represented by
, , and the dynamic equations

of the system are

...
...

(2)

together with the output equation

(3)

Thedomainofdefinition andthesingular locusarediscussed in
[2]. The drift terms (where

) have different expressions depending on

whether the axle has off-hitching or not. Calling
, they can be summarized
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as

(4)

, , ,
, where

(5)

, . For the points
and , the equations are function also of the steering input

. Assuming , we get

(6)

In , there is no equation for (i.e., )

(7)
Again, and are calculated using (5).

The number of states is then while the number of
independent variables in the-trailer problem is . There-
fore, we must impose constraints on the state space expressing
the redundancy introduced by the use of frames. Except for
the trivial cases, these constraints cannot be written in a purely
algebraic form, since they depend on line integrals. Ifis a
generic point of the body segment and is the in-
crement along the body, they can be written as

(8)

(9)

(10)

where with acquiring the meaning of the “velocity”
with which the point moves along the body of the vehicle. If
the path to follow is a straight line, for example theaxis on the
Cartesian coordinates , then the Frenet frames reduces
to Cartesian frames. Equations (8)–(10) then trivialize to

and the extra variables can be eliminated in a straightforward
manner. In general, when varies, the constraints are not any-
more integrable, but also with their explicit
expression is very difficult to calculate.

III. FOLLOWING A PATH OF CONSTANT CURVATURE

In this section, we will focus on paths of constant curvature
. In this case, from (4), the variables can

be dropped from the model and the steady state corresponds to
have the angles and such that

. Also the tend to a constant value (the origin): in fact, at
steady state, the points rotate around circles concentric with
the path . Linearizing (2), in a neighborhood of the origin the
derivative of the distance can be thought of as

(11)

This fact allows us to locally identify a partial state feedback
based on both and with a dynamic controller based only
on the distances .

Since the constraints (8)–(10) cannot be easily handled, not
even with , we will simply drop them and study
stability on the augmented configuration space. If stability is
found on this bigger manifold, then stability will also hold in
the original submanifold satisfying the constraints.

We need to distinguish between forward and backward mo-
tion. Notoriously, the path following problem is much easier in
the forward direction than in the other one. Here only the first is
analyzed; for the second case we refer to [5]. Locally, the sign
of univocally identifies the direction of motion.

A. Forward Motion

If we exclude the subsystem which is only criti-
cally stable, for the forward motions the rest of the system is
open-loop asymptotically stable. In this case, a dynamic output
feedback is enough to achieve local asymptotic stability. Since
the system has relative degree equal to 2 (see Section IV), the
feedback has to include a derivative term of the output.
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Calling the state vector obtained fromne-
glecting , we can rewrite the system (2) and (3) as

(12)

(13)

Proposition 1: When , there exist constant gains
and such that the dynamic output feedback

(14)

locally asymptotically stabilizes the system (12) and (13) to a
path of constant curvature , with such that the alge-
braic equation

(15)

admits a solution for some .
The most straightforward way to prove local stability is nor-

mally through the Lyapunov indirect method. At the equilib-
rium, each of the points follows a circle concentric with the
circular path . The radius of the corresponding circle de-
pends on and on the configuration of the vehicle. We have
the following recursive relation between the radiiand :

or, in terms of the radius of the last
trailer:

(16)

If is the radius of the path, the steady-state condi-
tion

(17)

implies that can be found by solving the algebraic relation
(15). For the common case , the midpoint of the last
trailer is the one that “cuts” the curve the most. Therefore,
a well-defined equilibrium for exists only if .
is the extreme situation of the-trailer rotating in circles with

standing still. Although the existence and uniqueness of the
equilibrium point is guaranteed under the above conditions, it
is an elementary algebraic fact that in an equation like (15) the
square roots cannot be eliminated if . The consequence is
that one has to resort to a numerical solution in order to find the
value of . From (16), the same type of compatibility reasoning
as implies that the arguments of all thesquare roots
have to be positive. Due to the lack of analytic solution for (15),
it is not possible to obtain a formal proof of the claim made in
the proposition at this stage by using the Jacobian linearization,
as an explicit expression of the state matrix (and, therefore, of
its determinant) is lacking. A formal proof of Proposition 1 will
be obtained in Section IV after analyzing the zero dynamics
associated with the tracking error (1). The Jacobian linearization

allows only tonumerically verifythat the
reduced system (12) and (13) is Hurwitz stabilizable around the
following equilibrium point:

(18)

where

(19)

If are the velocities of the points at , the matrix

can be used to transform the control law (14) into the (locally
equivalent) partial state feedback by using
(11) and to numerically compute the values ofand such
that for and the matrix

is Hurwitz. In Section IV it will be shown that such
an output feedback law admits the interpretation of high gain
output feedback.

B. Comparison With the Standard Path Following Technique

The system (2) and (3) is a single input–single output (SISO)
system from steering input to tracking error. If , its rel-
ative degree is well-defined and equal to two for any number
of off-axle connections. If instead we take as guidepoint the
midpoint of the rear axle of the vehicle and as corresponding
tracking error

(20)

like in [20], the relative degree of the system is ,
which says that the input-state feedback linearizability is lost,
due to the kingpin hitching. This implies that the nice properties
of flatness and chained form are also lost for the system. The
different relative degree reflects a difference in the structure of
the simplest possible controller needed to stabilize the system.
In fact, for (20) a dynamic output feedback of order
is required

(21)

IV. I NPUT–OUTPUT FEEDBACK LINEARIZATION

The material of this Section overlaps with [3], Section III. To
input-output feedback linearize the system it is enough to derive
the output (3) twice and cancel the corresponding dynamics by
means of a change of input. Assume and call
the state obtained fromexcluding and .

The zero dynamics is obtained confining the dynamics of the
system to the Output-Zeroing Manifold
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and it is obtained, for example, eliminating the
variables and by means of

(22)

(23)

Any output feedback of the form

(24)

with , is a locally asymptotically stabilizer for the
resulting chain of integrators obtained applying the prefeedback
of [3, eq. (8)].

Now the local asymptotic stability of the zero dynamics can
be proven for a path of constant curvature.

Proposition 1: For forward motion, the zero dynamics of the
-trailer system (2) and (3) is locally exponentially stable along

paths of constant curvature.
See the Appendix for a proof alternative to that appearing in

[3].
With the result of Proposition 2, we can now straightfor-

wardly obtain the proof of Proposition 1.
Proof of Proposition 1: The zero dynamics of the original

nonlinear system being locally exponentially minimum phase
together with the well-defined relative degree is a suffi-
cient condition for the existence of a high-gain dynamic output
feedback that locally asymptotically stabilizes the system.
Hence, also for the linearized system there exists
and such that for and the matrix

is Hurwitz.
The property vanishes for backward motion, because the zero

dynamics is not anymore locally minimum phase.

V. ZERO DYNAMICS AND OFF-TRACKING BOUNDS

We would like to have a way to calculate the minimal width
of a road, i.e., how much clearance has to be left around a given
path in order to make sure that the robot can pass through the ob-
stacles, at least in the very simplificative case of perfect output
tracking and of no error for the initial conditions on . On ,

of the dynamic equations of the zero dynamics are described
by the evolution of the orthogonal distances, .
The missing distance can be recovered from (22). We take
the maximum of as measure of off-tracking.

The integral curves on that we obtain are only function of
the curvature and of the geometry of the vehicle. The value
of the at is then only function of the curvature between
the curvilinear abscissæ and :

(25)

Therefore, we can build an “envelope” around the path by taking
the maximum and minimum of the for each . The explicit
analytic expression of the dynamics of theon is quite in-
volved also for the low dimensional cases. However, a numerical
simulation showing the off-tracking envelopes is quite easy to
produce. Assume we can model as the output of
an exogenous dynamical system by taking as independent
variable

(26)

The curvature has entries in the system equations,
all described by the same differential equation (26) but
with different initial conditions. The complete exogenous
system in the time independent scale is
where . The matrix is

and the indepen-
dent variable is . The entire system (2) and (3) can
be transformed into the time-independent scale by taking
the projection of the (known) velocity on the path:

. The system can be
rescaled accordingly in terms of the increment in the new
independent variable . The maximum of the
off-tracking envelope is calculated by the following problem:

(27)

where the underlined symbols replace the corresponding sym-
bols of the system (2) and (3) in the time-independent scale.
Solving this optimization problem can be computationally
expensive. We suggest here a numerically simpler procedure,
based on seeking the maximum of curvature , computing
the corresponding equilibrium point as in (17) and taking the
maximum (in absolute value) of the corresponding lateral
distance . It is assumed that among the, such maximum
is achieved in one of the two extremities of the-trailer:

. Consider, for example, . The
constant value that gives an upper bound to the off-tracking
envelopes is

(28)

where and is obtained
solving the algebraic equation (15). From above, the bound

is reached if stays at for at least an interval of
length where and are the curvilinear ab-
scissae at the equilibrium corresponding to some ,
otherwise the bound becomes conservative. For a path of
constant curvature, the two off-tracking bounds and

coincide.
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Fig. 2. Multibody vehicle used in the experiments.

Fig. 3. Multibody vehicle of Fig. 2 following an arc of circle.

VI. EXPERIMENTAL SETUP

The experimental platform shown in Fig. 2 is equipped with
optical encoders on both wheels of the second and fourth axle
(i.e., on and ), which allow for an incremental measure-
ments of the distances and , and potentiometers to measure
the relative orientation angles , and . The signals were
read at a frequency of 2 kHz. This frequency and the 500 pulse
shaft ensured a maximum speed of about 0.2 m/s which was suf-
ficient for our application. Due to the lack of odometry informa-
tion on and , we replace the tracking criterion (1) with the
simpler one . None of the consideration concerning
the off-tracking is essentially modified by such change.

The vehicle of Fig. 2 has a very limited steering angle,
, which limits the curvature of the paths that can be followed

with zero steady state tracking error to mm
(i.e., mm). Also for admissible paths, the transient
is very often influenced by the saturation in. This is clearly
visible in the experiment shown in Figs. 3 and 4, where the sta-
bilization to an arc of circle is reported. The radius of the ref-
erence arc of circle is approximately 500 mm i.e., very close to
the limit for which an admissible equilibrium exists. The initial
off-set is recovered very slowly because of the saturation in.
In this case the off-tracking value is easily computed from the
steady-state values of and . The controller used in Figs. 3

and 4 is the high gain output feedback (14). Having used instead
the tracking criterion (20), the controller (21) would have kept
the whole vehicle outside the reference path in Fig. 3.

APPENDIX

PROOF OFPROPOSITION2

Just like is Section III-A, also the zero dynamics lacks an an-
alytically computable Jacobian linearization. However, we can
use the physical insight in the process to draw conclusions about
its stability. Consider the system obtained by choosing in
(2): if the initial condition for is and , then this
corresponds in to the -trailer moving forward with constant
steering angle since . Regardless of the initial condition
in , the system tends to move along circular trajec-
tories whose radius is uniquely decided by the initial value of

. Restrict to circles that are concentric with the reference tra-
jectory ; if not, translate opportunely. Furthermore, since the
path following problem is concerned with stabilization along
a path and not around a point, the rate of convergence to the
equilibrium is exponential (see [9] and [20]). In fact, assuming
the contrary means saying that the linearization (which, again,
cannot be computed explicitly) is only stable but not asymptoti-
cally stable. Then different initial conditions in states other than

would correspond to different equilibrium points, which is
against the uniqueness of the solution of an equation similar to
(17)

valid for circular equilibrium trajectories concentric to. Re-
placing with the zero dynamics of the system means
considering the input-output linearizing nonlinear state feed-
back in place of and pairing the closed loop system

with the constraints
. Since is entering only in the differential equations for

and , we need to check the asymptotic character of these
two only. If we can prove this, then the modified dynamics in
and due to the feedback can be thought of as a perturbation on
the -subsystem, not altering its exponentially convergent char-
acter.

Concerning , it could be concludeddirectly from (23)and by
looking at the expression (18) for the equilibrium point: locally

while and lie in neighborhoods of nonzero values.
Thus, as , , also must converge to zero
withthesamerate.Concerning, itsdifferentialequationis

. The denominator
is locally well-defined and it is positive; the numer-

ator, from the expression ofin [3, p. 1553], is

where are given by (5). Expanding and isolating the terms
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(a)

(b)

Fig. 4. Lateral distances and relative angles for the maneuver of Fig. 3. (a) Tracking errory (top) and lateral distancesz andz (bottom). (b) Relative angles
� , � , and� .

containing :

(29)

The have a “triangular” structure

where



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 11, NO. 4, JULY 2003 605

• if for some (axle preceding the kingpin
hitching) and

• if for some (axle following the kingpin
hitching) and

• if and

Thus introduce terms whose denominators are all lo-
cally nonull. Furthermore, all these terms appear multiplied by
some . Therefore, the zero output condition computed in

, , (corresponding here to the equilibrium point
for the steering angle ) gives all zero terms in (29) except the
last two. Concerning , if then from (7)

and, therefore, is obtained from the only term remaining

which is exactly the value computed
in (29). To see that such equilibrium is a stable attractor, con-
sider the equation

i.e., when all is at the equilibrium except. In this case

which is asymptotically stable.
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