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Following a Path of Varying Curvature as an Output
Regulation Problem

Claudio Altafini

Abstract—Given a path of nonconstant curvature, local asymptotic sta-
bility can be proven for the general trailer whenever the curvature can
be considered as the output of an exogenous dynamical system. The con-
trollers that provide convergence to zero of the tracking error chosen for the
path-following problem are composed of a prefeedback that input–output
linearizes the system, plus a linear controller.

Index Terms—Output regulation, path following, wheeled vehicles.

I. INTRODUCTION

In the several studies dealing with path following for wheeled ve-
hicles (see, for example, [12]–[14], or the book chapters [3], [4], and
[9]), convergence is usually proven for paths of constant curvature. In
fact, that represents the only case in which the decoupling between lat-
eral and longitudinal dynamics is exact for the original system and a
constant steady state for the lateral dynamics exists. After fixing the
longitudinal input to a nonnull constant, if the tracking error used is a
scalar, the system to analyze is basically a single-input–single-output
(SISO) system with drift from the steering input to the tracking error.
When the curvature of a path to follow can be modeled as the output of a
neutrally stable dynamical system, then the path following problem can
be formulated as an output regulation problem in the nonlinear setting
proposed by [8]. In fact, the curvature can be considered as a known ex-
ogenous disturbance and the output of the system, corresponding to the
tracking error of the path following criterion, can be rendered indepen-
dent from it by input–output linearizing the system with a static change
of input. With the error independent from the curvature, if the relative
degree of the system is well defined, the output zeroing manifold is
the only invariant manifold that solves the regulation problem. This
is equivalent to saying that local asymptotic stability to the noncon-
stant steady state is achieved by and only by the controllers composed
of a prefeedback that input–output linearizes the system plus a linear
part that can be chosen in an optimal (linear) fashion. If we choose
as tracking criterion the one proposed in [2] based on the so-called
off-tracking distance, whose peculiarity is that it keeps the whole ve-
hicle (and not a single guidepoint on the vehicle) at a reduced distance
from the path, then the relative degree between the steering velocity
and the corresponding tracking error is equal to two, whereas for the
criteria normally used, it is either higher or it is not well defined at
all because of the kingpin hitches. For the same reason, properties like
input-state linearization or differential flatness do not hold [11].

It must be noticed that the whole analysis islocal and that, due to
the singularities of the Frenet frame representation used here, there is
no way to formally prove a well-behaved transient even for admissible
initial conditions that are close to the limits of the region of attraction.
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Fig. 1. Generaln-trailer system.

II. K INEMATIC MODEL FOR THEGENERAL n-TRAILER AND

FRENET FRAMES

Suppose we have a generaln-trailer system withm (m � n) of the
trailers hooked at a distanceMi from the preceding axle; see Fig. 1.
Assume that each body is composed of one single axle. The non-
holonomic constraints on the pointsPi (below callednonholonomic
points) originate from the assumption of rolling without slipping
of the wheels. If we calln1; . . . ; nm, nj < nj+1, nm < n the
indices of the axles having nonnull off-hitching(Mn 6= 0) we can
group together the axles between two consecutive kingpin hitchings:
f0; 1; . . . ; n1g; . . . ;fnj�1+1; nj�1+2; . . . ; nj�1; njg; . . . ;fnm+
1; nm + 2; . . . ; n � 1; ng. We do not consider the case of two con-
secutive axles having off-hitching. Call�i the orientation angle of the
ith axle,vi its translational velocity,Li the distance between theith
axle and the hitching point of the same trailer, and�1 �0 � �1 the
steering angle. Then-trailer system has two inputs, corresponding to
translational and steering actions of the car pulling the trailers. At the
kinematic level, we can consider these two inputs to be the steering
speed! _�1 and the translational speedvn of the last trailer.

Under the assumption that the path is sufficiently smooth and that
the curvature has an upper bound, a particularly useful local frame to
describe the lateral dynamics of the path following problem decoupled
from the longitudinal one is the so-called Frenet frame i.e., a frame
moving on the path having origin on the orthogonal projection of the
point of interest. In [2], the tracking criterion introduced consists in
consideringn+ 1 frames simultaneously, one for each nonholonomic
point. Each of the curvilinear frames (see Fig. 2) is represented by two
coordinates(s ; � ) wheres is the line integral along the path to
follow, up to the actual projection of the pointPi on the path itself and
� is the orientation of the frame with respect to the inertial frame. In
the Frenet frame, the pointPi is represented by the signed distancezi

between the point itself and its orthogonal projection and by the relative
orientation angle~�i. The decoupling property of the Frenet frame has
already been used by several authors for the path following problem
(see [10] and [12]). We also use it but substituting the tracking criterion
normally used [13]

zn ! 0 (1)

or an equivalent one based on another of the distanceszi, with thesum
of the signed distances

n

i=0

zi ! 0: (2)

It can be noticed that for a nonzero curvature neither the�i nor the�
tend to a steady state in the path-following problem, but their difference
~�i �i � � , i 2 f0; 1; . . . ; ng can have an equilibrium value if
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Fig. 2. Frenet frames associated with the nonholonomic pointsP .

the curvature� = const. The same observation is valid also for the
angles�i �i�1 � �i, i 2 f1; . . . ; ng. Therefore, it is convenient to
write the dynamic equations of�i and� in terms of~�i and�i. We can
group together all four equations relative to each pointPi. When there
is off-axle hitching the equations for the nodePn +1 (first node of each
steering train, except for the driving cart) are shown in (3) at the bottom
of the page,j 2 f0; 1; . . . ;mg, n0 = 0, andn1 > 1. For the other
nonholonomic points, the correspondingMn +i are zero. Therefore,
the formulas simplify to

_s
_zn +i

_~�n +i

_�n +i

= vn +i

cos ~�

1�� s z

sin ~�n +i

tan �

L
�

cos ~� � s

1�� s z

tan �

L cos �
�

tan �

L

(4)

j 2 f0; 1; . . . ;mg, i 2 f2; 3 . . . ; nj+1 � njg, nm+1 = n, where
(5), shown at the bottom of the page, holds;j 2 f0; 1; . . . ;mg, i 2
f1; 2 . . . ; nj+1 � njg, andv0 = v1=cos�1. Consideringvn to be a
given (non-null) open-loop function, for example a constant, we obtain
a system with a drift component. The domain of definitionD and the
singularity locus of the generaln trailer are discussed in [1]. Callingppp
the state vector

ppp = [ s zn ~�n �n . . . s z1 ~�1 �1 s z0 ~�0 ]
T

the dynamic equations of the system are

_ppp = F(ppp) + G!; ppp 2 D (6)

where the input is entering only in the differential equations of~�0 and
�1. In order to consider simultaneously the error distances of all the
nonholonomic pointsPi from the path, we take as output the sum of
then + 1 signed distanceszi

y = [ 0 1 0 0 0 1 0 0 . . . 0 1 0 0 0 1 0 ]ppp Hppp: (7)

Considering multiple frames on the same rigid body leads to a redun-
dant description of the system. To recover the original dynamic equa-
tions, a number of constraints must be added. However, for our stabi-
lization purposes they can simply be neglected and we can work with
the overparameterized system (6) and (7); see again [2] for a complete
formulation.

III. I NPUT–OUTPUT FEEDBACK LINEARIZATION

In what follows, we will assume thatM0 = 0, i.e., that there is no
off-axle connection on the driving unit. In fact, ifM0 6= 0 the general
n-trailer does not have a well-defined relative degree. For this and the
other concepts used in the remaining of the paper (Lie derivative, input-
state and input–output feedback linearization, zero dynamics, etc.), we
remand the reader to any standard text on nonlinear control systems,
such as [7].

The following proposition can be proven by direct calculation.
Proposition 1: Then-trailer system (6) and (7) with the tracking

criterion (2) has relative degree two.
The low relative degree suggests that input–output feedback

linearization is easily attained for our system: in fact it is enough
to differentiate the output (7) twice and cancel the corresponding
dynamics by means of a change of input. From

y =

n

i=0

zi

we get the equation shown at the bottom of the next page. In order
to have a well-defined relative degree, we have already assumed that
the driving unit has no off-axle connection, i.e.,M0 = 0. For sake of
simplicity, we require here also thatM1 = 0. The case withM1 6= 0
does not differ except for the more involved formulation of the domain

_s
_zn +1

_~�n +1

_�n +1

= vn +1

cos ~�

1�� s z

sin ~�n +1

tan � � tan �

L 1+ tan � tan �

�
cos ~� � s

1�� s z

tan �

L cos �
�

tan �

L
+

M tan �

L L

(3)

vn +i =
vn

m

k=j+1
1 +

M

L
tan�n tan�n +1

n

k=n +i+1
(cos�k)

(5)
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of definition and will be treated in the example of Section V. In fact,
when differentiating the above expression a second time we need to
isolate the terms in~�0 and�1 whose derivatives introduce the input!.
With M0 = M1 = 0 they appear only in the termv0 sin ~�0. Calling
the state obtained fromppp excluding�1 and~�0, we have

�y =L2
FHppp+ LGLFHppp! =

@ _y

@
+

@ _

@�
_� +

@ _

@~�

_~�

=
@ _y

@
+ cos ~�

sin�
�

cos ~� �(  )

� �(  )

+ v0 sin ~�0 tan�1 + cos ~�0 !:

The term sin ~�0 tan�1 + cos ~�0 vanishes() tan(~�0 � �1) =

�1 () ~�0 � �1 = (�=2) mod �. Since~�0 � �1 = �1 � �
the singularities are function of how much the path is “bending” be-
tween the projections on the path ofP0 andP1. Therefore, forppp in
D\ (~�0; �1) s.t. ~�0 � �1 2]� �=2; �=2[ , the input transformation

! =
�L2

FHppp+ u

LGLFHppp

=

� @ _y

@
+ cos ~� sin � �

cos ~� � ( )
�� ( )

+ u

v0 sin ~�0 tan�1 + cos ~�0

(8)

is a diffeomorphism that reduces the input–output dynamics to the
chain of integrators

�y = u (9)

that can be stabilized using linear control theory provided that the
system is minimum phase. The zero dynamics is obtained confining
the dynamics of the system to the so-calledoutput-zeroing manifold

Z� = fppp 2 D s.t.y = _y = �y = 0g :

In practice, it is obtained by adding to the original system (6) the con-
ditionsy = 0, _y = 0 and the input

! =
�L2

FHppp

LGLFHppp
(10)

and it represents the part of the system equations which is no longer
connected to the output after the change of input.

Proposition 2: The zero dynamics of then-trailer system (6) and
(7) is locally asymptotically stable along paths of constant curvature.

Proof: If in a genericn-trailer system we take as tracking crite-
rion z0 ! 0, then for forward motions the stability of the zero dy-
namics on the output zeroing manifold̂Z� corresponding to the output
ŷ = Ĥppp = z0 is immediate to understand as it corresponds to have
the nonholonomic pointP0 exactly on the path for all times. Differen-
tiating ŷ

_̂y =v0 sin ~�0
�̂y =L2

FĤppp+ LGLFĤppp!

with LGLFĤppp = LGLFHppp whenM1 = 0. The zero dynamics of
such a tracking error, given byz0 = ~�0 = 0 plus a feedback similar to
(10), is trivially asymptotically stable with exponential rate of conver-
gence for forward motion and for any admissible initial condition on
Ẑ�. The state equations on̂Z� (to which the constraintŝy = _̂y = 0
must be added) look like

_ppp = F(ppp)� G
L2
FĤppp

LGLFĤppp
: (11)

It corresponds toP0 (where the steering input is applied) on the path
and wrong initial conditions on the trailers and it asymptotically decays
to an equilibrium point which is unique for a path of given constant
curvature. Returning to the tracking error (2), the equilibrium point for
(6) and (7) around which to check convergence of the zero dynamics
in Z�, call it pppe, is computed in detail in [2] and it still corresponds to
a circular concentric trajectory. Writing the output (7) asy = ŷ + �y =
Ĥppp+ �Hppp, we haveLGLF �Hppp = 0, i.e., the relative degree with respect
to �y is three or higher, thus the state-space equations onZ� will be given
by

_ppp = F(ppp)� G
L2
FĤppp

LGLFĤppp
� G

L2
F

�Hppp

LGLFĤppp
: (12)

By comparison with (11), local asymptotic stability of (12) aroundpppe
follows from exponentially stability on the large of (11).

The chain of integrators (9) can now be stabilized for example using
linear quadratic theory. Any output feedback of the form

u = k1y + k2 _y (13)

with k1 < 0,k2 < 0 is a locally asymptotically stabilizer for the whole
system.

IV. FOLLOWING A PATH OF VARYING CURVATURE AS AN OUTPUT

REGULATION PROBLEM

In what follows, we will try to asymptotically stabilize the system to
paths whose curvature is varying in a given class of functions. We will
treat the problem as anoutput regulation problemin which the error
y(�) has to asymptotically reject the variation of curvature�(s) re-
garded as a persistent input generated by a dynamical system. In the
classical context of linear time-invariant, finite-dimensional systems,
this geometric control problem was first solved by Davison [5] and
Francis and Wonham [6] based on the assumption that the external
command can be modeled as the output of an autonomous system called
theexosystem. The solution was then extended to the nonlinear case by
Isidori and Byrnes [8]. The presence of a known “disturbance” acting
as a persistent input implies that the steady state of the system is varying
depending only on the exogenous input and not on the initial conditions
of the system (that have to be in an appropriate neighborhood of the
origin). In our case, the exogenous input of the system is the curvature
function�(�) of the path. To be consistent with our control problem,
the curvature has to be upper bounded; in fact, too high a curvature im-
plies that a steady state for the tracking criterion (2) does not exist.

The properties of persistence in time and of boundedness of the ex-
ogenous input are compactly described by the notion ofneutral sta-
bility of the exogenous system. A system is said neutrally stable if it

_y =LFHppp =

n

i=0

vi sin ~�i

=

m

j=0

n �n

i=1

vn sin ~�n +i

m

k=j+1
1 +

M

L
tan�n tan�n +1

n

k=n +i+1
(cos�k)

+ v0 sin ~�0:
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is both Lyapunov stable and Poisson stable. A necessary condition for
a system to be neutrally stable is that its first-order approximation has
all the eigenvalues on the imaginary axis. In our case, the exogenous
system has to represent how the curvature is evolving along the path
. Looking at (6), we can see that at every time instant the curvature
hasn + 1 “entries” in the equations, corresponding to the values of
curvature in different positions along the path. For the nonholonomic
pointPi, if the curvature function is given in terms of the curvilinear
abscissa� = �(s ) then we can think of it as generated by a dy-
namical system

�
0

 =
d�

ds
=  (� ) ; i = 0; 1; . . .n (14)

where the independent variable is the curvilinear abscissas . In order
to couple this exogenous system with the remaining part of the equa-
tions, we have to rescale it as a function of time, expressings as
s (t), i.e., substituting the space derivatives of (14) with the corre-
sponding time derivatives

_� =
d�

dt
=

d�

ds

ds

dt
= v  (� ) = _s  (� ) : (15)

The exogenous equation is the same for all the nonholonomic points
(since the reference path is the same) but the initial values of� are
different since they express the value of the curvature at the initial curvi-
linear abscissas (0). The presence of the term_s does not spoil
the “exogenousness” of (15): it is in fact possible to rescale the whole
system (6) as a function of the curvilinear abscissa and of the “spa-
tial” integral constraints mentioned in Section II and reported in detail
in [2], yielding, in principle, a completely time-independent system in
which the terms_s obviously disappear. Provided we can prove well
posedness and asymptotic stability of the problem in the time-depen-
dent scale, then in the formulation (15) the_s represent terms which
are monotone, bounded and continuous (for paths of continuous cur-
vature and forPi near the path) since they represent the projections on
the path of the translational velocitiesvi of the nonholonomic points
Pi:0 < _s � vi . Therefore the neutral stability of (14) implies the
neutral stability of (15) and vice-versa. In fact, the eigenvalues of the
first order approximation are on the imaginary axis in both cases. For
all times t we haves (t) < s (t) < � � � < s (t), but the
delay betweens (t) ands (t) is variable according to the cur-
vature of the path in the intervals (t) � s (t) and to the posi-
tion and orientation of the vehicle with respect to the path. Calling
� = [� � � � � � ]T ands = [ s � � � s s ]T ,
the complete system is then

_ppp =F(ppp; �) + G(ppp)! (16)

_� =_sT �(�) (17)

y =Hppp (18)

where�(�) has the diagonal structure

 (� ) 0

. . .

0  (� )

:

The right formulation for our case is calledfull information output reg-
ulation problem, in which the whole state of the system is measurable.
Here, we follow the definition given in [7].

Given the nonlinear system (16) and the neutrally stable exogenous
system (17), the output regulation problem is said to be solvable if there
exists a map�(ppp; �) such that

P1) equilibriumppp = 0 of

_ppp = F(ppp; 0) + G(ppp)�(ppp; 0)

is asymptotically stable in the first order approximation;

P2) there exist a neighborhoodV � � �K0
� of (0; 0) such that

for each initial condition(ppp(0); �(0)) 2 V , the solution of
(16) satisfies

lim
t!1

Hppp(t) = 0:

The statement P1) is motivated by the center manifold theory. In fact,
given (16) and (17), we know that the eigenvalues of the exogenous
system are on the imaginary axis and cannot be moved. Therefore, the
problem is solvable only if all the other eigenvalues of the system can
be moved to the open left half of the complex plane by means of a state
feedback on the endogenous input!. If such a feedback can be found
for � = 0, then the center manifold theory assures the existence of
an invariant manifold in a neighborhood of the origin whose graph is
the solution of an associated partial differential equation. This is for-
mulated in the following theorem.

Theorem 1 [7]: Given the neutrally stable system (17) and assuming
the existence of an endogenous feedback law! = �(ppp; 0),�(0; 0) = 0
such that the equilibriumppp = 0 of

_ppp = F(ppp; 0) + G(ppp)�(ppp; 0)

is asymptotically stable in the first-order approximation, then there
exist mappingsppp = �(�) and! = �(�(�); �) defined in a neigh-
borhoodK�

� � K� of the origin with�(0) = 0 and�(0; 0) = 0,
which satisfy

@�

@�

� (�) = F (�(�); �) + G (�(�))�(�(�); �)

8 � 2 K�

�.
The theorem assures also the existence of a well-defined steady-state

response for every exogenous input inK�

�.
Consider the Jacobian ofF at the origin

Fe =
@F(ppp; �)

@ppp (0;0)

:

From linear control theory, it is deduced that the stabilizability of the
pair (Fe ;G) is also a necessary condition for the solution of P1.

The previous condition can be used to adapt the necessary and suffi-
cient condition for the solution of the full information output regulation
problem provided in [7] to our case.

Theorem 2: Given (16)–(18) with (17) neutrally stable, the full in-
formation output regulation problem is solvable if and only if(Fe ;G)
is stabilizable and there exist mappingsppp = �(�) and! = c(�)
with �(0) = 0 andc(0) = 0, both defined in a neighborhoodK�

� �

K� satisfying the conditions

@�

@�

�(�) =F (�(�); �)) + G (�(�)) c(�) (19)

0 =H�(�) (20)

for all � 2 K�

�.
Conditions (19) and (20) express the fact that the mappingppp =

�(�) which is rendered locally invariant by the feedback law! =
c(�) has to be an output zeroing manifold of the composite system.
In our case, due to the independence of the output (18) from the cur-
vature� , the output zeroing property is not related to the exogenous
system but only to the exact input–output feedback linearization. This
is formalized in the following theorem.

Theorem 3: For (16)–(18) with (17) neutrally stable, the full infor-
mation output regulation problem is solvable. All the controllers that
solve the problem are composed of a prefeedback (8) that input–output
exactly linearizes the system and of a stabilizing feedback for the re-
sulting chain of integrators.

Proof: Apply the input–output linearizing controller (8) to
(16)–(18). The output functionHppp and its first Lie derivativeLFHppp
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Fig. 3. Following a path of sinusoidal curvature with the linear controller
proposed in [2].

constitute the first components of a change of basis� = �(ppp) that,
together with the feedback (8), transforms the system into normal form

_�1 =�2
_�2 =u
_�� =A (�; �) + B (�; � ; u)

y =�1: (21)

The subsystem�� = [�3 . . . �n]
T which corresponds to the zero dy-

namics was shown to be asymptotically stable in Proposition 2. There-
fore, the whole system is locally asymptotically stabilizable around
� = 0 for � = 0 by a linear controller and, by Theorem 1 we de-
duce the existence of an invariant manifold characterized by the map
� = �(�) such that on its graph the condition (19) is satisfied. In par-
ticular, we can consider a map�(�) such that it does not touch the first
two components

�i = �i(�) = �i(0) = 0; i = 1; 2

while perturbing all the other states. A map with such characteristics
fulfills also (20) whenu = 0. Therefore, also Theorem 2 holds and
the full information output regulation problem is solvable. Since the
change of basis�(�) is a local diffeomorphism and the feedback (8) is
invertible, the problem is solvable also in the original basis.

By Theorem 2, a necessary condition for the solvability of the full
information output regulation problem is that�(�) is an output zeroing
manifold. Since the output function does not depend directly on� and
the system has a locally well-defined relative degree, alsoZ� is inde-
pendent of� and the feedback! = c(�) which renders each�(�)
invariant in Theorem 2, is uniquely given by (10). The full controller
then is obtained by adding a stabilizing loop around (8).

In particular, the simplest class of controllers that satisfies Theorem
3 is given by

! =
�L2

FHppp+ k1y + k2 _y

LGLFHppp
(22)

8 k1 < 0; k2 < 0.

Fig. 4. Following the same sinusoidal path of Fig. 3 with the controller (22).

Such a property is characteristic not only of our system (16)–(18) but
of any control-affine SISO system with relative degree for which only
disturbance rejection is required, i.e., in which the exogenous system
consists only of disturbances acting on the state space and not of signals
to be tracked by the output. What this means is that in the case of well-
defined relative degree there is no need to solve a partial differential
equation to find the invariant manifold�(�), since the prefeedback (8)
provides the unique solution.

V. EXAMPLE

Consider a car pulling two trailers the first of which has off-axle
hooking. Here, we have thatM1 6= 0; therefore, the termLGLFHppp
instead of having the expression in the denominator of (8) has the more
complex one, as shown in the equation at the bottom of the page. In a
neighborhood ofppp = 0, cos ~�0 is the dominant term; therefore, as in
(8), we can conclude that there exists a subdomain ofD in which the
denominatorLGLFHppp is nonvanishing.

The different behaviors of the linear controller used in [2] and of the
input–output linearizing controller (22) are compared for a sinusoidal
path in Figs. 3 and 4. The linear controller cannot achieve any steady
state even though the tracking error remains bounded. For the second
controller instead, the tracking error asymptotically converges to zero.
The reduced difference in the error dynamics between Figs. 3 and 4
suggests that alternative approaches to the exact linearization solution,
for example considering uniform boundedness of the tracking error in-
stead of asymptotic convergence, could be successfully applied also
to simple linear controllers. On the other hand, it is worth mentioning

LGLFHppp = v3

cos�1 cos�2 cos �3 sin ~�0 tan�1 �
M

L
tan�2 + cos ~�0 1 + M

L
tan�1 tan�2 + sin ~�1

M

L
tan�2

1 + M

L
tan�1 tan�2

2

cos2 �1 cos2 �2 cos2 �3

:
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that a major advantage of the feedback linearization technique is that
the feedback (10) provides the open-loop control that exactly steers the
system on a given path. This is normally of great help in motion plan-
ning problems.
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On the Relationship Between the Sample Path and Moment
Lyapunov Exponents for Jump Linear Systems

Yuguang Fang and Kenneth A. Loparo

Abstract—In this note, we study the relationship between the sample
and moment Lyapunov exponents for jump linear systems. Using a large
deviation theorem, a modified version of Arnold’s formula for connecting
sample path and moment Lyapunov exponents for continuous-time linear
stochastic systems is extended to discrete-time jump linear systems. Sample
path stability properties of linear stochastic systems are determined by the
top Lyapunov exponent and relating sample and moment Lyapunov expo-
nents may be useful for developing computationally efficient methods for
determining the almost-sure (sample path) stability of linear stochastic sys-
tems.

Index Terms—Finite-state Markov chain, large deviation, linear
stochastic systems, Lyapunov exponents, moment Lyapunov exponents.

I. INTRODUCTION

Determining the stability of a linear stochastic system is an
important problem. In general, the most useful stability criteria
involve sample-path or almost-sure stability of the system. Necessary
and sufficient conditions for sample-path stability often require
a difficult computation of the top Lyapunov exponent. Although
moment stability calculations, e.g., stability of the mean or the second
moment, only require the stability analysis of a deterministic system,
the results might not be useful in practice. In particular, for a linear
stochastic system, it is well known that second-moment stabilty
implies sample-path stability, but often times second moment stability
criteria are too conservative to be useful in applications [11]. In this
note, we investigate extending Arnold’s formula relating sample and
moment Lyapunov exponents for continuous-time linear stochastic
systems with diffusion-type processes to discrete-time linear systems
with random jump processes. The eventual goal is to use the relation-
ship between sample and moment Lyapunov exponents to develop
computationally efficient procedures for evaluating the sample-path
stability of discrete-time jump linear systems.

Consider the discrete-time system

x(k + 1) = Akx(k) x(0) = x0 (1.1)

wherefAkgk�0 is a sequence ofGl(d;R)-valued random variables.
Here,Gl(d;R) is the general linear group of dimensiond over the real
field, R. Fixing coordinates, a representative element ofGl(d;R) is a
nonsingulard� d matrix overR. A sample trajectory of (1.1) is given
by the action of a random matrix product on a pointx0 2 Rd. Our
analysis is restricted to random matrices inGl(d;R) because of the
importance ofregularity of (1.1) [3].

The asymptotic behavior of sample trajectories of system (1.1) have
been studied extensively by many researchers, most notably in the con-
text of random matrix products (see [3]). Furstenberg and Kifer [6] con-
sidered the Lyapunov exponents and the corresponding subspace filtra-
tion of the state space, and obtained an integrability condition. Arnold
[1] and Arnoldet al. [2] have been studying moment Lyapunov ex-
ponents for linear stochastic systems and discovered a formula that
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