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Abstract

In this paper, the Dyson series corresponding to the time-varying Hamiltonian of a finite
dimensional quantum mechanical system is expanded in terms of products of exponentials of a
complete basis of commutator superoperators in the corresponding Liouville space. The Cayley-
Hamilton theorem and the Wei-Norman formula allow to express explicitly the functional rela-
tion between the Dyson series and the product of exponentials via a set of first order differential
equations. Since the method is structure preserving, it can be used for the exact unitary inte-
gration of the driven Liouville-von Neumann equation.

1 Introduction

The general solution of a quantum Liouville equation for time-varying Hamiltonians is given by the
Dyson series. Normal procedure for its practical use is to truncate this expansion and work with the
corresponding approximation. Beside providing approximate solutions, the main drawback of such
truncations is that the unitarity of the time evolution is not necessarily preserved [17]. The method
we present here relies on the formalism of the canonical coordinates of the first and second kind
of the adjoint representation of the unitary group, and on the relation between them. In fact, the
differential operator governing the Liouville equation can be related to a product of exponentials
of the noncommuting operators corresponding to a complete basis of the adjoint representation of
the Lie algebra via a set of nonlinear differential equations known as Wei-Norman formulæ. Such
formulæ allows one to express the unitary evolution of the density operator exactly in terms of the
product of exponentials. For N ×N density operators, this is best understood in Liouville space.
Once the parameterization of the density matrix is given in terms of the N2 − 1 basis elements of
ad

su(N) (i.e. the commutator superoperator of the Liouville space) plus the identity operator, then
the method corresponds to solving a time-varying system of ODEs and is one of the most popular
structure preserving algorithm used by the numerical algebra community [8, 14]. The algorithm
preserves unitarity, as the real time-varying parameters are multiplied by skew-hermitian matrices
(the corresponding infinitesimal generators in the basis) and then exponentiated. Particular cases
of the formula we use have already appeared in the literature to treat su(2)-systems like spin 1

2
or two-level systems [15, 17], examples which we also discuss below. The method, however, is
absolutely general for all finite dimensional unitary operator algebras and for all “generalized”
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Euler angles one can choose on such algebras. Furthermore, it can be used for both pure and mixed
states. A couple of applications, other than exact numerical simulation, are as follows. It can be
used to reconstruct the behavior of a driven Hamiltonian from sequences of pulses or, on the other
direction, to decompose a time-varying Hamiltonian into pulse sequences. This last will be treated
in Section 4.

2 Time-independent Hamiltonians

In quantum mechanics, Liouville equations are very common to describe the time evolution of
density operators or of observables in the Heisenberg picture. If H is a constant finite dimensional
Hamiltonian, the density operator differential equation

ρ̇(t) = −i[H, ρ] = −iadH(ρ) (1)

is solved by
ρ(t) = e−itHρ(0)eitH = Ade−itHρ(0) = e−itadHρ(0) (2)

If −iH ∈ su(N), then in (2) −iadH is a so-called commutator superoperator i.e. a linear operator in
the N2 dimensional Liouville space obtained by expanding the density operator in a complete set of
basis operators like the one obtained by choosing the N -dimensional Pauli matrices λ1, . . . , λN2−1

(see [10] for an explicit expression for these matrices) plus the identity matrix λ0 = N− 1

2 I: ρ =
∑n

j=0 ρjλj . As is well-known for this parameterization, the coefficient ρ0 along λ0 is a constant

fixed by the tr(ρ) = 1 condition to ρ0 = N− 1

2 . Thus the evolution represented by (1) occurs along
an hyperplane of the Liouville space, see [6]. Call n = N2 − 1 the dimension of such hyperplane
(equal to dim su(N)). On the vector of n real components ρj , call it ρ, the action of −iadH is
linear:

ρ̇ = −iadH ρ (3)

The {λj} basis of su(N) corresponds to purely imaginary structure constants. For the scope of
this paper, it is convenient to choose a skew-hermitian basis for su(N), call it A1, . . . An for which
we have all real structure constants [Ai, Aj ] =

∑n
k=1 c

k
ijAk, c

k
ij ∈ R. Then −iH =

∑n
j=1 ujAj

with uj ∈ R. The corresponding basis in the adjoint representation is given by the n× n matrices
adA1

, . . . adAn and −iadH =
∑n

j=1 ujadAj
, where the adAi

have matrix elements (adAi
)jk = ckij .

The n×n matrices adA1
, . . . , adAn are real and skew-symmetric and as such they are part of a basis

of so(n). Since dim so(n) = n(n−1)
2 = N4−3N2+2

2 , for N > 2 the n matrices adA1
, . . . , adAn span

only a proper subalgebra of so(n). For example for N = 3 n = dim su(3) = 8 while dim so(8) = 28!
Just like the time evolutor of the Schrödinger equation is unitary, |ψ〉 = U(t)|ψ(0)〉, U(t) ∈ SU(N),
for the Liouville equation (3) the adjoint representation giving matrices on so(n), the propagator
for ρ is an orthogonal matrix:

ρ(t) = O(t)ρ(0), O(t) ∈ SO(n).

For a generic (i.e. not necessarily diagonal)H, there exist many ways to compute the exponential
e−itadH other than its infinite series expansion:

e−itadH =

∞
∑

k=0

(−it)k
k!

adk
H (4)

see the classical survey [12] and the recent “classroom notes” of SIAM Review [7, 9] and references
therein. Here we use a method based on the Cayley-Hamilton theorem. The method consists in
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expressing the series expansion of e−iadH in terms of the first n − 1 powers of adH with suitable
coefficients depending on the coefficients of the characteristic polynomial of −iadH and on t. It is
most suited for the adjoint representation, as the powers of the basis elements adAi

are immediately
expressed in terms of the structure constants of the Lie algebra. The r-th power of adAi

is in fact
given by

adr
Ai

=
(

adr
Ai

)

kj
=

n
∑

l1, ...lr−1=1

ck1 l1
cl11 l2

. . . c
lr−2

1 lr−1
c
lr−1

1 j (5)

If the characteristic polynomial is det(sI − (−iadH)) = sn − an−1s
n−1 − . . . − a1s − a0, with

coefficients an−1 = tr(−iadH), . . . , a0 = (−1)n det(−iadH), the Cayley-Hamilton theorem affirms
that −iadH satisfies its own characteristic equation, i.e.

−iadn
H = a0I + a1(−iadH) + a2(−iadH)2 + . . .+ an−1(−iadH)n−1 (6)

and the infinite sum (4) can always be written as

e−itadH =

n−1
∑

k=0

βk(−iadH)k (7)

for suitable βk = βk(a0, . . . , an−1, t), computed in detail in [3].
The procedure is valid also for the the skew-hermitian basis elements Ai ∈ su(N), with the

powers of adAi
expressed in terms of the structure constants as in (5). Using the notation

β
[i]
0 , β

[i]
1 , . . . β

[i]
n−1 for the coefficients corresponding to (7), we have

eγiadAi = β
[i]
0 δ

k
j + β

[i]
1 c

k
i j +

n
∑

l1=1

β
[i]
2 c

k
i l1
cl1i j + . . .+

n
∑

l1, ...ln−2=1

β
[i]
n−1c

k
i l1
cl1i l2

. . . c
ln−2

i j (8)

=
n−1
∑

r=0

n
∑

l1, ...lr−1=1

β[i]
r c

k
i l1
cl1i l2

. . . c
lr−1

i j

where it is intended that
∑n

l1, ...lr−1=1 c
k
i l1
cl1i l2

. . . c
lr−1

i j = δk
j for r = 0 and

∑n
l1, ...lr−1=1 c

k
i l1
cl1i l2

. . . c
lr−1

i j =

ckij for r = 1 (the lower index in β
[i]
k gives the number of times the structure constants c∗i ∗ appear

in the corresponding term).

3 Time-varying Hamiltonians

For time varying Hamiltonians, the linearity of (3) as a differential equation in the ρ coordinates
implies that there are two standard ways to express its local solution, similarly to what happens for
all linearly time-varying systems of differential equations [19]. The situation is obviously specular
to the case of the time-varying Schrödinger equation, which has already been studied via similar
techniques in [3].

When H = H(t) (i.e. uj = uj(t) in the su(N) basis), the local solution of (1) can be expressed
in terms of infinite formal series in the style of chronological calculus [1] or of the Dyson series, as
it is commonly referred to in quantum physics [4]. Using the Dyson time-ordering operator T for
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−iadH(t) = −iad(u1(τ)A1+...+un(τ)An) = −i(adu1(τ)A1
+ . . . + adun(τ)An

):

ρ(t) = T exp

(∫ t

0
−iadH(τ)dτ

)

ρ(0)

=

(

I +
∞
∑

k=1

∫ ∫

· · ·
∫

0≤τ1<...<τk≤t

(−iadH(τ1)) . . . (−iadH(τk))dτk . . . dτ1

)

ρ(0)

(9)

Alternatively, it can be written as a product of exponentials over all basis elements on the adjoint
representation with arbitrarily fixed order, here the cardinal order:

ρ(t) = eγ1(t)adA1 . . . eγn(t)adAnρ(0) (10)

with γj(t) real valued parameters expressing the time-dependence of the solution. Notice that,
as said above, ad

su(N) ⊆ so(n) ( ( for N > 2), but ad
su(N) is a subalgebra and therefore it is

closed under commutation. Hence all integral curves of (9) will belong to exp(ad
su(N)) and the

canonical coordinates of the second kind i.e. the product of exponentials (10) can be restricted to
this subalgebra of so(n) only.

The relation between (9) and (10) is given by the so-called Wei-Norman formula, [18], which is
the Jacobian of the (locally invertible) transformation from (9) to (10) and is obtained by comparing
(3) and the derivative of (10)





n
∑

j=1

ujadAj



ρ =
d

dt

(

eγ1(t)adA1 . . . eγn(t)adAn

)

ρ(0)

=

n
∑

j=1

(

j
∏

k=1

eγkadAk

)

γ̇jadAj
ρ(t)

along each of the su(N) basis directions adAj
. Equation (8) can be used to compute in a closed

form the eγkadAk . The result is a set of n differential equations nonlinear in the γj(t) but linear in
the uj(t) that relate the two sets of parameters:







u1
...
un






= Ξ(γ1, . . . , γn)







γ̇1
...
γ̇n






(11)

which can be (locally) inverted to give:






γ̇1
...
γ̇n






= Ξ(γ1, . . . , γn)−1







u1
...
un






(12)

See [3, 2] for issues related to the non-globality of the used parameterization. The two sets of
parameters live on the Lie algebra ad

su(N). Its skew-hermitian structure plus the exponentiation
operation guarantee that unitarity is preserved in both the single exponential (9) and the product
of exponentials (10).

While the matrix Ξ can always be obtained explicitly, see [3], except for a few simple cases like
two-level systems, see [13, 15, 16], the analytic solution of (12) becomes quickly prohibitive with
the dimension N . However, the systems of ODEs (11) or (12) can be numerically integrated in a
structure preserving fashion using ordinary simulation tools.
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4 Application: time-varying Hamiltonian and pulse sequences for

a spin 1
2 system

In NMR spectroscopy, a nuclear spin is manipulated by the application of suitable pulses along
different axes, see [5, 11]. One of the main issues is then the reconstruction of the time-varying
Hamiltonian which would correspond to a sequence of pulses and viceversa.

For sake of simplicity, we work in the case:

1. there is no constant magnetic field applied, i.e. the free Hamiltonian is zero;

2. the pulses are gaussian in shape;

In particular the first assumption means that only the interaction part of the Hamiltonian is
considered and that we can work in the laboratory frame. Choosing Pauli-like skew-Hermitian
matrices

A1 =
1

2

[

0 i

i 0

]

A2 =
1

2

[

0 1
−1 0

]

A3 =
1

2

[

i 0
0 −i

]

(13)

we get the adjoint basis for su(2)

adA1
=





0 0 0
0 0 −1
0 1 0



 adA2
=





0 0 1
0 0 0
−1 0 0



 adA3
=





0 −1 0
1 0 0
0 0 0





Eq. (12) will look like:

Ξ−1 =





1 sin γ1 tan γ2 − cos γ1 tan γ2

0 cos γ1 sin γ1

0 − sec γ2 sin γ1 cos γ1 sec γ2



 (14)

which corresponds to the inverse of equation (6) of [15]. Notice that, while on (10) the cardinal order
is followed, changing the ordering (and also using repeated generators along the same direction)
will lead to still admissible formulæ, see [2] for details.

Pulses of known shape are applied along the X and Y directions in different ways. The shape
of the k-th gaussian pulse of amplitude Ak

σk

√
2π

and centered at τk = tk−1 + ∆tk
2 , where ∆tk is the

time support of the k-th pulse and σ2 its “variance”, is

uk(t) =
Ak

σk

√
2π
e
− 1

2

“

t−τk
σk

”2

(15)

Under the assumptions above, the Magnus expansion

ρ(t) = T exp

(∫ t

0

(

adu1(τ)A1
+ adu2(τ)A2

)

dτ

)

ρ(0) (16)

maps the (pure or mixed) density operator ρ0 to

ρ(t3) = eγ1adA1eγ2adA2eγ3adA3ρ0 (17)

with the γj = γj(t) obtained numerically from the ODEs (12). In all the simulations below, the
model is adimensional: ~ and the gyromagnetic ratio are set to 1 and the time scales and amplitudes
refer to arbitrary units.
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4.1 Case I: simultaneous pulses

Along X and Y apply simultaneously identical gaussian pulses with σ1 = σ2 = 1, A1 = A2 = 1
and centered at τ1 = τ2 = 3. The u1 and u2 coordinates of the Magnus expansion (16) and the
corresponding time-varying coordinates γj , j = 1, 2, 3 in the product of exponentials representation
(17) are shown respectively Fig. 1 and Fig. 2. While u3 ≡ 0, γ3 6= 0 because of noncommutativity.
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Figure 1: Case I: u1 and u2 coordinates
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Figure 2: Case I: γ1, γ2 and γ3 coordinates

4.2 Case II: pulses with disjoint support

In (15), if Ak = 1 and we consider the “classical” 3σ case, i.e. choose ∆tk
2 = 3σ, then 99.7% of the

pulse area is contained in the interval [tk−1, tk]. This is the case normally considered for example
in NMR, as the approximation of (16) with a product of exponentials is acceptable if the pulses
are disjoint in time. In particular, a sequence XY of pulses (i.e. first a pulse along Y, then along
X) with σ1 = σ2 = 1, A1 = A2 = 1 and respectively centered at τ1 = 9 and τ2 = 3 implies that

ρ(t) = T exp

(∫ t

0

(

adu1(τ)A1
+ adu2(τ)A2

)

dτ

)

ρ(0)

≃ exp

(∫ t

0
adu1(τ)A1

dτ

)

exp

(∫ t

0
adu2(τ)A2

dτ

)

ρ(0) = eγ1adA1eγ2adA2ρ0
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In this case, the coordinate along the Z direction remains constantly zero also in the product of
exponentials coordinates. See Fig. 3 and Fig. 4 for the values of the time-varying parameters uj

and γj.
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Figure 3: Case II: u1 and u2 coordinates
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Figure 4: Case II: γ1, γ2 and γ3 coordinates

However, the Wei-Norman formula is a coordinate dependent expression and also the order in
which the basis elements are taken in (10) matters. For example, if instead of the XY sequence of
Fig. 3 and Fig. 4 we apply the same pulses but in the opposite order (YX: first along X then along
Y) then the result changes when represented in the basis ordering given by the cardinality, as in
(10) and (17). The time-evolutions of the γj in this case are represented in Fig. 6. As can be seen,
also the γ3 component becomes nonnull.

Obviously, when a constant magnetic field is applied along the Z direction, H splits into con-
stant and time-varying parts: −iH = ū3A3 + (u1(t)A1 + u2(t)A3), ū3 = const, and an interaction
representation has to be used to recover the results.

4.3 Hamiltonians from sequences of pulses: an outlook

The common way to reconstruct a time-varying Hamiltonian in NMR is through some form of
averaging directly on the truncation of expressions like our product of exponentials [5]. When
the method of this Section is applied to known sequences of pulses, i.e. to smooth time-varying
coordinate functions γj(t) in the product of exponentials (10), then it provides the time-depending
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Figure 5: Case II bis: u1 and u2 coordinates
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Figure 6: Case II bis: γ1, γ2 and γ3 coordinates

functional expression of the parameters uj(t), from which an averaged expression for the Hamilto-
nian could be easily attained, without resorting to truncations.

5 Conclusion

If two-level systems like those of Section 4 are simple enough that explicit solutions are available
[13, 15], the methodology presented here is general enough to describe realistic cases of laser-driven
molecules or tensor products of nuclear spins in rf fields. It could be used to simulate the exact
response of the systems to pulse shaping and for their coherent control.
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