
1

Homogeneous Polynomial Forms for

Simultaneous Stabilizability of Families of

Linear Control Systems: a Tensor Product

Approach
Claudio Altafini

SISSA-ISAS, International School for Advanced Studies

via Beirut 2-4, 34014 Trieste, Italy
altafini@sissa.it

keyword: Tensor Product, Homogeneous Polynomial Forms, Common Lyapunov Functions, Robust

Stabilizability.

Abstract

The paper uses the formalism of tensor products in order to deal with the problem of simultaneous

stabilizability of a family of linear control systems by means of Lyapunov functions which are homoge-

neous polynomial forms. While the feedback synthesis seems to be nonconvex, the simultaneous stability

by means of homogeneous polynomial forms of the uncontrollable modes yields (convex) necessary but

not sufficient conditions for simultaneous stabilizability.

I. I NTRODUCTION

For a linear system without inputs, an`-time tensor product of itsn-dimensional state space yields

a polynomial system homogeneous of degree`. See [5] for a survey of the use of tensor products

(or Kronecker products) in systems and control theory, and [2], [8], [22], [25] for a few more recent

applications in the robust stability analysis and robust control literature. The presentation as a “larger”

linear system provided by a tensor product suggests the introduction of homogeneous polynomial forms of

degree2` (hereafter denoted as2`-HP forms) as “quadratic forms” of the tensored state space, represented

by symmetric matrices of dimensionn`. These are of importance when thesimultaneous stabilityof a
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family of plants is investigated using a Common Lyapunov Function (CLF) for the entire family [4].

Such family may be thought of as the vertexes of a matrix polytope as in the robust stability problem,

see [1], or as the modes of a switching system, [16]. In this case, in fact, no sharp analytic criterion is

known, only sufficient conditions based on convex algorithmic procedures. Since Quadratic CLF (QCLF)

have the defect of giving conservative answers, various extensions have been investigated, like the use

of parametric or piecewise quadratic functions [25], the use of Homogeneous Polynomial Lyapunov

Functions (HPLF) [7], [24] or combinations of the two [2]. The search for a Common HPLF of degree

2` (hereafter2`-HPCLF) in these papers is based on the use of the power transformation method, a variant

of the tensor product introduced in the control literature by Brockett [6]. The use of HPLF is closely

related to the recent efforts to use positive polynomials in the form of sum of squares [12], [14], [15],

[17], [19], [21]. Adopting a tensor product or a power transformation basis leads to equivalent results in

terms of existence of CLF.

A tensor product representation of a linear system is linear in the degree` monomials, but it isat the

same timemultilinear in the original state vector. This coexistence of the two points of view makes the

extension to a linear system with inputs straightforward, as it corresponds to adding extra terms with

degree of homogeneitỳ− 1 in the state variables and linear in the input. The scope of this paper is

to use the tensor product formalism to deal with the problem ofsimultaneous stabilizabilityby means

of HP forms for families of linear systems with inputs. For a given pair(A, B), the uncontrollable

subspace must contain only asymptotically stable modes and can be characterized in terms of convex

cones inKerBT determined by the Lyapunov inequality [10]. If we haveN pairs (Ai, B), in order to

have simultaneous stabilizability and a CLF it is necessary that the correspondingN cones have nonnull

intersection. For quadratic stabilizability, this is equivalent to the existence of QCLF as well as to solving

the simultaneous synthesis problem [10]. This is not anymore true when quadratic forms are replaced by

HP forms of order2` > 2. The condition of nonempty intersection of the2`-HPLF cones inKerBT turns

out to benecessary but not sufficientfor simultaneous stabilizability by means of2`-HPCLF. While this

necessary condition for higher order stabilizability has a natural convex formulation, the same does not

seem to be true for the computation of2`-HPLF. We provide one possible (nonconvex) way of formulating

the synthesis problem via2`-HPLF. It gives an idea of the extra complications one encounters in this

construction: the equation for the feedback gain is obtained in implicit form. Rendering it explicit (i.e,

solving for the gain) implies imposing a number of bilinear constraints on the matrix representative of

the HP form of order2`.

Unlike the free dynamics case, systems with inputs are not discussed in the literature in terms of
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power transformations: here the multilinearity of the tensors is crucial in determining how the “extended

system” appears and is instrumental also in understanding the convexity in terms of2`-HP forms.

The state vector of aǹ-time tensored system has dimensionn`, hence its dimension grows exponen-

tially with `. However, due to the number of repeated monomials in a tensor, the true rate of growth

of independent quantities is only binomial. For a vector, essentially a power transformation is a tensor

product in which redundant entries are lumped together. Hence it contains all the information of a tensor

product but in a reduced dimension. While on the one hand the use of tensor products highlights the

multilinear structure and allows a deeper geometric insight into the problem under study (the necessary

condition based on2`-HPLF cones being one example), on the other hand for the purposes of effective

calculations it is convenient to resort to the corresponding dimension-reduced system given by the power

transformation. Especially if one considers the fact that several software tools are becoming available

that treat convex semidefinite programs for this last basis [20], [14], [13].

II. BASICS ON TENSOR PRODUCTS

For a complete survey of the properties of tensor products, we refer the reader to [11], [5]. Given the

matricesA = (aij) ∈ Mn = Rn×n, B = (bij) ∈ Mm, consider the tensor product

A⊗B =


a11B . . . a1nB

...
...

an1B . . . annB

 ∈ Mnm = Rnm×nm

and the tensor sum(A ⊕ B) = A ⊗ Im + In ⊗ B ∈ Mnm, whereIn is the identity matrix inMn (the

subindexn will be omitted when no confusion arises). Define apermutation matrixΦ(n, m) ∈ Mnm as

Φ(n, m) =
n∑

i=1

m∑
j=1

Eij ⊗ ET
ij =

[
ET

ij

]
1 6 i 6 n

1 6 j 6 m

with Eij ∈ Mn×m = Rn×m the elementary matrix having1 in the (i j)-th slot and zero elsewhere.

Then Φ(n, m)T = Φ(m, n). Using Φ: B ⊗ A = Φ(n, m) A ⊗ B Φ(n, m). We will use the notation

Φh,`−h = Φ(nh, n`−h) andΦ̃ = (I ⊗ . . .⊗ I + Φ1,`−1 + Φ2,`−2 + . . . + Φ`−1,1). While Φi,j is invertible,

Φ̃ is not.

Denotex̄ the`-time tensor product ofx ∈ Rn with itself: x̄ = x⊗x⊗. . .⊗x ∈ Rn⊗. . .⊗Rn = (Rn)⊗`.

Given

ẋ = Ax, A ∈ Mn, (1)

for x̄ one gets

˙̄x = Āx̄. (2)

June 10, 2006 DRAFT



4

whereĀ = A ⊕ . . . ⊕ A ∈ M⊗`
n . The extension of the tensor product formalism to systems with linear

inputs is straightforward and results in` terms of homogeneitỳ− 1 in x, one for each possible slot of

the control. Ifu ∈ Rm, given the linear control system

ẋ = Ax + Bu, A ∈ Mn, B ∈ Mn×m, (3)

then from (2) we obtain for̄x:

˙̄x =Āx̄ + (B ⊗ I . . .⊗ I) u⊗ x⊗ . . .⊗ x

+ . . . + (I . . .⊗ I ⊗B) x⊗ . . .⊗ x⊗ u

(4)

whereu⊗ x⊗ . . .⊗ x ∈ Rm ⊗ (Rn)⊗(`−1) and likewise for the other terms. In (4), the linear feedback

u = −Kx fits in a natural way, as it restores the homogeneity of order` in x in the tensored ODE. The

closed loop system is simply

˙̄x = (A−BK)⊕ . . .⊕ (A−BK) x̄ = (A−BK)x̄. (5)

The HP forms used in this paper are functionsV : (Rn)⊗` → R of the tensored variablēx. They are

always of even degree, as we make extensive use of “quadratic” type of representationsV (x̄) = x̄T Px̄

emphasizing the matrix representationP ∈ Mn` . In particular, whenP = P T > 0 thenV (x̄) is a sum

of squares and can be treated as a convex function inx̄. From dV (x̄)
dt = ∂V (x̄)

∂x ẋ = ∂V (x̄)
∂x̄

˙̄x, the total

derivative ofV (x̄) = x̄T Px̄ along (1) can be written as

V̇ (x̄) = x̄T
(
ĀT P + PĀ

)
x̄. (6)

III. S IMULTANEOUS STABILIZATION BY HPCLF

In the first two Subsections, single mode stabilizability and feedback synthesis via HPLF will be

discussed. HPCLF for simultaneous stabilizability will be treated in the third Subsection.

A. Stabilizability via HPLF

For the linear control system (3), stabilizability is well-known to be achievable only when the uncon-

trollable modes are already asymptotically stable, i.e., when the modes of (3) belonging to the nullspace

of BT are asymptotically stable. In fact, ifu = −Kx the Lyapunov inequality

(A−BK) Wq + Wq (A−BK)T < 0, (7)

Wq ∈ Mn, Wq = W T
q > 0, reduces to

xT
(
AWq + WqA

T
)
x < 0 ∀ x s.t. BT x = 0, (8)
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i.e., to the cone

C2
A =

{
Wq∈Mn s.t. Wq = W T

q > 0 andxT
(
AWq + WqA

T
)
x < 0,

∀ x ∈ Rn s.t. ‖x‖ = 1 andBT x = 0
}

.

Hence the system (3) is stabilizable if and only if the convex cone ofWq = W T
q > 0 that satisfy (8) is

nonempty. This is Theorem 1 in [10]. Expressed as an LMI, (8) is equivalent to the feasibility of(
B⊥

)T (
AWq + WqA

T
)
B⊥ < 0, Wq = W T

q > 0, (9)

whereB⊥ is the orthogonal complement ofB, i.e.,
(
B⊥)T

B = 0, rank[B⊥ B] = n, see [3],§7.2.1.

Although no improvement can be expected for (3), we want now to formulate the same problem for

a convex cone of HP forms of order2`, ` > 1. The key observation is that for the tensored system

(4) with the linear feedbacku = −Kx, the condition that the modes in the nullspace ofBT must be

asymptotically stable is still on place, while we can replace (8) with a larger LMI corresponding to

W ∈ Mn` . To understand this, it is enough to observe thatx̄ contains` copies of the state vectorx and

that

BT x = 0 ⇐⇒ BT ⊗ I ⊗ . . .⊗ I x̄ = 0

...

⇐⇒ I ⊗ . . .⊗ I ⊗BT x̄ = 0.

(10)

Hence, wheneverBT x = 0 the Lyapunov inequality

(A−BK)W + W (A−BK)
T

< 0, (11)

W ∈ Mn` , W = W T > 0, reduces to

x̄T
(
ĀW + WĀT

)
x̄ < 0 ∀ x s. t. BT x = 0, (12)

where now we can search forW on the larger convex cone:

C2`
A =

{
W ∈Mn` s.t. W = W T > 0 and x̄T

(
ĀW + WĀT

)
x̄ < 0,

∀ x ∈ Rn s.t. ‖x‖ = 1, BT x = 0
}

.

Clearly (8) and (12) admit solutions simultaneously. In fact,KerBT is the same and̄A is stable if and

only if A is.

An LMI test for nonemptiness ofC2`
A similar to (9) is:(

B⊥ ⊗ . . .⊗B⊥
)T(

ĀW +WĀT
)(

B⊥⊗ . . .⊗B⊥
)

< 0, (13)
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W = W T > 0. However, unlike the standard case, we do not have an “if and only if” condition between

(11) and (13): while nonemptiness ofC2
A corresponds to nonemptiness ofC2`

A , not all elements ofC2`
A

correspond to feedback controllers and hence satisfy (11).

Putting together all these results we have the following generalization of Theorem 1 of [10].

Proposition 1 For the system(3), the following facts are equivalent:

1) (A, B) stabilizable;

2) C2
A nonempty;

3) C2`
A nonempty∀ ` ∈ N;

4) the LMI (13) is feasible∀ ` ∈ N.

It is important to stress that (13) comes as a natural LMI formulation ofC2`
A , since it guarantees that

all terms containingB are canceled. Using a larger orthogonal complement would not specifyC2`
A any

better.

B. Stabilization via HPLF

Recall that the standard solution to the feedback stabilization of (3) based on QLF provides the

controller K = R−1BT Pq for somePq ∈ Mn, Pq = P T
q = W−1

q > 0, which also corresponds to

the optimal solution of some quadratic cost functional. In this case, one has the closed loop system

ẋ =
(
A−BR−1BT Pq

)
x with Lyapunov inequality(

A−BR−1BT Pq

)T
Pq + Pq

(
A−BR−1BT Pq

)
< 0. (14)

The following Proposition provides an explicit construction for a stabilizing feedback based on Lya-

punov functions which are HP of order2`. Consider the matrix̃P = P Φ̃ ∈ Mn` , whereP ∈ Mn` , P =

P T > 0, P such thatP−1 = W ∈ C2`
A . PartitionP̃ into blocks of dimensionsn×n, P̃ =

[
P̃ij

]
16i,j6n`−1

,

and impose on it the following linear constraints:

P s.t.

P̃iiB = P̃jjB ∀ 1 6 i, j 6 n`−1

P̃ijB = 0 ∀ 1 6 i, j 6 n`−1, i 6= j

. (15)

Notice thatP̃ T 6= P̃ but that P̃ T = Φ̃P . A matrix P > 0 satisfying (15) not always exists, depending

on B. When it does, we can use it to construct a feedback stabilizer.
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Proposition 2 Assume(A, B) stabilizable. Then, for someR ∈ Mm, R = RT > 0, if ∃ P ∈ Mn` , P =

P T > 0, such thatP−1 = W ∈ C2`
A and P̃ obeys(15), then the controlu = Kx with K = R−1BT P̃ T

11

is a stabilizing linear state feedback law for(3).

Proof The statement is true if the feedback gainK = R−1BT P̃ T
11 is such that the Lyapunov operator

for the closed loop system tensored into(A−BK)
T
P + P (A−BK) is negative definite for some

P ∈ Mn` , P = P T > 0, i.e., ∀ ȳ ∈ (Rn)⊗`, ȳ 6= 0

ȳT
(
(A−BK)

T
P + P (A−BK)

)
ȳ < 0. (16)

Using the permutation operatorsΦh,`−h and the identitiesΦh,`−hȳ = ȳ and ȳT Φh,`−h = ȳT , from (15)

one gets:

ȳT

(
(A−BR−1BT P̃ T

11)
T
P + P (A−BR−1BT P̃ T

11)
)

ȳ

= ȳT

(
ĀT P + PĀ−

(
P̃ (I ⊗ . . .⊗ I ⊗BR−1BT )P̃ T

)T

−P̃ (I ⊗ . . .⊗ I ⊗BR−1BT )P̃ T
)

ȳ.

(17)

If W = P−1 and x̄ = W−1ȳ, then (17) becomes:

x̄T
(
WĀT +ĀW− 2Φ̃

(
I⊗ . . .⊗ I ⊗BR−1BT

)
Φ̃

)
x̄. (18)

Now the Φ̃ are irrelevant sincẽΦx̄ = `x̄. When restricting toC2`
A , BT x = 0 and (12) holds. Then (18)

is a particular instance of the Finsler’s lemma (see [18], Lemma 4.1), implying that

WĀT + ĀW − 2`
(
I ⊗ . . .⊗ I ⊗BR−1BT

)
< 0 (19)

for a suitable choice ofR and forW such thatP obeys (15). But if (19) holds then (16) holds, and the

Proposition is proved.

Rather than really constructive in practice, Proposition 2 is useful to understant the extra difficulties

one encounters when dealing with HPLF. These are essentially due to the structured form (15) that HPLF

have to have, in order to obtainn`−1 copies of the same matrix feedback gainK, i.e., the same gain in
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all “copies” of the system in the tensored form:

I ⊗ . . .⊗ I ⊗K =


K 0 . . . 0

0 K
...

...

0 K



=


R−1BT P̃ T

11 0 . . . 0

0 R−1BT P̃ T
11

...
...

0 R−1BT P̃ T
11



=


R−1BT P̃ T

11 0 . . . 0

0 R−1BT P̃ T
22

...
...

0 R−1BT P̃ T
n`−1n`−1


so thatP̃ T can be extracted from the right, yielding the rightmost expression in (18)-(19). The use of

permutation matricesΦh,`−h is instrumental in obtaining an implicit form which is simple enough to be

solvable forK with the addition of only linear constraints.

Notice that while for quadratic stabilizability it is possible to set up a convex LMI problem directly

in (7) by simply replacingKWq with a new matrix variableS ∈ Mm×n and studying the feasibility of

the LMI

AWq + WqA
T −BS − ST BT < 0, (20)

for the stabilizability with2`-HP forms this is not anymore possible. In fact, (11) reformulated as in (17)

is a bilinear matrix inequality

WĀT + ĀW −
(
Φ̃ (I ⊗ . . .⊗ I ⊗BK) W

)T

− Φ̃ (I ⊗ . . .⊗ I ⊗BK) W < 0

where it is not possible to lump togetherK and W without additional bilinear constraints, because of

the block partitioned structure (15). If we call(I ⊗ . . .⊗ I ⊗K) W = S, S ∈ Mn`−1m×n` , then one

needs to carry along the bilinear constraintsKWij = Sij whereW = [Wij ]16i, j6n`−1 , Wij ∈ Mn and

S = [Sij ]16i, j6n`−1 , Sij ∈ Mm×n. Instead in the formulation of Proposition 2 the constraints are just

the linear constraints of (15).
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Once the feedback law has been inserted into the system, stabilizability can be verified by means of the

closed loop LMI (19) withP = W−1 obeying (15). However, we do not have yet a tractable algorithm

for the computation ofP since (19) is inW = P−1 while the constraints (15) are inP . Furthermore,

the lack of invertibility of Φ̃ means that it is not possible to re-express the constraints (15) in terms of

W . Sincex̄ = P ȳ, from (10), I ⊗ . . . ⊗ I ⊗ BT x̄ = 0 holds if and only ifI ⊗ . . . ⊗ I ⊗ BT P ȳ = 0.

Then to (17) the Finsler’s lemma is also applicable, same as (18), yielding the ARE-like quadratic matrix

inequality with linear constraints

ĀT P + PĀ− 2`P Φ̃(I ⊗ . . .⊗ I ⊗BR−1BT )Φ̃P < 0,

P subject to (15)
(21)

or its more “balanced” counterpart

ĀT P + PĀ− 2P (BR−1BT )P < 0, P subject to (15). (22)

As is well-known, (21) (or (22)) is not convex.

C. Simultaneous stabilizability

In this work all plants have the same input matrixB while the state update matrix isA(t) ∈

co{A1, . . . , AN}. Quadratic stabilizability is verified in [10] by means of the convex cone

C2
A1,...,AN

=
{
Wq ∈ C2

A1
∩ . . . ∩ C2

AN

}
.

C2
A1,...,AN

is nonempty when there exists a QCLF forA1, . . . , AN ∀ x such thatBT x = 0. The

corresponding feedback controller is given for example byK = R−1BT Pq whereR is such thatR−1 >

R−1
i , i = 1, . . . , N with Ri the solutions computed inC2

Ai
(recall that these whereKi = R−1

i BT Pq).

Likewise, for 2`-HP forms one can test whether the cone

C2`
A1,...,AN

=
{

W ∈ C2`
A1
∩ . . . ∩ C2`

AN

}
is nonempty, which corresponds to the simultaneous existence of a solution toN inequalities like (12):

∃ W ∈ Mn` , W = W T > 0 such that∀ i = 1, . . . , N

x̄T
(
ĀiW + WĀT

i

)
x̄ < 0, ∀ x s. t. BT x = 0. (23)

Definition 1 A family of linear systems defined by{A1, . . . AN} and B is

• simultaneously quadratically stabilizablevia linear state feedback if∃ Wq ∈ Mn, Wq = W T
q > 0

and K ∈ Mm×n such that∀ i = 1, . . . , N

(Ai −BK) Wq + Wq (Ai −BK)T < 0; (24)
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• simultaneously stabilizable by2`-HPCLF if ∃ W ∈ Mn` , W = W T > 0 and K ∈ Mm×n such that

∀ i = 1, . . . , N

(Ai −BK)W + W (Ai −BK)
T

< 0. (25)

The condition (23) is simply checked viaN simultaneous feasibility problems like (13) i.e.,(
B⊥⊗ . . .⊗B⊥

)T(
ĀiW +WĀT

i

)(
B⊥⊗ . . .⊗B⊥

)
< 0, (26)

i = 1, . . . , N . The condition (26) (or (23)) is what makes the qualitative difference with respect to the

quadratic case.

Proposition 3 The condition(26) (or (23)) is a necessary but not sufficient condition for simultaneous

stabilizability by2`-HPCLF of ({A1, . . . , AN}, B).

Proof Necessity of (23) is obvious: ifC2`
A1,...,AN

is empty then (25) is also unfeasible. That (23) is not

sufficient for2`-HPCLF stabilizability will be shown in Example 2.

When the set ofP such thatP̃ = P Φ̃ obeys (15),P−1 ∈ C2`
A1,...,AN

, is nontrivial, a controller

simultaneously stabilizing all the plants is given byK = R−1BT P̃ T
11 with R ∈ Mm, R = RT > 0, such

thatR−1 ≥ R−1
i , where theRi are entering into the corresponding solutions computed from Proposition 2

for each(Ai, B). The proof follows directly from Proposition 2 and from the proof of Theorem 3 in

[10].

Example 1 In correspondence of the interval state matrix and constant input matrix

A =


[0.1, 1] −1 −1

2 −1 [−2, 1]

1 1 1

 , B =


0

0

1

 , (27)

the simultaneous stabilizability must be checked for 4 vertex pairs(Ai, B). Each(Ai, B) is controllable,

but it is not possible to bring all systems simultaneously into controllable canonical form. The quadratic

test (24) gives a negative answer, while the test (26) with` = 2 provides a positive answer. Although

Proposition 2 fails to determine a feedback law, in this particular example it is very easy to find

(numerically) a simultaneously stabilizing linear gain, for exampleK =
[
−25 −10 50

]
. This gain

fails the test (25) with̀ = 2, 3 and W as unknown. Quite remarkably, so doesany other numerically

computed gain simultaneously stabilizing theAi.
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Example 2 Consider the pair of systems(Ai, B), i = 1, 2.

A1 =


10 0 0.1

1 0.3 1

1 1 1

 , A2 =


0 1 0

0 0 1

1 1 1

 , B =


0

0

1

 . (28)

Also in this case there is no QCLF, while the condition (26) with` = 2 is fulfilled. If the feedback

gain is K =
[
k1 k2 k3

]
, the characteristic polynomials of the two closed loop systems never fulfill

simultaneously the Routh-Hurwitz stability criterion for any value ofkj ∈ R, j = 1, 2, 3. Hence the two

systems are never simultaneously stabilizable.

From the previous (and similar) examples, it is not clear if the constructive method proposed in

Proposition 2 is more effective than quadratic synthesis. It is easily shown to be nonequivalent in the

following problem of simultaneous stabilization by output feedback.

Example 3 (simultaneous stabilization: state vs output feedback) The following pair of systems ([23])

A1 =


0 1 0

0 0 1

−1 −2 −3

 , A2 =


0 1 0

0 0 1

−2 −3 −1

 , B =


0

0

1

 . (29)

with output equation

z = Cx =
[
0 −1 1

]
x

is simultaneously quadratically stabilizable by state feedback, but not by (static) output feedback, i.e.

@ ko ∈ R andWq ∈ M3, Wq = W T
q > 0 such that

(Ai − koBC) Wq + Wq (Ai − koBC)T < 0, i = 1, 2.

It is easily found (e.g. by a numerical search) that instead it is stabilizable by means of output feedback

via a 4-HPCLF: ∃ a gainko ∈ R (e.g.ko = 0.1) and aW ∈ M9, W = W T > 0 such that

(Ai − koBC)W + W (Ai − koBC)
T

< 0, i = 1, 2.

Notice that Proposition 3 remains valid also for output feedback stabilization and that (26) with` = 2 is

satisfied. The solution can be obtained also by modifying the scheme developed in Section III-B. In this

case one has to add an extra constraint: sinceu = koz = koCx = Kx, the matrixP has to obey to yet

another structure equation. In the case of a quadratic LF this is

koC = R−1BT Pq,

June 10, 2006 DRAFT



12

yelding

Pq =


p11 p12 0

p12 p22 −p33

0 −p33 p33


which is never a CLF for the two closed loops. For the 4-HPCLF, instead, together with (15), the following

must be imposed

koC = R−1BT P̃ T
jj , j = 1, 2, 3,

yelding an extra number of linear constraints onP ∈ M9. The structured problem one obtains in this

way, however, admits a solution.

IV. REDUCING THE DIMENSION OF TENSOR PRODUCTS: POWER TRANSFORMATIONS

As ` increases, the number of repeated monomials inx̄ becomes dominant and makes the whole

machinery developed above inefficient even for problems of relatively low size. To reduce dimensions

and eliminate the redundancies in the state vector, it is possible to make use of the so-called power

transformations described in [6], [24]. In general, following [6], it is known that the number of linear

independent homogeneous polynomials of degree` in n variables is given byr =
(
n+`−1

`

)
= (n+`−1)!

n! `! .

Call x[`] the r-dimensional vector of the lexicographically ordered (and suitably normalized) monomials:√(
`
`1

)(
`−`1
`2

)
. . .

(`−`1−...−`n−1

`n

)
x`1

1 x`2
2 . . . x`n

n such that
∑n

i=1 `i = `, `i > 0. Thenx[`] contains the same

information of x̄ but without repeated entries. CallΛ ∈ Mr×n` the matrix mapping betweenx[`] and x̄.

Its elements are:

(Λ)jk =



1q
( `

`1
)(`−`1

`2
)...(`−`1−...−`n−1

`n
)

if


c(ki = 1) = `1

...

c(ki = n) = `n

0 otherwise

wherec =cardinality. ForΛ we have that

Λ† = ΛT (30)

and therefore thatΛΛT = Ir and x̄ = ΛT x[`]. The normalization chosen implies that the state vector

x[`] = Λx̄ is such that‖x[`]‖ = ‖x̄‖ = ‖x‖`. UsingΛ, (2) becomeṡx[`] = A[`]x
[`], with A[`] ∈ Mr×r the
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“extended matrix” given byA[`] = ΛĀΛT . The system with inputs (4) becomes:

ẋ[`] =A[`]x
[`] + Λ (B ⊗ I . . .⊗ I u⊗ x⊗ . . .⊗ x

+ . . . + I ⊗ . . .⊗ I ⊗B x⊗ . . .⊗ x⊗ u)
(31)

where the inputs terms are in general different from each other. With the feedbacku = −Kx, the closed

loop system (5) becomes:

ẋ[`] = A[`]x
[`] + ΛBKΛT x[`] = (A−BK)[`] x

[`]. (32)

It is known, see [9], that any polynomial which is a sum-of-squares admits a “quadratic” represen-

tation via Gram matrices. For homogeneous polynomials, a2`-HP form V (x̄) = x̄T Px̄ transforms into

V (x[`]) = x[`]T Πx[`] with Π ∈ Mr, Π = ΛPΛT . For positive definite forms we have:

• P > 0 =⇒ Π > 0

• Π > 0 =⇒ P > 0 .

The first expression follows fromΛ being full rank, the second fromr < n`. Hence, sum-of-squares in

x̄ are mapped to sum-of-squares inx[`]. Similarly, from (6), V̇ (x[`]) = x[`]T
(
AT

[`]Π + ΠA[`]

)
x[`] and

• ĀT P + PĀ < 0 =⇒ AT
[`]Π + ΠA[`] < 0

• AT
[`]Π + ΠA[`] < 0 =⇒ ĀT P + PĀ 6 0 .

It is therefore possible to re-express some of the conditions of the previous Section in terms of the power

transformation basis. For example, from (30),BT ⊗ I ⊗ . . .⊗ Ix̄ =
(
BT ⊗ I ⊗ . . .⊗ I

)
ΛT x[`], hence

(10) can be written as

BT x = 0 ⇐⇒ (Λ(B ⊗ I ⊗ . . .⊗ I))T x[`] = 0

...

⇐⇒ (Λ(I ⊗ . . .⊗ I ⊗B))T x[`] = 0.

(33)

Concerning the LMIs, ifΩ = Π−1, the expression (11) is replaced by

(A−BK)[`] Ω + Ω (A−BK)T
[`] < 0. (34)

The sufficient condition (13) can be replaced by(
B⊥, [`

)T (
A[`]Ω + ΩAT

[`]

)
B⊥, [` < 0 (35)

whereB⊥, [` = Λ
(
B⊥ ⊗ . . .⊗B⊥)

. Notice, however, that (35) isnot equivalent to (13), because the

power transformation reduces the “dimensional gap” between (34) and (35) yielding a necessary condition

weaker than (13).
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The formulation (32) does not simplify the feedback synthesis problem with respect to (5), as the

matrix describing the gainK in the power transformed basis still has a structured form, implying a

bilinear matrix inequality will still appear.
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