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Predictable dynamics of opinion forming for networks with

antagonistic interactions

Claudio Altafini and Gabriele Lini

Abstract—For communities of agents which are not necessar-
ily cooperating, distributed processes of opinion forming are

naturally represented by signed graphs, with positive edges
representing friendly and cooperative interactions and negative
edges the corresponding antagonistic counterpart. Unlike for
nonnegative graphs, the outcome of a dynamical system evolving
on a signed graph is not obvious and it is in general difficult to
characterize, even when the dynamics are linear. In this paper we
identify a significant class of signed graphs for which the linear
dynamics are however predictable and show many analogies with
positive dynamical systems. These cases correspond to adjacency
matrices that are eventually positive, for which the Perron-
Frobenius property still holds and implies the existence of an
invariant cone contained inside the positive orthant. As examples
of applications, we determine cases in which it is possible to
anticipate or impose unanimity of opinion in decision/voting
processes even in presence of stubborn agents, and show how it
is possible to extend the PageRank algorithm to include negative
links.

Index terms – Opinion dynamics; Signed graphs; Eventually

positive matrices; Perron-Frobenius theorem; Invariant Cones;

Social networks.

I. INTRODUCTION

A popular trend in the literature on networked control sys-

tems is the study of distributed dynamical models of opinion

forming on “social networks”, intended as communities of

interacting and reciprocally influencing agents [1], [2], [8],

[21], [22], [29], [45]. An implicit assumption in this literature

is that the agents collaborate to achieve a common goal.

This is however a limitation in many settings potentially of

interest. Think for example of contexts in which two or more

groups of agents compete with each other, like for instance in

models of competing business cartels, or in team sports, or in

a resource allocation scheme. More generally, think of social

networks in which each agent has a pattern of positive/negative

relationships with other agents, representing alliance/rivalry,

cooperation/competition, trust/distrust, etc. All these cases

lead to non-collaborative frameworks not captured by the

models conventionally used. In particular, if collaboration is

encoded as nonnegativity of the adjacency matrix of the graph,
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including non-collaborative interactions means resorting to

signed graphs [3], [16], [18], [37], [43], [44].

Assume our signed graphs are a tool through which a

community of agents expresses opinions on a subject. The

“opinion” could be intended as a vote on a subject, a decision

making process, a measure of reputation, or even a ranking of

the nodes. If the process of opinion forming is distributed, then

each node has to use the interactions with its first neighbors

to form its own opinion. Following [11], in this setting it

is reasonable to assume that positive interactions correspond

to positive influences in the opinion forming process, and

negative interactions to negative influences. In [3] we have

investigated what happens to the dynamics in the special case

of signed graphs which are structurally balanced [4], i.e., that

can be rendered nonnegative by a change of orthant order, like

in a monotone system [38].

In this paper we are interested in going beyond structural

balance, and understanding in which cases a dynamical system

on a signed graph can achieve an unanimous opinion, intended

as convergence to the first orthant of Rn (i.e., Rn
+) or to

its negation (Rn
−). For linear models, convergence to these

two orthants is naturally associated to the Perron-Frobenius

theorem, in which the eigenvector associated to the dominant

eigenvalue (the spectral radius) is positive and hence all

trajectories tend to align themselves along it. In fact, the

Perron-Frobenius condition is for example at the basis of the

literature on the consensus problem [27], [35], in which all

agents are asked to converge to the same value, hence to a

specific point in Rn
+ or Rn

−. Our concept of unanimity is more

flexible and asks only for a consensus on the signs of the

opinions, meaning that any state in Rn
+ or Rn

− still represents

an unanimous opinion (although some agents will be “more

convinced” than others).

In classical linear algebra, the Perron-Frobenius theorem is

formulated for entry-wise nonnegative matrices [5]. However,

in recent times, it has been shown that a Perron-Frobenius con-

dition holds also for a class of matrices having some negative

entries, called eventually positive matrices [32], [17], [33]. We

show in this paper that if a linear dynamics of opinion forming

is eventually positive, then the system achieves unanimity.

However, unlike for nonnegative adjacency matrices (or, more

generally, for positive systems [20]), Rn
+ is not invariant for

the dynamics.

In order to distinguish the concept we are interested in

this paper from the standard notion of orthant invariance,

we introduce the concept of holdability [31]. An orthant is

holdable if all trajectories are bound to enter it (or its negation)

after a transient, and then stay there forever. In practice, orthant

holdability is a form of “delayed” orthant invariance: there

always exist nonnegative initial conditions which transiently
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exit Rn
+, only to return in it at later times (and remain in

it thereafter). We show in the paper that eventual positivity

implies orthant holdability, and is equivalent to the existence

of an invariant cone sitting inside Rn
+, cone which cannot

coincide with Rn
+. The perspective of invariant linear systems

is very useful to understand other, more subtle, situations

such as what happens to the dynamics of opinion forming

in presence of stubborn agents. Stubborn agents are nodes

who can influence the other nodes but whose opinion in

unchangeable [22], [1], [21]. Using the theory of constrained

linear systems [7], the problem of preserving unanimity in

presence of stubborn agents can be rephrased as that of (cone)

invariance in presence of persistent constant disturbances [28].

A matrix is eventually positive if at a certain power it

becomes positive and stays positive for all higher powers

[26]. In discrete-time, this condition implies that a suitably

downsampled version of an eventually positive system is

positive, hence highlighting further the transient nature of

the effects of the negative edges in these systems. The case

in which the downsampled transition matrix is stochastic is

particularly interesting, because it implies that for the original

discrete-time system a probabilistic interpretation is lost, but

only transiently.

If holding to Rn
+ means achieving an unanimous opinion,

and corresponds to the existence of an invariant cone contained

in Rn
+, then a natural extension is an opinion which is holdable

but not unanimous, i.e., a system whose trajectories converge

to an invariant cone fully contained in one of the orthants of

Rn (or in its negation). This broaden considerably the range

of matrices for which the outcome of a process of opinion

forming is predictable to basically all matrices possessing an

invariant cone, a well studied problem in both linear algebra

[5] and control theory [7], [12], [19], [42]. We call this a

“signed” Perron-Frobenius condition.

Finally, although in the paper we adopt the terminology of

“opinion forming” for a distributed system, the methodology

is applicable also to any problem that can be formulated as

a distributed linear dynamical system on a signed graph. For

example one can replace “opinion forming” with “decision

making” or with “voting scheme” or even with “ranking”. As

an alternative example of application, in fact, we show how

it is possible to extend an algorithm like Google’s PageRank

[9], [10] in order to cope with negative links. In this context,

the entries of the adjacency matrix are hyperlinks, and it is

known that a consistent fraction of links can in principle

be classifiable as “negative” links (links from spamindexing,

cloaking and other “black hat” search engine optimization

practices). Several algorithms have already appeared in order

to cope with them [14], [13], [41]. None of these approaches

is similar to ours. A possible extension to negative ranking is

also shown.

The rest of this paper is organized as follows: in Section II

we review the linear-algebraic concepts needed later on and

establish a relationship between eventually positive matrices

and invariant cones; in Section III we investigate unanimity

of opinion dynamics, possibly in presence of stubborn agents,

while in Section IV we show how to design control laws

that achieve unanimity. The case of non-unanimous opinions

is treated in Section V. Finally in Section VI discrete-time

opinion dynamics is discussed and the application to PageRank

is developed in detail.

II. LINEAR ALGEBRAIC PRELIMINARIES

Given a matrix A = (aij) ∈ Rn×n, A ≥ 0 means aij ≥ 0
for any i, j ∈ 1, . . . , n, and A 6= 0, while A > 0 means

aij > 0 for all i, j = 1, . . . , n. The matrix A is called

nonnegative (resp. positive) if A ≥ 0 (resp. A > 0). This

notation is used also for vectors. The spectrum of A is denoted

sp(A) = {λ1(A), . . . , λn(A)}, where λi(A), i = 1, . . . , n,

are the eigenvalues of A, and the vector space generated by

its columns is span(A). The spectral radius of A, ρ(A), is

the smallest real positive number such that ρ(A) ≥ |λi(A)|,
∀i = 1, . . . , n. A matrix A ∈ Rn×n is said to be irreducible if

there does not exist a permutation matrix Π such that ΠTAΠ
is block triangular, that is

ΠTAΠ 6=

[

A11 A12

0 A22

]

,

where A11, A12 and A22 are nontrivial square matrices. We

say that A is asymptotically stable if Re[λi(A)] < 0 for any

i, and it is marginally stable if Re[λi(A)] ≤ 0 and λi(A)
such that Re[λi(A)] = 0 is a simple root of the minimal

polynomial of A. The directed graph whose adjacency matrix

is A is indicated Γ(A). It has an edge connecting the node j
to the node i if and only if aij 6= 0. We indicate adj(i) the

set of nodes adjacent to i: j ∈ adj(i) if and only if aij 6= 0.

Γ(A) is strongly connected if and only if A is irreducible.

A. Eventual positivity and Perron-Frobenius property

Definition 1 A matrix A ∈ Rn×n has the weak Perron-

Frobenius property if ρ(A) is a positive eigenvalue of A and

vr, the right eigenvector relative to ρ(A), is nonnegative.

Definition 2 A matrix A ∈ Rn×n has the strong Perron-

Frobenius property if ρ(A) is a simple positive eigenvalue of

A s.t. ρ(A) > |λ| for every λ ∈ sp(A), λ 6= ρ(A), and vr, the

right eigenvector relative to ρ(A), is positive.

Denote PFn (resp. WPFn) the set of matrices in Rn×n

that possess the strong (resp. weak) Perron-Frobenius prop-

erty. Although these properties are naturally associated with

nonnegative matrices, in recent times it has been shown that

they hold also for matrices with some negative entries, in

particular for the so-called eventually positive and eventually

nonnegative matrices [23], [26], [32], [17].

Definition 3 A real square matrix A is said to be eventually

positive (resp. eventually nonnegative) if ∃ ko ∈ N such that

Ak > 0 (resp. nonnilpotent and Ak ≥ 0) for all k ≥ k0.

The smallest integer ko of Definition 3 is called the power

index of A. Following [33], eventually positive (resp. even-

tually nonnegative) matrices will be denoted A
∨
> 0 (resp.

A
∨
≥ 0). Clearly, A

∨
> 0 implies A irreducible, while this is

not necessarily true for A
∨
≥ 0. Eventually positive matrices
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are a subclass of the eventually nonnegative ones for which

a necessary and sufficient condition for the fulfillment of the

strong Perron-Frobenius property is available.

Theorem 1 ([32], Theorem 2.2) For A ∈ Rn×n the following

are equivalent:

1) Both A, AT ∈ PFn;

2) A
∨
> 0;

3) AT
∨
> 0.

Example 1 The matrix

A =









0 0 0 39
0 0 92 9
0 117 0 −50
5 0 111 0









is such that A ∈ PFn but AT /∈ PFn. Therefore A 6
∨
> 0.

The eventual nonnegativity of (nonnilpotent) matrices is in-

stead a sufficient (but not necessary) condition for the weak

Perron-Frobenius property.

Theorem 2 ([32], Theorem 2.3) Given A ∈ Rn×n nonnilpo-

tent, if A
∨
≥ 0 then A, AT ∈ WPFn.

Notice that from Theorem 1 of [26], we have an easy test

of eventual positivity: A is eventually positive iff Ak > 0 and

Ak+1 > 0 for some positive integer k.

Lemma 1 Consider A
∨
> 0 and denote vr > 0 its right

eigenvector. Then any eigenvector v1 of A such that v1 > 0
must be a multiple of vr.

Proof. Assume A
∨
> 0 has two distinct eigenvectors vr > 0

and v1 > 0 for which v1 6= αvr, α ∈ R, i.e. ∃ λ1 ∈ sp(A),
λ1 6= ρ(A), such that Av1 = λ1v1. But then ∃ ko ∈ N such

that for k ≥ ko we have

Akvr = ρ(A)kvr

Akv1 = λk
1v1

which is a contradiction since Ak > 0 can have only one

positive eigenvector (see e.g. [5], Theorem 2.1.4).

Given A ≥ 0, the matrix

B = sI −A s > 0 , (1)

is called a Z-matrix. If in addition s ≥ ρ(A), then B is called

an M-matrix. In particular, an M-matrix B in which s > ρ(A)
is nonsingular and such that −B is asymptotically stable. If

instead s = ρ(A), B is a singular M-matrix. If in addition A
is irreducible, then −B is also marginally stable.

In correspondence of eventually nonnegative matrices we

have the following generalization of the class of M-matrices

[17].

Definition 4 A matrix B ∈ Rn×n is a M∨-matrix if it is of

the form B = sI −A with s ≥ ρ(A) and A
∨
≥ 0.

The M-matrices form a proper subset of the M∨-matrices.

However, an M∨-matrix need not be a Z-matrix, since it can

have some positive off-diagonal entries.

Theorem 3 ([33], Theorem 3.4) Let B ∈ Rn×n be an M∨-

matrix, i.e., B = sI −A with A
∨
≥ 0 and s ≥ ρ(A). Then

(i) s− ρ(A) ∈ sp(B);
(ii) Re[λi(B)] ≥ 0 ∀λi(B) ∈ sp(B);

(iii) det(B) ≥ 0 and B is singular if and only if s = ρ(A);
(iv) if A nonnilpotent, then ∃ eigenvector vr ≥ 0 of B and

an eigenvector vℓ ≥ 0 of BT corresponding to λ(B) =
s− ρ(A);

(v) if, in particular, A
∨
> 0 then in (iv) vr > 0, vℓ > 0;

(vi) if, in particular, A
∨
> 0 and s > ρ(A) then in (iv) vr > 0,

vℓ > 0, and in (ii) Re[λi(B)] > 0 ∀λi(B) ∈ sp(B).

In particular, if B is an irreducible M∨-matrix, then −B is

always at least marginally stable, and asymptotically stable if

and only if s > ρ(A).
Recall that a matrix A ∈ Rn×n is said exponentially positive

if eAt =
∑∞

k=0
Aktk

k! > 0 ∀ t ≥ 0, and that A is exponentially

positive if and only if A is essentially nonnegative, i.e., aij ≥ 0
∀ i 6= j [31].

Definition 5 A matrix A ∈ Rn×n is said eventually exponen-

tially positive if ∃ to ∈ [0, ∞) such that eAt > 0 ∀ t ≥ to.

We denote the smallest such to the exponential index of

A. The relationship between eventual positivity and eventual

exponential positivity is provided by Theorem 3.3 of [31],

recalled below for completeness.

Lemma 2 Given A ∈ Rn×n, ∃ d ≥ 0 such that A + dI
∨
> 0

if and only if A is eventually exponentially positive.

B. Invariant cones and eventually positive matrices

A set K ⊂ Rn is called a convex cone if α1x + α2y ∈ K
∀x, y ∈ K, α1, α2 ≥ 0. K is called solid if the interior

of K, int(K), is nonempty and pointed if K ∩ (−K) = ∅
(where we have indicated ∅ = {0}). A proper cone is a closed,

pointed, solid cone. A cone is polyhedral if it can be expressed

as the conical hull of a finite number of generating vectors

ω1, . . . , ωµ ∈ Rn:

K = cone(Ω) =

{

x =

µ
∑

i=1

αiωi, αi ≥ 0

}

, (2)

where Ω =
[

ω1 . . . ωµ

]

∈ Rn×µ, α =
[

α1 . . . αµ

]T
∈ Rµ

+.

Given A ∈ Rn×n, the cone K is said A-invariant if AK ⊆ K.

For an A-invariant cone K, A is said K-positive if A(K\∅) ⊆
int(K), i.e., A maps any nonzero element of K into int(K).
Notice that if A is K-positive then A is K-irreducible, i.e., it

does not leave any of the faces of K invariant (except for ∅
and K itself). Theorem 1.3.16 of [5] says that A that leaves

K invariant is K-irreducible if and only if A has exactly one

(up to scalar multiples) eigenvector in K, and this vector is in

int(K). Let K∗ = {y ∈ Rn s. t. yTx ≥ 0 ∀x ∈ K} be the



4

dual cone of K. Then A is K-positive if and only if AT is

K∗-positive [5].

The following theorem extends the Perron-Frobenius the-

orem to invariant cones (see e.g. Theorem 1.3.26 of [5], or

Theorem 3.3 of [42]).

Theorem 4 Given A ∈ Rn×n, the following are equivalent:

(i) ∃ a proper A-invariant cone K ∈ Rn for which A is

K-positive;

(ii) ρ(A) is a simple positive eigenvalue in sp(A), and for

each λ ∈ sp(A), λ 6= ρ(A), |λ| < ρ(A).

Furthermore, the right eigenvector vr relative to ρ(A) is vr ∈
int(K).

In the previous theorem, K can be taken to be polyhedral ([42],

Theorem 3.3).

The following theorem links eventually positive matrices

with invariant cones.

Theorem 5 A
∨
> 0 if and only if ∃ a proper polyhedral A-

invariant cone K such that K ⊂ int(Rn
+)∪∅, K∗ ⊂ int(Rn

+)∪
∅, and A is K-positive.

Proof. One implication is straightforward: if ∃ K such that

K ⊂ int(Rn
+) ∪ ∅ and such that A is K-positive, then,

from Theorem 4, ρ(A) is a simple positive eigenvalue strictly

dominating all other eigenvalues. Positivity of A on K im-

plies that the corresponding eigenvector vr ∈ int(K), hence

vr > 0. Since A is K-positive if and only if AT is K∗-

positive, the condition K∗ ⊂ int(Rn
+) ∪ ∅ implies that also

for vℓ, the left eigenvector of A relative to ρ(A), vℓ > 0.

Hence A, AT ∈ PFn and Theorem 1 applies. As for the

opposite implication, A
∨
> 0 implies A ∈ PFn and the right

eigenvector of A relative to ρ(A) is vr > 0. From Theorem 4,

∃ a proper cone K0 which is A-invariant and for which A
is K0-positive. Since vr ∈ int(K0), int(K0) ∩ int(Rn

+) 6= ∅,

although in general K0 6⊂Rn
+. Since K0 is polyhedral, it is

(finitely) generated by the nonnegative combinations of certain

µ0 vectors ω0
1 , . . . , ω

0
µ0

. Applying the linear operator A to

K0, then also K1 = AK0 must be finitely generated by a

number µ1 ≤ µ0 of vectors ω1
i = Aω0

i , i = 1, . . . , µ1.

A-invariance implies K1 = AK0 ⊆ K0, and, iterating,

Kp+1 = AKp = Ap+1K0 ⊆ ApK0 = Kp, i.e., each Kp is

A-invariant. The sequence of invariant subcones

K0 ⊇ K1 ⊇ . . . ⊇ Kp ⊇ . . . (3)

terminates at the “core” of K0: K∞ = ∩∞
i=0Ki. Ak > 0

for all k ≥ ko, hence, from Theorem 4.1 of [34], K∞ must

be the single ray vr. To show that for each Kp A is Kp-

positive, assume A is Kp−1-positive and Kp 6 ⊂ int(Kp−1).
This means that at least one of the µp−1 generators of Kp−1,

ωp−1
i = Ap−1ω0

i , i = 1, . . . , µp−1, is left invariant by A:

ωp
i = Aωp−1

i for some i. This however implies that ωp−1
i

must be a generator of Kq for all q ≥ p − 1, because

Aqωp−1
i = ωp−1

i . Since vr ∈ int(Kp−1), it must also be

ωp−1
i 6= vr. But now we have a contradiction, as K∞ cannot

contain any other vector than vr. A must therefore be Kp-

positive for each p and hence the sequence (3) must be nested

by strict inclusion. Since K∞ is a single ray, the sequence

(3) must be converging, with vr belonging to each Kp. Hence

there must exists an index po for which Kp ⊂ int(Rn
+) ∪ ∅

for all p ≥ po. An identical argument for K∗ leads to

K∗ ⊂ int(Rn
+) ∪ ∅.

By construction, the cone K of Theorem 5 contains no other

eigenvector of A than vr. It follows from the theorem that also

−K, for which −K ⊂ int(Rn
−) ∪ ∅, is an A-invariant cone,

and A is (−K)-positive. Similarly, K∗ is such that −K∗ ⊂
int(Rn

−) ∪ ∅ and AT is (−K∗)-positive.

The following corollary is a straightforward consequence of

Theorem 5.

Corollary 1 A
∨
> 0 but A 6≥ 0 implies that K of Theorem 5

cannot coincide with Rn
+.

If instead of A
∨
> 0 we have the weaker condition

A ∈ PFn, then Theorem 5 can be replaced by the following

corollary, whose proof is analogous to that of Theorem 5.

Corollary 2 A ∈ PFn if and only if ∃ a proper polyhedral

A-invariant cone K such that K ⊂ int(Rn
+) ∪ ∅ and A is

K-positive.

III. UNANIMITY OF OPINION

Consider a strongly connected signed digraph Γ(A) whose

adjacency matrix A = (aij) ∈ Rn×n is such that aii = 0.

We assume that a distributed process of opinion forming takes

place on Γ(A) through the associated linear dynamical system

ẋi = −σi xi +
∑

j∈adj(i)

aij xj , i = 1, . . . , n, (4)

where σi > 0, i = 1, . . . n, are called the degradation rates

of the interconnected system and represent forgetting factors

for the opinions. Denoting x = [x1, . . . , xn]
T ∈ Rn and Σ =

diag(σ1, . . . , σn), the system (4) is then written in matrix form

as

ẋ = Ex, E = A− Σ ∈ Rn×n. (5)

When aij ≥ 0 then the system (5) is said a cooperative (or

positive) system. We are here interested in the more general

case of A having some negative entries.

A. Predicting unanimous opinions via eventually positive ad-

jacency matrices

For eventually positive matrices the strong Perron-Frobenius

property can be used to predict the formation of unanimous

opinions. The following theorem highlights the role of the

spectral radius in this context.

Theorem 6 Consider the system (5), with A
∨
> 0.

(i) If σi ≥ ρ(A), ∀i = 1, . . . , n, and ∃ at least one σi such

that σi > ρ(A), then x∗ = limt→∞ x(t) = 0;

(ii) If σi = ρ(A), ∀i = 1, . . . , n, then x∗ = 1
vT
ℓ

vr
vTℓ xo vr,

where vℓ and vr are respectively the left and right
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eigenvector of A associated to ρ(A), and xo ∈ Rn the

initial condition;

(iii) If σi ≤ ρ(A), ∀i = 1, . . . , n, and ∃ at least one σi such

that σi < ρ(A), then x∗ = ±∞.

Proof. See Appendix.

B. Holdability and unanimity of an opinion

Recall (see e.g. [7]) that a set Y ⊂ Rn is said (positively)

invariant for a dynamical system

ẋ = f(x) (6)

if for any initial condition xo = x(0) ∈ Y its trajectories

x(t) ∈ Y ∀ t ≥ 0. A set Y ⊂ Rn is said instead attractive

for (6) if ∀xo ∈ Rn limt→∞ dist(x(t),Y) = 0 where

dist(x(t),Y) = infy∈Y ||x(t) − y||, with || · || any norm in

Rn. We will say further that an attractive set Y is holdable for

(6) if for any xo ∈ Rn ∃ to = to(xo) ≥ 0 such that x(t) ∈ Y
for t ≥ to. Notice that set attractivity and set holdability are

closely related concepts. However, since Y can be unbounded,

holdability does not imply convergence to an equilibrium point

nor to a bounded trajectory, hence we prefer to maintain a

distinct terminology. Notice further that as an invariant set

need not be attractive, Y invariant does not imply Y holdable.

As for the opposite implication, Y holdable does not imply Y
invariant: x can enter Y , exit it and reenter definitively at later

times.

Let S be the set of partial orthant orders in Rn: S =

{s =
[

s1 . . . sn
]T

, si = ±1}. Given s ∈ S, denote

S = diag(s) and let Rn
s be the corresponding orthant:

Rn
s = {x ∈ Rn s. t. Sx ≥ 0}. The wedge obtained joining

two “opposite” orthants is denoted Rn
{−s, s} = Rn

s ∪ Rn
−s. In

particular we indicate Rn
{−,+} = {x ∈ Rn s. t. x ≤ 0 or x ≥

0}. In this paper we are interested in systems that holds to

the orthant pair Rn
{−s, s}, i.e., such that for each xo ∈ Rn ∃

to = to(xo) ≥ 0 such that x(t) ∈ Rn
{−s, s} ∀ t ≥ to. When

s = 1 = [1 . . . 1]T we will also say that the system achieves an

unanimous opinion. In this case a system with the holdability

property is a generalization of a positive system, in which Rn
+

(or Rn
−) is not invariant for the system but still all trajectories

are attracted to it, after a transient excursion.

In the following we will link the notion of unanimity to

the existence of an invariant cone that holds to the positive

orthant. For that, let us recall the basic necessary and sufficient

condition for the existence of an invariant cone for linear

systems [6], [7], [12], [39], [40].

Proposition 1 ([12], Proposition 1) Consider the system (5).

The cone K = cone(Ω) is invariant for (5) if and only if ∃ an

essentially nonnegative matrix H ∈ Rµ×µ such that

EΩ = ΩH. (7)

The rationale of the proof of Proposition 1 is that by recur-

sively multiplying an expression like (7) to the right by E one

gets

EkΩ = E(Ek−1Ω) = EΩHk−1 = ΩHk

and hence, summing up,

eEtΩ = ΩeHt. (8)

When the invariant cone satisfies Theorem 5, then it can be

used to characterize unanimity. Notice that even if A
∨
> 0, a

system like (5) with E = A−Σ need not necessarily converge

to an unanimous opinion when Σ is not proportional to the

identity, because A
∨
> 0 6=⇒ E

∨
> 0. When this happens,

however, the system (5) holds to the orthant pair Rn
{−,+},

see also [31] for related material. A more general sufficient

condition is provided by the following theorem.

Theorem 7 Consider the system (5). If ∃ d ∈ R such that

A+D
∨
> 0, where D = dI − Σ, then the system (5) holds to

the orthant pair Rn
{−,+}.

Proof. Denote B = A +D
∨
> 0 of spectral radius ρ(B) and

of left and right eigenvectors vℓ > 0 and vr > 0. Since Σ =
dI −D,

E = A− Σ = B −D − dI +D = B − dI,

which implies that E must have λi(B) − d as eigenvalues.

In particular, then, ρ(B) − d (of multiplicity 1) must be the

eigenvalue of E of largest real part and vℓ > 0, vr > 0 its

left and right eigenvectors. Since B and dI commute, we can

write

eEt = eBte−dt, (9)

from which it follows that the system (5) converges to the

Perron-Frobenius eigenspace, x∗ ∈ span(vr), and in particular

x∗ ∈ int(Rn
+) ∪ ∅ if vTℓ xo > 0 and x∗ ∈ int(Rn

−) ∪ ∅ if

vTℓ xo < 0, with xo ∈ Rn the initial condition. Hence Rn
{−,+}

is an attractive set. From (9), the nonnegative scalar factor

e−dt does not change this conclusion (it only alters the value

of x∗ in span(vr)). Let us consider the case vTℓ xo > 0. Since

B
∨
> 0, from Theorem 5 ∃ a proper B-invariant polyhedral

cone K s. t. K ⊂ int(Rn
+) ∪ ∅ for which B is K-positive and

hence vr ∈ int(K). We will now show that the system (5)

is invariant with respect to this cone. If K = cone(Ω), with

Ω ∈ Rn×µ full row rank, by construction, B-invariance of

K implies ∃ HB ∈ Rµ×µ
+ such that BΩ = ΩHB . Therefore

(B − dI)Ω = Ω(HB − dI), or (7), with H = HB − dI an

essentially nonnegative matrix. From Proposition 1, the system

(5) is invariant on K. Since x∗ ∈ int(K) ∪ ∅ and also E is

K-positive, by continuity, each trajectory of (5) belongs to K
for times sufficiently long. In particular, for each xo ∈ Rn ∃
to = to(xo) such that x(t) ∈ K ∀ t ≥ to. Hence (5) holds

to Rn
+. For the case vTℓ xo < 0, the proof is analogous if one

considers the negated cone −K. From −K ⊂ int(Rn
−) ∪ ∅, in

this case we have that (5) holds to Rn
−.

The sufficient condition of Theorem 7 can be readily weak-

ened to a “one-sided” Perron-Frobenius property, although at

the practical cost of less efficient numerical tests (it is no

longer enough to compute powers of a matrix).
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Corollary 3 If ∃ d ∈ R such that A + D ∈ PFn, where

D = dI − Σ, then the system (5) holds to the orthant pair

Rn
{−,+}.

Proof. If B = A + D ∈ PFn then the right eigenvector vr
relative to ρ(B) is vr > 0 and, from Corollary 2, ∃ a proper

cone K contained in int(Rn
+) ∪ ∅ such that B is K-positive

and vr ∈ int(K). The proof that the system (5) is invariant

for this cone is identical to that of Theorem 7 and so is the

conclusion.

The sufficient condition of Corollary 3 is probably very

close to necessity, although it is not clear how to prove it.

Example 2 Consider the signed network whose adjacency

matrix is

A =





0 1.7877 −0.6743
−0.7678 0 0.7354
0.5878 0 0



 .

A is not eventually nonnegative; however, choosing D =

diag(0.2688, 1.002, 1.3272), the matrix B = A + D
∨
> 0.

As in the proof of Theorem 5, it is possible to construct a se-

quence of nested B-invariant polyhedral cones Kp = BKp−1

for which B is Kp-positive, starting from a K0 constructed

e.g. following the procedure described in [42]. In this case

Bp > 0 for p ≥ 19 and Kp ⊂ R3
+ only for p ≥ 19.

The sequence of Kp is shown in Fig. 1. The matrix B has

sp(B) = {1.5817, 0.5082± 1.3635i} and

vℓ =
[

0.1418 0.4373 0.8880
]T

vr =
[

0.3350 0.5378 0.7737
]T

.

Denoting Σ = dI −D, when d = ρ(B) we obtain that E is a

singular negated M∨-matrix and that the system (5) converges

to the ray determined by vr (visible in black in Fig. 1 inside

Kp). A trajectory of the system is also shown in Fig. 1 (blue

curve). Notice that x(0) > 0 6=⇒ x(t) > 0 ∀ t ≥ 0, i.e., R3
+

is not invariant, as expected. However, x(t) ∈ Kp for t large

enough, hence the system is R3
{−,+} holdable.

Example 3 The network considered in this example consists

of n = 100 agents connected through m = 1000 randomly

chosen edges, of which 162 are negative and 838 positive. In

spite of the large number of negative entries, Ak > 0 already

for k ≥ ko = 10. The three cases mentioned in Theorem 6 (in

correspondence of three different choices of Σ) are illustrated

in Fig. 2 for two different values of xo. In both panels (b)

and (c) the top plot corresponds to a nonsingular negated M∨-

matrix E and the middle plot to a singular negated M∨-matrix

E, while in the bottom plot E is not a negated M∨ matrix. In

this example R100
{−,+} is holdable even with d = 0 (E

∨
> 0 in

all 3 cases). In the top plots x∗ = 0 is approached from R100
+

(panel (b)) or from R100
− (panel (c)). In the middle plots, all

components of x∗ have the same sign. Similarly, in the bottom

plots they diverge all to +∞ or all to −∞. In all three cases

x∗ ∈ span(vr).

(a)

(b)

Fig. 1. Example 2. (a): 3D view. (b): top view of the same figure.

C. Cooperation need not preserve unanimity

Unlike for nonnegative matrices, the set PFn is not convex,

although by continuity each A ∈ PFn is at the center of a

pointed cone of matrices in PFn [26], cone whose width is

difficult to quantify. As a consequence, a convex combination

of eventually positive matrices need not be eventually positive

as the following example shows.

Example 4 Consider the convex combinations F = αB +

(1− α)B1, where 0 ≤ α ≤ 1, B
∨
> 0 is as in Example 2 and

B1 =





0.325 −1.169 0.411
0.242 0.357 0
0 0.001 0.938





∨
> 0.

As can be seen in Fig. 3, although there exists two cones

for B and for B1 both sitting inside int(R3
+) and ρ(F ) is

a simple positive strictly dominating eigenvalue for all α ∈
[0, 1], in correspondence of ρ(F ), vr and/or vℓ do not remain

nonnegative as α changes from 0 to 1. The color-code of Fig. 3

corresponds to F
∨
> 0 (green), F /∈ PF3 but FT /∈ PF3 or

viceversa (magenta), and F, FT /∈ PF3 (red).

In addition, we also have that even convex combinations of

eventually positive matrices and nonnegative matrices are not

necessarily eventually positive.
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Fig. 2. Example 3. In (a) the distribution of the nonzero edges of A is
shown. In (b) and (c), from top to bottom, the asymptotically stable case,
the marginally stable case and the unstable case are shown for two different
initial conditions.

Example 5 Let us consider again B
∨
> 0 of Example 2. If we

add to it

B2 =





0 0 0.8
0 0 0
0 2 0





then B + B2 is not eventually positive, although ρ(B + B2)
is a simple strictly dominating positive eigenvalue of vr > 0.

In this case B + B2 ∈ PF3, but (B +B2)
T /∈ PF3, i.e., vℓ

is not > 0. If instead of B2 we add

B3 =





0 0 2.3
0 0 0
0 2.5 0



 ,

then neither B +B3 nor (B +B3)
T is in PF3.

D. Achieving unanimity in presence of stubborn agents

According to [22], [1], [21], a stubborn agent is a node

whose opinion is not influenced by those of the other agents

but that can exercise on them an influence as any other

node. Denoting z the opinion of the stubborn agents and zo

(a)

(b)

Fig. 3. Example 4. The two cones for B and for B1 are shown, plus the
eigenvector vr corresponding to ρ(F ) for α = i/10, i = 0, 1, . . . , 10. vr
is shown in green when vr , vℓ > 0, in magenta when one of vr or vℓ is not
positive, and in red when both vr or vℓ are not positive. (a): 3D view. (b):
top view of the same figure.

their initial condition, then ”total stubbornness” corresponds

to z(t) = const = zo ∀ t ≥ 0. The continuous-time model

of a network with n ”ordinary” (i.e., influenceable) agents and

r totally stubborn agents is therefore

ẋ = Ex+ Cz (10)

ż = 0 (11)

where E = A − Σ is as in (5) and C ∈ Rn×r is the matrix

describing how the stubborn agents influence the susceptible

ones. The case studied in the literature [22], [21] corresponds

to A ≥ 0 and C ≥ 0. For it the problem of interest here,

achieving unanimity, is completely trivial, at least as long

as all zi have the same sign. When instead A and C are

signed matrices, understanding to what extent and how z can

influence unanimity is far from trivial.

In the following this problem is recast as a cone invariance

problem in presence of a persistent disturbance, which can

be solved following the approach proposed by [28]. Denote

Kz = cone(Ψ) a closed convex polyhedral cone containing

the opinions of the stubborn agents. Analogously to (2), Ψ ∈
Rr×η is a full row rank matrix whose columns represent the

generating vectors of the cone. A set Y is said a (positively)

Kz-invariant set for the system (10) if ∀ xo ∈ Y its trajectories

x(t) ∈ Y , ∀ z ∈ Kz and ∀ t ≥ 0.
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Proposition 2 ([28], Proposition 1) Consider the system (10)-

(11), where zo ∈ Kz = cone(Ψ). The E-invariant cone K =
cone(Ω) is Kz-invariant for the system (10) if and only if ∃
an essentially nonnegative matrix H ∈ Rµ×µ such that

EΩ = ΩH (12)

and ∃ a nonnegative matrix K ∈ Rµ×η such that

CΨ = ΩK. (13)

The proof of this Proposition is clearly inspired by Proposi-

tion 1 of [28], which however uses the dual (face) description

of a polytope. It is reported here only because several steps

are needed in the proof of the Theorem that follows. Proof.

Assume x(t) ∈ K ∀ zo ∈ Kz and ∀ t ≥ 0. Writing y =

[

x
z

]

,

then (10)-(11) become

ẏ =

[

E C
0 0

]

y = Fy. (14)

Let us consider the augmented cone for y:

Ky =

{

y =

[

Ω 0
0 Ψ

] [

α
β

]

, α ≥ 0, β ≥ 0

}

.

Since x ∈ K and z = zo ∈ Kz , by construction Ky is an F -

invariant cone for (10)-(11), hence from Proposition 1 ∃M ∈
R(µ+η)×(µ+η) essentially nonnegative such that

[

E C
0 0

] [

Ω 0
0 Ψ

]

=

[

Ω 0
0 Ψ

] [

M11 M12

M21 M22

]

, (15)

where M11 ∈ Rµ×µ, M22 ∈ Rη×η are essentially nonnegative

and M12 ∈ Rµ×η, M21 ∈ Rη×µ are nonnegative. Multiplying

and comparing:

EΩ = ΩM11

CΨ = ΩM12

M21 = 0

M22 = 0,

and (12)-(13) follow if we call H = M11 and K = M12.

As for the opposite implication, assume (12)-(13) hold. From

Proposition 1, (12) implies that ∃ an E-invariant cone K =
cone(Ω) and hence that (8) holds. Expanding the solution of

(10),

x(t) = eEtxo +

∫ t

0

eE(t−τ)Czodτ,

where any xo can be written as xo = Ωα for some α ≥ 0
and, since by construction zo ∈ Kz , also zo = Ψβ for some

β ≥ 0. Hence

x(t) = eEtΩα+

∫ t

0

eE(t−τ)CΨβdτ

= ΩeEtα+

∫ t

0

eE(t−τ)ΩKβdτ

= ΩeEtα+

∫ t

0

ΩeH(t−τ)Kβdτ,

where we have applied (8) and (13). Furthermore, since H
is essentially nonnegative and K ≥ 0, α′ = eEtα ≥ 0 and

β′ = eH(t−τ)Kβ ≥ 0, meaning that

x(t) = Ωα′ +Ω

∫ t

0

β′(τ)dτ ∈ K ∀ t ≥ 0

which concludes the proof.

We can now combine invariance and unanimity in presence

of stubborn agents.

Theorem 8 Consider the system (10)-(11) with E = A − Σ,

zo ∈ Kz , and assume ∃ d ∈ R such that B = A + D
∨
> 0,

where D = dI − Σ. Consider the corresponding B-invariant

polyhedral cone K for which B is K-positive. If ∃ k1 ∈ N s.t.

BkC ≥ 0 ∀ k > k1 then K is Kz-invariant and the system

(10) holds to the orthant pair R{+,−} ∀ zo ∈ Kz .

Proof. Rewriting (10)-(11) as in (14), and calling

FB =

[

B C
0 0

]

,

it can be observed that B
∨
> 0 and BkC ≥ 0 ∀ k > k1 imply

that ∃ k2 ≥ max(ko, k1) s.t.

F k
B =

[

Bk Bk−1C
0 0

]

≥ 0 ∀ k ≥ k2,

i.e. FB is eventually nonnegative. Since B is nonnilpotent,

and FB is block triangular, Theorem 2 applies, meaning that

in correspondence of ρ(FB) the right eigenvector has to be

nonnegative. Notice further that for any nonzero eigenvalue

of FB , λ(FB), the corresponding eigenvector v =

[

vx
vz

]

must

obey

Bvx + Cvz = λ(FB)vx

0 = λ(FB)vz

or vz = 0 and Bvx = λ(FB)vx, meaning that only the

eigenvalues of B matter and that the corresponding eigenvec-

tors are trivially extended to FB by adding zero components.

Since B
∨
> 0, from Theorem 1 ρ(B) is a simple strictly

dominating positive eigenvalue of eigenvector vx > 0. Hence,

from Theorem 4 ∃ a B-invariant cone K for which B is K-

positive and vx ∈ int(K). Furthermore, since ρ(FB) = ρ(B) is

also a simple strictly dominating positive eigenvalue for FB ,

then ∃ a cone Ky = cone

(

Ω 0
0 Ψ

)

which is FB-invariant,

although FB is not Ky-positive for it because of the triviality

of its last r rows. But then Proposition 1 holds for FB and,

given the essential nonnegativity of the M11 diagonal block,

also an analogue of (15) holds, in which we have replaced E
with B = E + dI . Proposition 2 is therefore valid and the

Kz-invariance of K follows. Finally, from Theorem 5, K can

always be chosen so that K ⊂ int(Rn
+) ∪ ∅, hence holdability

also follows.

Remark 1 Just like B
∨
> 0 6=⇒ E = B − dI

∨
> 0, so in

Theorem 8 BkC ≥ 0 6=⇒ EkC ≥ 0. As in the previous cases,

the role of d is to change the asymptotic value x∗ along the

eigenspace span(vx) to which the system converges.
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Example 6 Consider A of Example 2, and

Σ = diag(1.63, 0.9, 0.57), so that E is asymptotically

stable. If d = 1.9 then B
∨
> 0, hence ∃ an invariant cone

K that (perhaps after some iterations) lies inside R3
{+,−}.

Assume ∃ a single stubborn agent with coupling matrix given

by

C1 =





0
−1
2.6





and that Kz = cone(1), i.e., zo > 0. In this example, z is

influencing negatively x2 and positively x3, which makes it

difficult to assess a priori the sign of the evolution of x, given

the persistent nature of the excitation induced by z (without

it the system would instead converge to the origin). However,

Theorem 8 holds, hence K is Kz-invariant. A simulation for

this case is shown in Fig. 4 (a). If we replace C1 with

C2 =





−9
1.5
2





then Theorem 8 no longer holds and in fact unanimity is lost,

see Fig. 4 (b). As a matter of fact, since E is asymptotically
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Fig. 4. Example 6. (a): C1 coupling: unanimity is preserved in spite of the
stubborn agent. (b): C2 coupling: unanimity is not preserved in presence of
the stubborn agent.

stable, the asymptotic solution of (10) is simply

x∗ = −E−1Cizo,

which indeed confirms the values reported in the two cases of

Fig. 4.

IV. CONTROL PROBLEMS FOR UNANIMOUS OPINIONS

Let us consider a system of integrators on the signed graph

Γ(A)
ẋi = ui, i = 1, . . . , n. (16)

As before, we assume A ∈ Rn×n is such that aii = 0,

i = 1, . . . , n. Our task in this section is to design feedback

laws based on the state of the node and of its first neigh-

bors, ui = gi(xi, xj , j ∈ adj(i)), in order to achieve an

unanimous opinion. The system (16) with such a feedback

law is distributed with respect to the topology of Γ(A).
Unlike in Theorem 6, only nonzero, noninfinite steady states

are normally considered interesting control objectives. The

following is a direct consequence of Theorem 7.

Proposition 3 Consider the system (16) on the signed graph

Γ(A). If ∃ D = diag(d1, . . . , dn) such that A +D
∨
> 0 then

for any d ∈ R the system on Γ(A) with the feedback

ui = (di − d)xi +
∑

j∈adj(i)

aijxj , i = 1, . . . , n,

achieves an unanimous opinion. In particular, if d = ρ(A+D)
then

x∗ = lim
t→∞

x(t) =
vTℓ xovr

vTℓ vr
,

where vℓ and vr are left and right eigenvectors of A + D
relative to ρ(A+D).

Proof. Denoting Σ = dI −D, then the closed loop system is

identical to (5), and Theorem 7 applies. In particular, choosing

d = ρ(A+D), the closed loop matrix A+D−dI is a singular

negated M∨-matrix and the convergence to x∗ follows from

Theorem 3.

A. Consensus for eventually positive adjacency matrices

A standard special case of unanimity is given by the

consensus problem [35], in which all agents are required to

converge to the same value. Given a signed adjacency matrix

A ∈ Rn×n, let us define the Laplacian of A as the matrix

L ∈ Rn×n of entries

lik =

{ ∑

j∈adj(i) aij k = i

−aik k 6= i .
(17)

If we think of a distributed control problem on Γ(A) for the

system (16), then L can be intended as obtained by choosing

ui = −
∑

j∈adj(i) aij(xi − xj) [27], [35], or, in matrix form,

ẋ = −Lx . (18)

When Γ(A) is strongly connected and A ≥ 0, L is a singular

irreducible M-matrix and the 0 eigenvalue has multiplicity 1.

The associated right eigenvector is 1, i.e., x∗ ∈ span(1) is

a consensus value for (18). When A has negative entries, L
defined as in (17) can become unstable, as it is straightforward

to verify on examples. In this case, determining conditions

guaranteeing the marginal stability of (18) is a difficult task.

Assume first that global quantities such as the spectral

radius of A and its right eigenvector are known. Then it is

straightforward to obtain the following consensus feedback.

Proposition 4 For any A
∨
> 0 the system (18) with

L = ρ(A)Vr −AVr , (19)
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where ρ(A) is the spectral radius of A and Vr = diag(vr)
with vr > 0 the right eigenvector relative to ρ(A), is such

that

x∗ = lim
t→∞

x(t) =
vTℓ xo1

vTℓ 1
(20)

where vℓ is the left eigenvector of A relative to ρ(A).

Proof. From Theorem 1, A ∈ PFn, meaning that ρ(A)I−A is

a singular M∨-matrix. Therefore, from Theorem 3, ρ(A)I−A
has λ1(ρ(A)I − A) = 0 of right eigenvector vr > 0, and

Re[λi(ρ(A)I − A)] > 0 for i = 2, . . . , n. From vr = Vr1,

we can rewrite ρ(A)vr = Avr as ρ(A)Vr1 = AVr1. Since

vr > 0, Vr = diag(vr) is diagonal positive, hence also

L = ρ(A)Vr −AVr is a singular M∨-matrix with λ1(L) = 0
and Re[λi(L)] > 0 for i = 2, . . . , n. By construction, the

right eigenvector of L relative to 0 is now 1, meaning that

L solves the consensus problem. Convergence to the x∗ value

given in (20) follows from the Perron-Frobenius theorem, after

observing that, from Theorem 3, the left eigenvector of L
relative to 0 is the same vℓ as for A relative to its spectral

radius.

For L as in (19), the expression in coordinates for the

feedback is

ui = ρ(A)vr,ixi −
∑

j∈adj(i)

aijvr,jxj , i = 1, . . . , n,

from which the nonlocality of the law is evident, since each

node needs to know ρ(A) and vr. The following Theorem

provides a sufficient condition for the consensus problem of

(18) to be solvable in a distributed manner.

Theorem 9 Consider the signed graph Γ(A), and define

the diagonal matrix Σ = diag(σ1, . . . , σn), with σi =
∑

j∈adj(i) aij , i = 1, . . . , n. If ∃ a scalar d ≥ 0 such that

A+D
∨
> 0, where D = dI − Σ, then the matrix

L = Σ−A , (21)

is a singular M∨-matrix, the system (18) holds to Rn
{−,+} and

in particular it converges to

x∗ = lim
t→∞

x(t) =
vTℓ xo1

vTℓ 1
,

where vℓ is the left eigenvector of L relative to 0.

Proof. By construction, L1 = 0, i.e. 0 is an eigenvalue of L
with 1 the associated right eigenvector. Consider a nonnegative

scalar d and define the diagonal matrix D = dI − Σ. Letting

B = A+D, then (21) can be rewritten as

L = Σ−A = dI −D −B +D = dI −B .

From L1 = 0, it follows that

L1 = (dI −B)1 = d1−B1 = 0 ,

i.e., d is an eigenvalue of B with associated eigenvector 1.

Assuming now that B
∨
> 0, then, from Lemma 1, 1 must be

its only positive eigenvector and its associated eigenvalue must

be the spectral radius of B: ρ(B) = d. It follows therefore that

L = dI −B is a singular M∨-Matrix. From Theorem 3, then,

λ1(L) = 0 and Re[λi(L)] > 0 for i = 2, . . . , n, i.e., L solves

the consensus problem and converges to x∗. From Theorem 7

it also holds to R{−,+}.

Notice that in Theorem 9 it is not necessary that Σ ≥ 0,

i.e., the adjacency matrix can have negative row sums. Like-

wise, also D can have negative diagonal entries. It can even

happen that Σ and D have negative entries simultaneously, see

Example 7. Clearly, d ≥ maxi(σi) implies D ≥ 0.

Example 7 In correspondence of the following signed adja-

cency matrix:

A =













0 0 −0.25 −0.15 0.3
0 0 0 0 2
1 0.8 0 0 0
0.5 0 0.7 0 0
−0.1 0 0 0.2 0













we have Σ = diag(−0.1, 2, 1.8, 1.2, 0.1). Choosing d = 1.8
leads to D = diag(1.9, −0.2, 0, 0.6, 1.7), i.e., both Σ and

D have negative entries. A+D
∨
> 0 and L = Σ−A such that

λ1(L) = 0 and Re[λi(L)] > 0 for i = 2, . . . , 5.

B. Stubborn agents as controls

In this section we consider the following system, similar in

structure to (10):

ẋ = Ex+ Cu (22)

but in which the stubborn agents may have a time-varying

opinion u(t) ∈ Rr (i.e., they can be assimilated to control

inputs). Our aim is to understand to what extent the u(t) can

be used to impose unanimity of the x opinions.

A possible way to approach the problem is to make use of

the notion of (E, C)-invariance from the theory of constrained

linear control systems [15]. A cone K = cone(Ω) is said

(E, C)-invariant for a system like (22) if ∀xo ∈ K ∃ a

function u(t) ∈ Rr such that x(t) ∈ K ∀ t ≥ 0. A necessary

and sufficient condition for (E, C)-invariance is the following

proposition, adapted from [15] (see also [7], [30]).

Proposition 5 Consider the system (22) and a cone K =
cone(Ω), Ω ∈ Rn×µ. K is (E, C)-invariant for (22) if and

only if ∃ a matrix U ∈ Rr×µ and an essentially nonnegative

matrix H ∈ Rµ×µ such that

EΩ + CU = ΩH. (23)

Since the columns of Ω represent the generating vectors of

K, the interpretation of the condition (23) is that if at each

vertex ωi of K ∃ a value ui such that Exi + Cui ∈ K (sub-

tangentiality condition), then a time-varying u(t) rendering K
invariant for (22) can be found, and viceversa.

This condition, however, is incompatible with the scenario

of totally stubborn agents described in Section III-D. Even in

the case in which the same constant control can be used for all

vertices, without eventual positivity on E (or on B = E+dI),

unanimity cannot be guaranteed (see Example 8).
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If we assume further that the stubborn agents have full

information on the state x, then a feedback design u = Φ(x)
can be sought. The problem is then closely related to a

linear constraint feedback stabilization problem [7]. However,

understanding in which cases it is possible to achieve eventual

positivity through linear feedback remains an open question.

Example 8 Let us consider

E = A− Σ =





−0.969 0.143 1.7
−0.352 −1.182 0.2

0 0.268 0.09



 ,

and

C =





−0.11
0.36
0



 .

Notice that ∄ d ∈ R such that B = A + D
∨
> 0, where

D = dI − Σ. Consider as cone K = R3
+, which corresponds

to choosing Ω = I3. Then the (E, C)-invariance condition

(23) amounts to solvability on

E + C
[

u1 u2 u3

]

= H

for H essentially nonnegative. In this case, even a solution

with all equal ui exists: u1 = u2 = u3 = 0.98. However, if

we consider the ”open loop” system (22) with the constant

control u = u1, then unanimity is not preserved, even if

initial conditions are unanimous, see Fig. 5 (a). If instead we

implement a state feedback law, then holdability to R3
{+,−}

can be easily imposed. In this case, since ”subtangentiality”

[7] can be achieved by the same control at all vertices, a linear

state feedback is easily found: u = u1x. It can be checked that

E+u1C
[

1 1 1
]

+ dI
∨
> 0, where e.g. d = 1, although the

resulting closed-loop is unstable, see Fig. 5 (b).
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Fig. 5. Example 8. (a): The system (22) driven by the value u = u1

of the totally stubborn agent which fulfills Proposition 5 does not achieve
unanimity. (b): If instead of a constant u we use a state feedback u = u1x,
then holdability to R3

{+,−}
is obtained.

V. HOLDABLE BIPARTITE OPINIONS

Associated with s ∈ S is the following partial order

relationship for Rn vectors (indicated “≥s”): x1 ≥s x2 if

and only if Sx1 ≥ Sx2 where S = diag(s). Similarly:

x1 >s x2 if and only if Sx1 > Sx2. The change from standard

ordering (given by the partial order vector 1) to the partial

ordering given by any s is performed by what we call a gauge

transformation:

A → SAS , (24)

see [4] for the details. The effect of a similarity transformation

such as (24) is to change sign to all rows and columns for

which si = −1. It is possible to use the notion of gauge

transformation (24) to extend the results presented above from

predictable unanimous opinions to predictable non-unanimous

opinions.

Definition 6 A ∈ Rn×n has the signed strong Perron-

Frobenius property if the spectral radius ρ(A) is a real positive

eigenvalue of A that is strictly larger in modulus than any

other eigenvalue of A, and its right eigenvector vr is such

that vr,i 6= 0 ∀ i = 1, . . . , n.

Denoting SPFn the set of matrices in Rn×n possessing

the signed strong Perron-Frobenius property, then when both

A ∈ SPFn and AT ∈ SPFn and the components of vℓ and

vr have exactly the same sign pattern (or exactly the opposite

sign pattern) we have the following.

Proposition 6 Given A ∈ Rn×n, then the following are

equivalent:

1) A ∈ SPFn, AT ∈ SPFn, and the left and right eigen-

vectors of A are such that vℓ,ivr,i > 0 ∀ i = 1, . . . , n, or

vℓ,ivr,i < 0 ∀ i = 1, . . . , n;

2) ∃ s ∈ S such that SAS
∨
> 0, where S = diag(s).

Proof. The first condition implies that the right and left

eigenvectors of A associated to ρ(A) have the same sign

pattern1. This means ∃ s ∈ S such that vs,r = Svr > 0
and vs,ℓ = Svℓ > 0. But then from Avr = ρ(A)vr we can

write

SAvr = ρ(A)Svr

or, since S2 = I ,

SASvs,r = ρ(A)vs,r,

which implies that As = SAS ∈ PFn since sp(A) = sp(As)
and vs,r > 0 is the right eigenvector relative to the spectral

radius ρ(As). Analogously, AT
s ∈ PFn, hence from Theo-

rem 1, As

∨
> 0. The opposite implication follows by the same

argument.

Example 9 The matrix

A1 = SAS =









0 0 0 −39
0 0 −92 9
0 −117 0 50
−5 0 −111 0









1When they have exactly the opposite sign pattern, the argument is identical
up to a trivial modification.
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is the gauge transformation of Example 1, with s =
[

1 −1 1 −1
]

.

Checking the signed strong Perron-Frobenius property is

much more difficult that checking if A
∨
> 0. The problem is

equivalent to a MAX-CUT problem (or one of its equivalent

problems, see [24], [18] for an overview) and it is known to be

NP-hard. Proposition 6 suggests a possible algorithm, namely

checking if A is gauge equivalent to an eventually positive

matrix. As can be seen comparing Examples 1 and 9, normally

the rows and columns in correspondence of the −1 entries

of s have a negative sum, while in the gauge transformed

matrix these sums are positive. Notice that this rule of thumb

need not be strictly observed always (see Example 7 for

a counterexample). It however provides a useful heuristic

procedure for gauge transforming A into a matrix more likely

to be eventually positive. The following algorithm is inspired

by [24].

Algorithm 1: computing s ∈ S
Input: A, randomly chosen s ∈ S
Output: s
Procedure: S = diag(s)

As = SAS

compute φl = AT
s 1, φr = As1

while ∃ i ∈ {1, . . . , n} s.t. φl,i < 0 and φr,i < 0
si ← −si
As = SAS with S = diag(s)
compute φl = AT

s 1, φr = As1

The partial order s returned by Algorithm 1 is the gauge

transformation sought in Proposition 6. Since Algorithm 1 can

terminate in a local optimum, it is useful to run it repeatedly,

randomly changing the initial s ∈ S.

Theorem 10 Consider the system (5). If ∃ d ∈ R such that

Proposition 6 holds for A+D, where D = dI − Σ, then the

system (5) holds to the orthant pair Rn
{−s, s} for some s ∈ S.

Proof. Denote B = A + D ∈ SPFn, BT ∈ SPFn, with

identical sign pattern for vℓ and vr. Then, from Proposition 6,

∃ s ∈ S such that Bs = SBS
∨
> 0, S = diag(s). From

Theorem 7, calling z = Sx, the system

ż = −S(Σ−A)Sz = −(dI −Bs)z (25)

holds to the orthant pair Rn
{−,+}, which implies that x = Sz

must hold to Rn
{−s, s}.

Example 10 Large scale example similar to Example 3: n =
100 agents connected through m = 1000 randomly chosen

edges, of which 527 are negative and 473 positive. The 3

cases shown in Fig. 6 are qualitatively analogous to those of

Fig. 2. In all 3 cases the system holds to Rn
{−s,s} for some

s ∈ S.

Analogously to Corollary 3, the sufficient condition of the

previous Theorem can be weakened to a “one-side” signed
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Fig. 6. Example 10. In (a) the distribution of the nonzero edges of A is shown.
In (b), from top to bottom, the asymptotically stable case, the marginally stable
case and the unstable case are shown.

Perron-Frobenius condition, and reformulated in terms of

invariant cones fully contained in one of the orthants of Rn.

Corollary 4 Consider the system (5). If ∃ d ∈ R such that

for D = dI − Σ, A +D ∈ SPF , then the system (5) holds

to the orthant pair Rn
{−s, s} for some s ∈ S.

Proof. The proof is straightforward, from Corollary 2, and the

proof of Corollary 3.

VI. ACHIEVING UNANIMITY IN DISCRETE-TIME SYSTEMS

In general, a linear discrete-time distributed process of

opinion forming will be given by the system

x(k + 1) = Wx(k), W = ∆+ F, (26)

where we assume F off-diagonal and ∆ = diag(δ1, . . . , δn),
δi > 0, i.e., nodes never change their opinions only based

on their current state. The analogous of Theorem 6 is the

following theorem, whose proof is omitted as it follows the

same steps of its continuous-time counterpart.
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Theorem 11 Consider the system (26), with F
∨
> 0.

(i) If δi ≤ 1 − ρ(F ), ∀i = 1, . . . , n, and ∃ at least one δi
such that δi < 1− ρ(F ), then x∗ = limk→∞ x(k) = 0;

(ii) If δi = 1 − ρ(F ), ∀i = 1, . . . , n, then x∗ =
1

vT
ℓ

vr
vTℓ xo vr, where vℓ and vr are respectively the left

and right eigenvector of F associated to ρ(F ), and

xo ∈ Rn the initial condition;

(iii) If δi ≥ 1 − ρ(F ), ∀i = 1, . . . , n, and ∃ at least one δi
such that δi > 1− ρ(F ), then x∗ = ±∞.

A. Holdability of an opinion

Theorem 12 Consider the system (26), with W = ∆ + F ,

∆ = diag(δ1, . . . , δn), δi > 0. If ∃ d ≥ 0 such that F+D
∨
> 0,

where D = ∆− dI , then the system (26) holds to Rn
{−,+}.

Proof. Calling G = F +D, let us write W as

W = ∆+ F = dI +D + F = dI +G.

Since G
∨
> 0, ρ(G) is a strictly dominating positive real

eigenvalue of G. If vℓ > 0 and vr > 0 are its left and right

eigenvectors, then d > 0 implies that W must have d+ ρ(G)
as eigenvalue of largest modulus, with the same vℓ and vr as

eigenvectors. It follows therefore that W, WT ∈ PFn and,

from Theorem 1, that W
∨
> 0. Hence

lim
k→∞

(dI +G)k / (d+ ρ(G))k = vrv
T
ℓ /v

T
ℓ vr

and

x∗ = lim
k→∞

x(k) = vTℓ xovr/v
T
ℓ vr. (27)

If vTℓ xo > 0 then x∗ ∈ int(Rn
+) ∪ ∅, while if vTℓ xo < 0

then x∗ ∈ int(Rn
−) ∪ ∅. Assuming we are in the first case,

from Theorem 4, W
∨
> 0 implies that ∃ a W -invariant convex

cone K = cone(Ω), Ω ∈ Rn×µ full row rank, such that K ⊂
int(Rn

+)∪∅ and for which W is K-positive. Recalling that for

discrete-time systems such as (26) a necessary and sufficient

condition for invariance is the existence of H ∈ Rµ×µ
+ such

that WΩ = ΩH [19], the proof is now analogous to that of

Theorem 7.

B. Recovering positivity through (down)sampling

The following theorem says that whenever a continuous-

time system has the eventual positivity property, then provided

the sampling time is sufficiently long, it admits an exact

discretization in which the contribution of the negative entries

has disappeared.

Theorem 13 Consider the continuous-time system (5), with

E = A − Σ. Assume ∃ d ∈ R such that A +D
∨
> 0, where

D = dI − Σ. Then ∃ a sampling time τo > 0 such that for

τ ≥ τo the discretized system

z(k + 1) = Fz(k) (28)

where z(k) = x(τk) and F = eτE , is such that F > 0. The

system (28) holds to the orthant pair R{−,+}.

Proof. From Lemma 2, B = A + D
∨
> 0 implies that E =

B− dI is eventually exponentially positive, i.e., that eτE > 0
∀ τ ≥ τo, where τo is the exponential index of E.

Clearly F > 0 implies that the discretized system (28) is

not distributed, as it evolves on a fully connected graph, not

on the original Γ(A).
An analogous downsampling is possible for the system (26),

when W
∨
> 0.

C. A special case: eventually stochastic matrices

A common use of discrete-time nonnegative systems is as

transition probabilities in Markov chains [36]. In this case

W ≥ 0 is chosen to be a stochastic matrix. A matrix W is

column stochastic if 1
TW = 1

T , 0 ≤ wij ≤ 1, meaning that

1 is a left eigenvector associated to ρ(W ) = 1. Analogously,

W is row stochastic if W1 = 1, 0 ≤ wij ≤ 1, and doubly

stochastic if it is both row and column stochastic.

Definition 7 A matrix W is said eventually column (resp.

row) stochastic if W
∨
> 0 and 1

TW = 1
T (resp. W1 = 1).

It is said eventually doubly stochastic if it is both eventually

row and column stochastic.

Lemma 3 If W is eventually row (or column) stochastic, then

ρ(W ) = 1 is a positive eigenvalue of W .

Proof. From Theorem 1, W, WT ∈ PFn, hence ρ(W ) is

a positive eigenvalue of positive left and right eigenvectors

vℓ and vr. Lemma 1 implies that for W
∨
> 0, the positive

eigenvectors must be unique up to a scalar constant, hence

it must be vr = α1 if W is eventually row stochastic (or

vℓ = α1 if W is eventually column stochastic), α ∈ R. It

follows that ρ(W ) = 1.

Clearly when W is not nonnegative then any probabilistic

interpretation associated to the state in (26) is lost. However,

since W k > 0 for k ≥ ko, any sufficiently long downsampling

of the system (26) can still be considered a well-posed

transition matrix, provided W is eventually stochastic.

D. Application: PageRank with negative links

PageRank, the algorithm at the basis of Google search

engine provides a measure of importance of web pages based

on the number of incoming hyperlinks from other web pages

and based on the importance that these other web pages

have. It relies on computing the dominant eigenvector of

a stochastic matrix of hyperlinks. As long as only positive

links are considered, all components of the Perron-Frobenius

eigenvector are nonnegative and represent probabilities, hence

can be used as a measure of authority and provide a ranking

of the web pages.

Let Q ∈ Rn×n be the signed adjacency matrix of weblinks,

qij = {−1, 0, +1}. To deal with negative edges, call pj and

nj the number of outgoing positive and negative links at node

j = 1, . . . , n. We assume for the sake of simplicity that cj =
pj − nj =

∑

i qij 6= 0 ∀ j = 1, . . . , n (which implies that
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pj + nj 6= 0 ∀j, i.e., that there are no dangling nodes [25])2.

The normalized signed adjacency matrix is then A ∈ Rn×n of

entries

aij =

{

sgn(qij)
cj

if j ∈ adj(i)

0 otherwise.

By construction, then, 1TA = 1 and 1 is an eigenvalue of

A. Since A need not be strongly connected, the condition of

eventual positivity cannot be applied in this context, although

eventual nonnegativity can. If A
∨
≥ 0, then the spectral radius

ρ(A) is a positive eigenvalue, although it may not strictly

dominate all other eigenvalues of A. Following the procedure

described e.g. in [10], [25], let us consider the modified matrix

W = (1−m)A+
m

n
11

T , m ∈ (0, 1). (29)

Similarly to the nonnegative case, it is possible to use (29) to

compute the PageRank eigenvector x∗, via the power method

on the modified problem

x(k + 1) = Wx(k) =
(

(1−m)A+
m

n
11

T
)

x(k). (30)

Proposition 7 If A
∨
≥ 0 then WT ∈ PFn ∀m ∈ (0, 1).

Proof. Since by construction 1 is a left eigenvector of A, A
and W differ by a rank-1 matrix multiple of this eigenvector,

hence Theorem 2.10 of [32] applies, which implies ρ(W ) >
ρ(A) > 0. Since 1 is a left eigenvector also for W , the claim

follows.

In spite of Proposition 7, A
∨
≥ 0 6=⇒W

∨
≥ 0, as Example 5

shows. Clearly, if min(cj) >
m

(1−m)n then W > 0, i.e., small

fractions of negative links are irrelevant and disappear in the

power iteration (30). If W 6> 0 but W
∨
> 0, then we have the

following.

Theorem 14 If W
∨
> 0, and x(0) obeys

0 ≤ xi(0) ≤ 1, 1
Tx(0) = 1, (31)

then the system (30) holds to Rn
+ and converges to a x∗ such

that 0 ≤ x∗
i ≤ 1, 1Tx∗ = 1.

Proof. From 1
TA = 1, one has

1
TW = (1−m)1TA+

m

n
1
T
11

T = (1−m)1T +m1
T = 1

T

i.e., W is an eventually column stochastic matrix. Therefore,

from Lemma 3, ρ(W ) = 1, and 1
Tx(k + 1) = 1

TWx(k) =
1
Tx(k), i.e., 1Tx(k) = 1 ∀ k when (31) holds. Holdability to

Rn
+ follows from Theorem 12 with d = 0.

Notice that even if x(0) ≥ 0 and x∗ ≥ 0, x(k) may have

negative entries during the transient. Introducing a discrete-

time analogue of Corollary 4, it is possible to extend the

method to “signed ranking” (i.e., to include negative repu-

tations in the final ranks).

2Notice that the degenerate cases cj = 0 could be also easily bypassed by
weighting unevenly positive and negative edges.

Proposition 8 Assume W ∈ SPFn and that x(0) obeys (31).

Then the system (30) holds to Rn
{−s,s} for some s ∈ S,

and converges to a x∗ such that 1Tx∗ = 1 and sgn(x∗) =
±sgn(s).

Proof. The first part follows from Corollary 4. The second part

from an expression like (27) in which vℓ = 1 and vTℓ xo = 1,

meaning that x∗ = vr/1
Tvr.

VII. CONCLUSION

Being able to predict or influence the outcome of an opinion

forming process is an important problem in social network

theory. However, even for linear dynamics, this becomes a

difficult task as soon as non-cooperative interactions are taken

into account (understanding the cooperative case, on the con-

trary, is trivial). In this paper we have shown how the Perron-

Frobenius theorem can be used for this task also beyond its

standard formulation for cooperative systems. In particular we

have shown how it is possible to associate the achievement

of holdable opinions with the existence of invariant cones,

and the achievement of holdable unanimous opinions with

invariant cones properly contained in the positive orthant.

These cases correspond to signed adjacency matrices having

the eventual positivity property, i.e., such that in sufficiently

high powers all negative entries have disappeared. For them

the effect of the negative influences is only transient and does

not alter the asymptotic behavior of the system. However,

unlike e.g. structural balance, eventual positivity is not a

graphical property obeyed by all signed graphs having the

same sign pattern. It is on the contrary dependent on the

numerical entries of the adjacency matrix, and this is reflected

by the lack of convexity of the set of eventually positive

matrices, as shown in our examples. Nevertheless, the eventual

positive characterization and its geometric interpretation are

useful to disentangle the behavior of dynamical networks

having antagonistic interactions. The perspective of invariant

cones is useful also to understand how a network behaves in

presence of stubborn agents, and how these last may provide

an opportunity for control of opinion dynamics on networks.

Finally, we expect that also more realistic opinion dynamics

models such as for example gossip and other randomized

strategies [37] will show similar properties.
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APPENDIX

Proof of Theorem 6

From Theorem 1, since A ∈ PFn, its spectral radius ρ(A) is

a simple real positive eigenvalue of A with positive left and

right eigenvectors vℓ and vr, and these are the only positive

eigenvectors of A. Defining the diagonal matrix Ξ = Σ −
ρ(A)I , then it is possible to rewrite the matrix E as follows

E = A− Ξ− ρ(A)I.
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Consider the case σi ≥ ρ(A), ∀i = 1, . . . , n, with

σi > ρ(A) for at least an index i. Then E is given by

the sum of the singular negated M∨-matrix A − ρ(A)I and

of the nonpositive diagonal matrix −Ξ. From Theorem 3,

Re[λi(ρ(A)I − A)] ≥ 0, and λ1(ρ(A)I − A) = 0 has

multiplicity 1. Since Re[λi(Ξ)] ≥ 0, it must be

Re[λi(E)] ≤ Re[λi(A− ρ(A)I)] ≤ 0.

The only possibility for E to be singular is that Ξ and

A − ρ(A)I have both 0 as eigenvalue with the same eigen-

vector, i.e. that Ker(A − ρ(A)I)
⋂

Ker(Ξ) 6= ∅. But since

Ker(A− ρ(A)I) = span(vr) and vr > 0, it must be Ξvr 6= 0
always when Ξ has at least a positive diagonal entry. Hence

Re[λi(E)] < 0, i = 1, . . . , n, and E is asymptotically stable.

If σi = ρ(A), ∀i = 1, . . . , n, then Ξ = 0 and E =
A − ρ(A)I is a singular negated M∨-matrix, for which the

following relations hold

Evr = (A− ρ(A)I)vr = Avr − ρ(A)vr = 0,

and

vTℓ E = vTℓ (A− ρ(A)I) = vTℓ A− vTℓ ρ(A) = 0 .

Then 0 is a simple eigenvalue of E with associated left and

right eigenvectors vℓ and vr respectively. From Theorem 3, all

the other eigenvalues of E are such that Re[λi(E)] < 0, for

i = 2, . . . , n, meaning that E is marginally stable. It follows

that

x∗ = lim
t→+∞

x(t) = lim
t→+∞

eEtxo =
1

vTℓ vr
vTℓ xovr ,

and the second item of the theorem is proved.

Finally, if σi ≤ ρ(A), ∀i = 1, . . . , n, and ∃ at least one σi

such that σi < ρ(A), then the matrix Ξ = diag(ξ1, . . . , ξn) =
diag(σ1 − ρ(A), . . . , σn − ρ(A)) is nonzero and nonpositive.

Consider the projection of the dynamics (5) on the left

eigenspace of ρ(A):

d

dt
〈vℓ, x〉 = 〈vℓ, ẋ〉 = vTℓ (A− Ξ− ρ(A)I)x

= −vTℓ Ξx = −
[

vℓ,1ξ1 . . . vℓ,nξn
]

x.

Since vℓ > 0, ξi ≤ 0 and ξi < 0 for at least an index i, when

x ∈ int(Rn
+) we have:

〈vℓ, ẋ〉 = −
n
∑

i=1

vℓ,iξixi > 0,

meaning that the projection grows unbounded, i.e., that the

system (5) must be unstable.
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