A system-level approach for deciphering the transcriptional response to prion infection

Mattia Zampieri1,2, Giuseppe Legname2, Daniel Segrè3,4 and Claudio Altafini2,∗∗

1 Institute of Molecular Systems Biology, ETH, Wolfgang-Pauli-Str. 16, 8093 Zurich, Switzerland
2 SISSA, Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
3 Bioinformatics Program, Boston University, 24 Cummingston St., Boston, MA 02215, USA
4 Department of Biology and Department of Biomedical Engineering, Boston University, 44 Cummingston St., Boston, MA 02215, USA

ABSTRACT

\textbf{Motivation:} Deciphering the response of a complex biological system to an insulting event, at the gene expression level, requires adopting theoretical models that are more sophisticated than a one-to-one comparison (i.e. t-test). Here, we investigate the ability of a novel reverse engineering approach ("System Response Inference") to unveil non-obvious transcriptional signatures of the system response induced by prion infection.

\textbf{Results:} To this end, we analyze previously published gene expression data, from which we extrapolate a putative full-scale model of transcriptional gene-gene dependencies in the mouse central nervous system. Then, we use this nominal model to interpret the gene-expression changes caused by prion replication, aiming at selecting the genes primarily influenced by this perturbation. Our method sheds light on the mode of action of prions by identifying key transcripts that are the most likely to be responsible for the overall transcriptional rearrangement from a nominal regulatory network. As a first result of our inference we have been able to predict known targets of prions (i.e. PrPC) and to unveil the potential role of previously unsuspected genes.

\textbf{Contact:} altafini@sissa.it

1 INTRODUCTION

A major challenge in Systems Biology is to provide a global and quantitative understanding of complex diseases by means of high-throughput technologies. In a system level approach, the synergistic response dictated by the cooperation and interplay of all the components within an organism is considered as a fundamental concept in the interpretation of "omics" data. Recent efforts employ model-driven analysis and transcriptomic data for studying neurodegenerative diseases (Benetti \textit{et al.}, 2010). However, while DNA microarrays have been extensively used to comprehensively characterize the differentially expressed genes (DEGs), the application of more sophisticated models, working beyond simple differential expression detection, is still an open challenge (Fig. 1). To this end, the ability of reverse engineering algorithms to infer putative gene-gene interactions, functional relationships and genome scale regulatory networks has been already proven to be successful (Faith \textit{et al.}, 2003). Although the applications to multicellular organisms are still sporadic, this class of algorithms represent a promising approach towards genome-wide studies of complex diseases (Basso \textit{et al.}, 2005; Wang \textit{et al.}, 2009). Our aim in this paper is to propose a novel reverse engineering strategy in order to investigate transcriptional changes induced by prion propagation in mouse models.

Among the various neurodegenerative disorders, prion diseases have captured the attention of the scientific community due to their infectious nature and transmissibility (Prusiner, 1982). The cellular form of the prion protein (PrPC) is the substrate for an autocatalytic reaction that, through its recruitment and modification, acts in the propagation of a disease-causing form denominated PrPSc or prion. This autocatalytic process leads to the formation of fibrils and amyloid deposits, and is associated to a progressive fatal damage of the brain tissue. Importantly, experimental evidence has demonstrated that PrP knockout and PrP anchorless (Chesebro \textit{et al.}, 2005) mice are resistant to infection. In spite of the many approaches aimed at unveiling its physiological functions, the degree of overlap between the pathogenic dysfunction of the protein in prion diseases and its normal role is still largely unknown (for a review see (Aguzzi \textit{et al.}, 2008)). In such a complicated "puzzle", it is widely accepted that since PrPSc is a key mediator for the neurotoxicity of PrPSc, studying its biological functions through the identification of its related molecular partners, may help unraveling the mechanisms underlying prion-dependent neurodegeneration.

In light of this observation we integrate here a recently published transcriptional dataset (Hwang \textit{et al.}, 2009), monitoring prion propagation in mouse brain tissues, with independent gene-expression experiments performed under many diverse conditions. The computational framework introduced in this paper aims at deciphering transcriptional variations in the context of a system-wide regulatory network, moving from a single gene perspective to a system-level analysis (see Fig.1). The procedure is composed of
three steps. In the first step, using a compendium of gene expression measurements, we obtain a genome-scale interaction graph of the mouse brain. Then, in a second step, we refine the initial model via a multiple regression scheme. In the third step, this linear regressive model is used to investigate expression changes associated to Prion infection, where for each gene we estimate the influence of prion propagation on its transcriptional regulation. In other words, we systematically identify the genes that result "perturbed" with respect to the nominal model by a prion infection. A remarkable outcome of our network-based strategy is the ability to identify PrP targets inferred from the perturbed initial model. The fact that its expression is unchanged, when it should have shown any changes (grey nodes). By knowing the corresponding genetic regulatory network (d), we can discriminate the coherent variations from the unexpected ones. As shown in the example, two of the genes that showed a significant expression variations are satisfying the model predictions (genes x and y), and their expression changes can be explained by the variation of gene z. This is reflected by a skew distribution of discrepancies (i.e. residues), between model predictions and observed data, centered around 0. At the same time, one transcript, w, is not responding coherently to the initial model. The fact that its expression is unchanged, when it should have been increased, might relate to an anomalous direct effect of the pathology, preventing a synergistic response between all the genes in the system. Hence, the list of "perturbed genes" can be sensibly different form the standard DEGs identified from individual fold change analysis (b/e).

2 RESULTS

In a recent work (Hwang et al., 2009), more than 400 DNA-chips were collected, monitoring the transcriptional changes associated to various disease stages, prion strains and mice backgrounds. The authors interpreted differentially regulated genes in light of the known network of protein-protein interactions and hypothesized a specific temporal order of the biological processes involved. In our study, the same dataset (Hwang et al., 2009) is integrated with a large compendium (i.e. 1366 Affymetrix experiments) of gene expression measurements associated to various conditions. We first trained a gene network model (A, see methods) on this large compendium. Next, on the background of this initial network, we evaluated the impact of an independent dataset (Hwang et al., 2009) containing gene expression variations caused by a perturbing event, that can be either an external agent (i.e. prion inoculation) or an endogenous perturbation (i.e. Prnp knockout). In our interaction network, inoculated prions were modeled as hidden variables/nodes, while a gene knockout was interpreted as a node deletion (see Fig. 2). We then investigated the behavior of the system upon Prion infection or Prnp deletion with special attention to alterations in the gene expression that could not be explained by the initial nominal model. Such discrepancies are assumed to be the consequence of the investigated perturbing events (see Materials and Methods). This method, called "System Response Inference" (SRI), is inspired by computational frameworks published in (Gardner et al., 2003; di Bernardo et al., 2005; Bansal et al., 2006). Results are organized in four subsections. In the first, we investigate the inferred co-expressed partners of Prnp. In the next two subsections we analyze and interpret the data of (Hwang et al., 2009). SRI predictions for putative PrPC buffering genes and PrPC targets are analyzed and the differences emerging from our system-level approach with respect to the results in (Hwang et al., 2009) are discussed. Subsequently, we consulted a drug database in search for druggable targets among the first neighbors identified in the extrapolated network for PrPs. Finally, an analysis performed across human, mouse and rat samples revealed co-expression patterns that were highly conserved across these species.

2.1 Prion protein co-expressed partners

By applying SRI to the collected gene expression database on mouse brain tissue samples (see Supplementary Table S1 for GEO codes) we first identified 450 significantly Prnp related genes, of which 37 were anticorrelated (see Supplementary Table S2-partners and Fig. 2.a). As we have already observed in a previous study (Zampieri et al., 2008) for unicellular prokaryotes and eukaryotes (i.e. E.coli and S.cerevisiae) the strongest source of co-expression was the co-participation of gene products in the same protein complex (see Fig. 3). This observation reflects the tendency to establish "stable-bindings" between gene products of the inferred interacting gene pairs. Indeed, many predictions were in agreement with previous experimental studies seeking for proteins capable of binding PrP such as Cltc, Gmp6a, Gmp6b (Rutishauser et al., 2009), Lsmp, SparcL1 (Schmitt-Ulms et al., 2004), Ywhag, Ywhaf and Gnaol (Watts et al., 2009) or to co-localize with prion (i.e. ApoE) (Nakamura et al., 2000) (see Supplementary for further discussion). In addition, Aply1, the precursor-like amyloid protein, has been identified, in association with Aply, as a probable ligand of PrP (Yehiel et al., 1997). Such prediction was supported by
their similar proteolytic processing and ability to bind copper and, in case of Aplys, to inhibit the cleavage of APP by β-secretase (BACE1). It is worth noting the connection with Aplys, thought to modulate the internalization of beta-amyloid precursor protein and Rtn3, also inhibiting BACE1 activity. Furthermore, synaptotagmin 1 (Syn1), the major inositol 5-phosphatase (jointly with PtdIns and Cadph) is known to reduce the levels of cellular PIP2 and it has been shown to have an important impact in determining the level of Aβ42 (Berman et al., 2008). The co-regulation with Rtn4, which reduces the anti-apoptotic activity of Bcl-xl and Bcl-2, might relate to the observed inverse transcriptional proportionality between Prnp and Bcl2 (e.g. Casp6, Prdx1), pointing to a role of PrP in apoptosis (Kim et al., 2004). Btj3, Cdk2 and Bax1a, all involved in transcriptional regulation, are candidates for inhibiting the Prnp expression.

By performing an ontology enrichment (see Table S3) we identified some of the biological functions already associated to PrPC, suggesting the potential molecular partners responsible for these roles. For instance, the presence of small GTPase molecules such as Rab proteins might emerge because of clathrin-mediated endocytosis, reflecting their control role in PrPC trafficking. Furthermore, the enrichment of categories like Golgi vesicle transport and endocytosis may be related to the transit of PrPC from the endoplasmic reticulum to the cell surface through the Golgi apparatus. Several other genes were involved in nerve impulse transmission, such as again Synaptotagmin-1, which in association with Lrp1, reinforced the evidences that PrPC is internalized via clathrin coated vesicles. In parallel, caveolin-mediated signaling (Pantera et al., 2009) (here represented by Cav2) and the localization of PrPC on membrane lipid rafts might explain the occurrence of genes related to lipid transport. In light of the many studies observing behavioral changes in Prnp knockout mice (i.e. reduced level of anxiety (Nico et al., 2005)), we highlighted the presence of genes related to anxiety, such as Cna1a. Impaired hippocampal-dependent spatial learning was observed in Prnp null-mice as well, supporting the inferred relationship with Ncdn, required for spatial learning processes and Cpeb1 involved in long term memory (Si et al., 2003) (see next section for further discussion). Furthermore, several sources of experimental evidences have shown the effect of PrP on cell proliferation and differentiation (Sal`es et al., 2002) and were here confirmed by the enriched categories such as the nervous system development and differentiation (i.e. Id1, responsible for mental retardation, Trin2 contributing to the alteration of neural cellular mechanisms, and Nedd1). These properties were related to the activation of PrPC by eAMP and MAP proteins kinases (which are also identified as significant ontological categories) through the interaction with Ncam (Santuccione et al., 2005). Our analysis did not retrieve the Ncam interaction, but identified a closely related gene Ncam, alongside many other cell adhesion molecules. Furthermore, the role of PrP in synaptic activity, neurotransmission and neuronal excitability was highlighted by the identification of Syn1. The previously observed relationship between PrP and Erk activity might be just a secondary effect of the relationship here identified with Ras signal transduction, Mapk, calcium signaling pathways and PKC signaling (i.e. Gnb1, Prkd3). Furthermore, the high percentage of genes related to homeostatic processes and ion transport (i.e. Adam11 a metalloprotease, probably reflecting the known interaction with Adna23) indicated a possible involvement in protection against oxidative stress (i.e. Oxrl) and metal ion dysmetabolism. Finally, it is interesting to notice that melanogenesis emerged as a highly significant biological pathway (Table S3), hence indicating the possibility for a relationship between non-pathogenic presence of proteinsase-resistant PrP and the mechanism of production and formation of melanin (Fowler et al., 2006).

2.2 PrP knockout compensation

Even if the PrP sequence is very well conserved among mammals, its ablation in mice results in no clear phenotype, nor is essential for their survival. This might be due to several reasons, such as the presence of buffering genes masking the PrPC absence, or to
an adaptive process during central nervous system development. We used the inferred mouse transcriptional gene-network model to interpret the response to a Prnp deletion from the same dataset of (Hwang et al., 2009) (see Methods and Fig 2.c). We immediately noticed that, as expected, the perturbation intensity, as well as the Prnp associated q.value, was the lowest (see Table S2-knockout). In addition, 27 genes show an equal incoherent variation (i.e. q.value = 0), which was not predicted by the initial gene-network model. It is worth noting that a mere comparison of these transcripts with their reference counterparts (i.e. normal state) does not show any relevant expression changes. Indeed, in (Hwang et al., 2009) no significant expression changes were found in PrP-null mice. This highlights the difference between our approach and a standard comparative study, emphasizing the ability of our method to extrapolate non-obvious transcriptional signatures.

Among these genes, the enriched biological processes were tRNA metabolism, intracellular transport and synaptic transmission (Table S4). We could observe for example the presence of Dstn, encoding for an actin-binding protein belonging to the ADF family responsible for enhancing the turnover rate of actin. In addition, Gls catalyzes the conversion of glutamate from glutamine and its potential role for compensating PrP absence may derive from its implication in behavior disturbances in which glutamate acts as a neurotransmitter. Gls is also involved in Alzheimer, just like Chgb, a tyrosine-sulfated secretory protein. Given their co-expression patterns with PrPSC (see previous section) and their high significance as targets of PrPNC (next section), Sirpa and Cpeb are of particular interest (see also Fig.S2). The former is a transmembrane glycoprotein receptor involved in the negative regulation of receptor tyrosine kinases, being a substrate for tyrosine phosphatases (PTP). This gene may participate to the signaling cascade involving Fyn and their concomitant activation with Prnp was observed in bovine monocytes infected by Theileria (Jensen et al., 2008). The latter has been recently discovered to be able to aggregate as a prion-like protein (Heinrich and Lindquist, 2011). Additionally, in (Si et al., 2003) the authors showed its vital role in long-term memory, and it is tempting to speculate that a similar function may exist for PrP. It is worth noting that both transcripts are similarly reacting to a Prnp deletion and to prion infection (Table S2). Thereby suggesting that in case of prions replication the system is attempting to compensate for a lack of PrPNC. By comparing the residues in Prnp-null infected mice with mock-infected Prnp9/10 (Fig. 2.d) no significant genes were identified (q.value < 0.05). This result was consistent with the insensitivity of prion knockout mice to prion infection and it was in agreement with the conclusions in (Hwang et al., 2009).

2.3 Prion targets

The same procedure has been used to determine the portion of the inferred network which is most “sensitive” to prion-perturbation. Hence, in order to unveil the nodes (i.e. genes) which are likely affected by prions, the predictions of the initial model were tested on the experimental data collected in (Hwang et al., 2009) and the inconsistencies were detected through a rigorous statistical test (see Methods and Fig. 2.b). Model-based inference on prion infected mice resulted in 3255 genes with an associated q.value lower than 0.01 (see Table S2-targets). As already mentioned, previous results showed that prions bind with high specificity to PrPNC, and that further effects were mediated by its autocatalytic recruitment and conversion, although so far, no transcriptional variations have been extrapolated for the Prnp gene during infection (Benetti et al., 2010). Notwithstanding these studies, the Prnp gene was here identified among the most significant prion "targets". Therefore, as a reference threshold for the q.value significance, we selected the one associated to Prnp (7.12 × 10−5), as we did previously for the Prnp deletion. This led to the selection of 389 genes (out of the total 13204 considered). In (Hwang et al., 2009) the authors identified approximately 7400 DEGs in at least one of the five combinations prion-strain/mouse-background, and among these genes, 333 were identified in all the combinations. Again, only a small fraction of genes (i.e. 58) are in common with our list, mainly those involved in immune system processes (see Table S8).

Among the detected prion targets several were in common with the previously observed co-expressed partners (Section 2.1) of the cellular prion form (q.value = 1.07 10−6 hypergeometric test): for example, Magi2, encoding a protein interacting with Astropil1 (modulating activin-mediated signaling), Snap25, already detected in scrape-injected GT1 cells (Sandberg and Löw, 2005), or Cnln1, also involved in nervous system development. This in turn, reinforced the evidences of the central role of PrPNC as a mediator of prion neurotoxicity. Various genes in the list were involved in apoptosis, inflammatory response and leukocyte activation (see Table S5). It is not clear what are the primary damage-causes, nor whether such damage is due to a gain or a loss of PrP functions, but our findings suggested apoptosis as a mechanism directly influenced by prion propagation. Genes involved in signaling, neurotransmitter transport and integrin mediated signaling were perturbed during prion infection, in agreement with the reduced synaptic neurotransmission and dysfunction observed during TSE propagation (Ferrer et al., 1999). In this respect, it has previously been reported that scrape-infected mice showed higher Bace1 activity, suggesting an impairment of the regulatory role of PrPNC in its modulation. Our results indicated an unbalanced response of Bace2, which stimulates App processing in a non-amyloidogenic pathway suppressing the level of Aβ production, probably in an attempt to compensate for Bace1 dysfunction. It is also worth noting the Aβ6 gene, one of the main stress sensor of the ER membrane and the related Eif4e, which has been recently found to potentially play a main role in prion induced neurodegeneration (Roffé et al., 2010). In addition, it has been observed that transgenic mice expressing PrPNC deletion mutants, or over-expressing Dpl are characterized by vacuolation of the myelinated fibers (Bremer et al., 2010), where PrPNC presence was discovered, bringing back our analysis to genes involved in myelinization (i.e. Lgi4, Klf6) and the several integrins among the most significant hits (Itgax, Itgb2, Itgb4). The enrichment of genes involved in the glycan degradation pathway and lipid transport and sequestering might reflect the response of the system in controlling the amount of PrP on the membrane surface, where its attachment is a necessary condition for prions to induce neurotoxic signals. We also noticed the presence of several apolipoproteins, such as Apoc1, shown to play a role in Alzheimer, while ApoD and Apol1 may play a role in brain vasculature, affecting brain-blood permeability.
2.4 Druggable targets

Prion molecular targets may pave the way to the development and identification of compounds able to disrupt the mechanism of action of prion neurotoxicity. By targeting the inferred gene products it might be possible to modulate disease progression, delaying it in time, or to interrupt a fundamental neurotoxic chemical reaction. We consulted a repository database (www.Drugbank.ca) and linked approved drugs to the genes identified in our analysis (see Table S6). Drugs acting on cholesterol by inhibiting its biosynthesis, such as statins, have been previously used (Taraboulos et al., 1995) for the treatment of Prion diseases. In particular, here we identified simvastatin (Kempe et al., 2007) its ability to interact with Itgb2. We also noticed Spermine (polycationic compound) and N-Acetyl-D-glucosamine, which have been shown to prolong the incubation time (Trevitt and Collinge, 2006). Compounds such as anthemophilic factors, Tenecteplase and Bevacizumab, are instead acting on the coagulation process, removal of blood clots and the inhibition of blood vessel growth respectively. The second one in particular seems to be a promising treatment since it prevents the interactions of VEGF with its receptors. Abnormal regulation of VEGF expression has been implicated in several neurodegenerative disorders, including Prion disease (Koperek et al., 2002), where neurodegeneration might be caused by impairing neural tissue perfusion. Another promising compound is choline, a major component of the polar head group of phosphatidylcholine, which plays a vital role in basic biological processes, including the maintenance of cell structure and function. The recent hypothesis that prions can form permeable pores and influence ion channels (Kourie et al., 2003), points to the predicted drugs acting on sodium (like Lamotrigine, Amiloride, Quinidine) or potassium channels (Glibenclamide), while Iron Dextran could in principle be used to counteract metal ions dysmetabolism, a common effect of several neurodegenerative pathologies. We were also able to extrapolate three drugs acting on tyrosine kinase activity, Aldesleukin, Insuline and Methymazole, in conjunction with antioxidant compounds, such as L-Cysteine, vitamin C, NADH, succinic, L-Glutamic acids and others, shown to be able to reduce prPSc propagation in infected cell (Kocisko et al., 2003).

2.5 Co-expression patterns across multiple species

The SRI approach provides an analysis of transcription changes that is not restricted to individual isolated genes, but rather considers the system as a whole. This method is hence appropriate to characterize the prion protein interactome in its genetic-network context. Three nominal networks for mouse, rat and human (see Fig. 3 and Methods section) were inferred from three large compendia of transcriptional data. By retaining only the parts of these networks with consistent signs, we were able to extrapolate the co-expression patterns which are conserved among the three species. An analysis of the connectivity of the resulting network clearly revealed the presence of a major connected component (Fig.S3). Surprisingly, this conserved connected component included several genes related to various neurodegenerative diseases (i.e. Prnp/Prion diseases, Snea, Ucb1/Parkinson’s disease, Bace1/Alzheimer’s disease), making neurodegeneration one of the most significantly represented biological process (see Fig. 4.a and Table S7). It is tempting to speculate on the fact that the conservation across species of these transcriptional interdependencies, might reflect the important role of coordination in their transcriptional regulation. The fact that a large fraction of genes is related to neurodegenerative diseases suggests the existence of a delicate balance at the transcriptional level, whose alteration may have severe consequences. Focusing only on the relationships identified for the genes belonging to the significantly enriched processes, we evinced an interesting property of this evolutionarily conserved graph (Fig. 4b and Fig. S3). While genes related to cell cycle, ribosome and oxidative phosphorylation, were clustered in compact modules, genes related to neurodegeneration (red dots) were sparser in the network, with many cross-talking edges. Our results are complementary to other studies performing global analysis of human protein interactions (Limviphuvadh et al., 2007). In a recent work (Gofé et al., 2008), investigating the known network of protein-protein interactions, the authors showed that genes characterized by an altered expression level in neurodegenerative diseases take part in many different pathways, reinforcing the concept of a multifactorial pathogenesis of neurodegenerative disorders. In our study, relying exclusively on transcriptional dependencies, similar conclusions are drawn. This in turn supports our first claim that key genes might be responsible for mediating and triggering the systematic response to a perturbing event (i.e. Prnp, see Fig.S3-S4) and that even in such complex systems, valuable information can be extrapolated by their transcriptional analysis.
3 DISCUSSION

In this study we employed previously published gene expression datasets to recognize the function of PrP\(^\text{F}\) and its role in responding to prion inoculation inducing incoherent gene expression variations in a gene-network model. A reverse engineering approach was here adopted to analyze the data of (Hwang et al., 2009) starting from the basic assumption that a global transcriptional rearrangement must take place in order to adapt to a new condition (i.e. prion infection). Specific gene expression changes were expected to trigger other expression variations to finally reach an internal state of balance possibly different from the original one (see Fig. 1 and 2). Our model-based results restricted the spectrum of potential key interactions, performing an educated selection of transcripts that show an incoherent response with respect to the overall systemic reaction to prion infection. The proposed framework offers new insights into the physiological function of PrP\(^\text{F}\) and into the molecular mechanisms underlying prion disease pathogenesis, unveiling a potential key role of previously unsuspected genes. Our results suggest that in order to fully explore the potential and advantages of microarray technologies, the size of the collected datasets must be large enough to capture the complete range of variations associated with the studied phenomenon. In this perspective, the data derived from a single experimental condition complement the large independent dataset. Here, we show that SRI is not only a valuable tool to perform genome-wide studies in mammals, but is also capable of predicting the complex effects of endogenous and exogenous perturbations in a biological system, restricting the spectrum of plausible relationships that have to be experimentally investigated.

4 METHODS

Data collected

For *Mus Musculus* we compiled a collection of microarrays (\(X_{\text{Training}}\)) containing experiments performed with Affymetrix chips (1366 experiments Affymetrix Mouse Genome 430 2.0), selecting Gene Expression Omnibus (GEO) experiments performed on brain tissue. Probe-set intensities referring to a common gene were averaged, and only genes with a corresponding orthologous gene in Human were retained (for a total of 13204 genes). Identical procedure was followed to collect a dataset of gene expression profiles for Human (Affymetrix Human Genome U133 Plus 2.0 Array) and Rat (Affymetrix Rat Genome 230 2.0 Array). See Table S1 for the list of GEO codes. All datasets were preprocessed and normalized prior to network inference. Protein Complex network for human, rat and mouse were downloaded from the CORUM database (Ruepp et al., 2010), while Protein-Protein Interactions from the MppDB website (Li et al., 2009).

SRI procedure

In this section we describe the method used for reverse engineering large scale gene-gene transcriptional dependencies and predicting systemic changes induced by a perturbing event (i.e. prions). This framework is inspired by the works of (Gardner et al., 2003; di Bernardo et al., 2005; Bansal et al., 2006). In order to perform a truly systems-level analysis of gene expression profiles, we first seek for significant transcriptional inter-dependencies by means of a relevance network approach (Step I). We then use this relevance network to identify a nominal model based on a linear ODE description (Step II). Finally, the inferred model is used to detect gene expression changes caused by prion infection or Prnp gene deletion incompatible with the model (Step III).

Step I: Relevance network algorithms have the remarkable advantage of being computationally feasible for genome-wide applications (Faith et al., 2007; Basso et al., 2005). This class of methods assumes that gene-gene interactions can be identified by determining the gene pairs possessing the highest expression similarity over multiple conditions. A square matrix (\(n \times n\), where \(n\) is the number of genes) of pairwise Pearson correlations between gene expression patterns is computed. The (unsigned) absolute values of Pearson correlation between gene \(i\) and \(j\) is:

\[
C_{ij} = \frac{E[(x_i - \bar{x}_i)(x_j - \bar{x}_j)]}{\sqrt{\text{Var}(x_i) \text{Var}(x_j)}},
\]

where \(x_i\) is the expression vector for gene \(i\) (i.e. \(m\) gene expression measurements made under diverse conditions) and \(x_j\) is the expression vector for gene \(j\). In Eq. 1 \(\bar{x}_i\) and \(\bar{x}_j\) are means and variances of \(x_i\) and \(x_j\) over the \(m\) experiments and \(E[\cdot]\) denotes expectation. Each row/column of \(C\) (i.e. \(C\^T\)) can be considered as a distribution of pairwise similarity coefficients between a gene (i.e. \(i\)) and all the others. This distribution can be transformed in the corresponding vector of rankings, from 1 to \(n\) (\(W^i\)). As a consequence of this transformation, the correlation between \(i\) and \(j\) is associated to two “ranking values”. Denote \(W^i(j)\) and \(W^j(i)\) the rank of \(C_{ij}\) with respect to \(C^\text{t}\) and \(C\^t\) respectively. Genes \((i\) and \(j\)) are considered as putative interactors if and only if both their ranking indexes \((W^i(j)\) and \(W^j(i)\)) are above a certain common threshold \(\theta\) (Eq. 2). A graph of putative interactions, \(G_R\), is obtained by the following relationship:

\[
(i, j) \in G_R \iff W^i(j) \geq \theta \land W^j(i) \geq \theta.
\]

Step II: For each gene \(i\) we assume that the change in concentration can be expressed as a linear combination of the concentrations of interacting genes (i.e. \(x_i\) such that \((i, j) \in G_R\), plus possibly an additive external stimulus/perturbation (Eq. 3). This external input can be an environmental change (i.e. nutrient viability), a genetic perturbation (i.e. overexpression/deletion) or a toxic compound able to perturb the system (i.e. drive the system to a new steady-state). Similarly to (Gardner et al., 2003), the responses of the system to the various perturbations can be formalized as a system of linear differential equations (ODEs) in which the input vector \(u = [u_1, ..., u_p]\) is modeled as a linear combination of the external perturbations \(u_i\)

\[
\frac{dx_i}{dt} = \sum_{(i, j) \in G_R} a_{ij} x_j + \sum_{l=1}^{n} b_{i_l} u_l
\]

or in matrix form (for \(x = [x_1, ..., x_n]^T\)):

\[
x = A x + B u
\]

where the coefficient \(a_{ij}\) representing the influence of gene \(j\) on gene \(i\), is non-zero if and only if \((i, j) \in G_R\). The variable \(u\) can be taken as a vector \((p \times 1)\) identical to 1. The \(n \times p\) input matrix \(B\) collects the influences of the external perturbations \(u\) on each single gene. The \(k\)-th column of \(B\) indicates how effective/intense the \(k\)-th perturbation \(u_k\) is on the state vector \(x\) (di Bernardo et al., 2005). Under steady state conditions, the variation in time of the mRNA concentration is by definition equal to zero. In this case, Eq. 4 becomes a simpler system of algebraic equations:

\[
A x + B u = 0.
\]

In order to estimate the parameters of the model we employ a large compendium of gene expression profiles \((X_{\text{Training}})\), containing many different external perturbations, none of them related to prion infection. In Eq. 5 we assume that the matrix \(A\) stays constant over all the different experimental conditions, and that the columns of \(B\) are sparse (i.e. few non-zero elements). This last assumption reflects that the different perturbations collected in the dataset are likely to affect just a small portion of genes, if compared to the entire genome. This is justified for example in case of mutants, where a specific gene has been knocked out. By collecting a vast selection of different experimental conditions (i.e. more than 1300 chips) we aim at avoiding that particular perturbations are overrepresented in the...
dataset, hence the assumption of sparsity does not hold for some of the rows of B. Therefore, for each transcript, expression changes caused by the direct effect of an external stimuli are likely to occur just in few of the experimental conditions of the training dataset, and to be "uniformly" distributed over the rows of B (i.e. different perturbations do not act always on the same transcripts). Under these assumptions, the contribution of B is marginal, and sufficiently accurate estimation of the non-zero terms of the A matrix (a_{ij}) can still be drawn from the following approximation:

$$Ax \approx 0.$$ \hfill (6)

Similar arguments are used in most reverse engineering algorithms, see e.g. in (Cosgrove et al., 2008). A multiple regression framework is here used to learn the network coefficients a_{ij} from the training dataset X_{Training}. This framework seeks for the solutions which minimize the L^2 norm between the predictions of the model and the experimental values of X_{Training}. For each gene, the result is the following vector of coefficients:

$$\hat{a}_{i} = \arg \min_{\alpha} (\sum_{(i,j) \in A_{i}} a_{ij} x_{j})^2$$ \hfill (7)

where x_{i} is a vector of gene expression measurements of gene i (i.e. row of X_{Training}). The solution of Eq. 7 is correct up to an undetermined scaling factor (the diagonal term a_{ii}) which by which we rescale each row of A. The outcome of the n regression problems is a weighted asymmetric matrix A_{i} and, for each gene i, a vector of residues (r_{i}), resulting from the difference between observed and predicted values.

Selection of θ: In order to avoid an arbitrary selection of the cut-off parameter θ in Eq. 2, we adopt a Bayesian Information Criterion (BIC).

Since an increase in the number of free parameters in Eq. 7 always reduces the absolute sum of residuals (r_{i}), we search for the best compromise between the model complexity, in terms of the number of parameters (i.e. non zero entries in the connectivity map G_{P}), and fitness quality (i.e. discrepancies between predicted and observed values). Therefore, we fitted multiple models corresponding to different choices of θ in Eq. 2 and estimated the corresponding fitness qualities via the Bayesian Information Criterion. The BIC criterion (Eq. 8) is the most common criterion for the fitness of a mathematical model to observed data, leaning more towards lower dimensional models (i.e. sparse matrices)

$$BIC_{i} = m \ln \left(\frac{RSS_{i}}{m} \right) + \ln(m)K_{i}$$ \hfill (8)

where K_{i} is the number of parameters in the model for gene i (i.e. number of edges of i) and RSS_{i} the residual sum of squares ($\sum_{(j-1)} r_{ij}^2$). The value of θ corresponding to the minimum of the mean of BIC_{i} indexes ($\hat{\theta}$) is selected for the final step of the analysis (Eq. 2):

$$\hat{\theta} = \arg \min_{\theta} \frac{1}{m} \sum_{i=1}^{n} BIC_{i}$$ \hfill (9)

The identification of the graph G_{P} is the most under-determined step of the reverse engineering approach. However, coherently with (Bansal et al., 2006), we found that small changes of θ do not drastically change the structure of A_{i} and its numerical entities.

Step III: The resulting A_{i} model is used to predict the expression profiles associated to a new condition, here denoted as X_{Prion} (in our case the dataset published in (Hwang et al., 2009)). The procedure is to search for the genes for which the nominal model A_{i} is incorrectly describing the expression changes in the new experimental condition. The dataset X_{Prion} contains perturbative effects induced exclusively by prion propagation or Prnp absence: prion infection (143 experiments/columns in X_{Prion}), Prnp deletion (22 experiments) and both perturbations at the same time (27 experiments). According to Eq.6 we expect that if gene i is not directly influenced by these external agents, then its expression changes should be correctly predicted by the nominal model (i.e. $A_{i} X_{Prion} \approx 0$). This should be reflected in a skew distribution of residues around 0 (call them τ_{Prion}). On the contrary, whenever gene i is directly influenced by a prion-related external stimulus we expect the initial model to be ineffective in predicting gene expression variations. This indicates that the equation should be corrected as $A_{i} X_{Prion} + B_{Prion} \tau_{Prion} = 0$. Nonzero entries in the r-th row of B_{Prion} unveil the input "pathway" of the prion-related perturbation. For each gene i, we test this hypothesis by comparing the discrepancies that follow if we impose $A_{i} X_{Prion} \approx 0$ (i.e. τ_{Prion}) with those obtained during the fitting procedure of Step II (r_{i}), through a two-sample t-test (Eq. 10) (see Fig.5):

$$t_{i} = \frac{\tau_{i} - \tau_{Prion}}{\sqrt{\frac{s_{\tau_{i}}^{2}}{m_{i}} + \frac{s_{\tau_{Prion}}^{2}}{m_{Prion}}}}$$ \hfill (10)

where τ_{i} and τ_{Prion} are the mean of the residues in the training and the "prion-specific" dataset for gene i and $s_{\tau_{i}}$, $s_{\tau_{Prion}}$ are the corresponding standard deviations. Using the Student’s t-probability distribution, a statistical significance (p.value) is assigned to each gene. Once the distribution of analytical p.values has been generated, the q.value is used to correct the measure of significance for multiple testings (Storey, 2002). When the two distributions of residues are significantly different, the gene i is considered to be a target of the applied perturbation.

REFERENCES

Bioinformatics, 22(7), 815–822.