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Abstract

The gene expression response of yeast to various types of stresses/perturbations
shows a common functional and dynamical pattern for the vast majority of genes,
characterized by a quick transient peak (affecting primarily short genes) followed by a
return to the pre-stimulus level. Kinetically, this process of adaptation following the
transient excursion can be modeled using a genome-wide autoregulatory mechanism by
means of which yeast aims at maintaining a preferential concentration in its mRNA lev-
els. The resulting feedback system explains well the different time constants observable
in the transient response, while being in agreement with all the known experimental
dynamical features. For example it suggests that a very rapid transient can be induced
also by a slowly varying concentration of the gene products.

1 Introduction

Typically, at the level of gene expression, the response to a stimulus, or to a change in some
environmental condition, or even to the substrate composition can be decomposed into a
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rapid adaptation phase, occurring with a typical time constant of the order of the tens of
minutes [1, 2, 3, 4, 5], superimposed to a long term permanent modification of the gene
expression steady state (occurring, for example, at the diauxic shift, [6]). For S.cerevisiae,
the rapid adaptation described in [3, 7, 8, 1, 5] consists essentially of a transient change in the
mRNA concentration followed by a return to the basal pre-stimulus level for almost the entire
population of genes. This massive adaptation phenomenon is observed in response to both
temporary (such as the glucose pulses of [5]) and permanent (such as the environmental
stresses of [3, 8, 1]) stimuli. A simple correlation analysis reveals that the responses to
different types of stimuli have consistent similarities and are strongly correlated with the
Half Life (HL) of the corresponding genes, as shown in Fig. 1 (a).

The aim of this paper is to propose a kinetic model for the genome-wide rapid adaptation
of the transient response to stimuli able to explain the following features:

(a) the response is highly stereotypical across many stimulations [9];

(b) the response is to some extent graded (i.e., proportional to the magnitude of the
stimulus, see e.g. the heat shock responses of [3]), and reciprocal (a temperature
upshift induces a transient pattern which is roughly similar, except for the sign, to
that of a temperature downshift) [3];

(c) robust adaptation is observed to stimuli of various “order” i.e., both vanishing and
persistent stimuli are reabsorbed;

(d) whenever for a gene adaptation is not perfect, the deviation of the new steady state
reached from the pre-stimulus one has the same sign of the peak of the transient
excursion.

(e) the transcriptional transient seems to be faster than the changes in other cellular
quantities (such as growth rate [4] or protein concentration [7]);

(f) the rise time of the transient peak is shorter than its decay time (i.e., the time needed
to return to the pre-stimulus level);

(g) the decay time constant is roughly of the same magnitude as the degradation time (HL)
of the genes inferred from experimental data [10, 11, 12] although, if transcription is
blocked after the onset of the stress response, the upregulated genes seem to degrade
faster than expected, while repressed genes seem to degrade slower than expected [13];

(h) the transient response typically does not induce oscillations (noticeable above the noise
level);

(i) both the maximal amplitude of the transient peak and the area under the transient
response are roughly proportional to the HL of the genes, while the peaking time
(i.e., instant at which a gene has its maximal excursion during the transient) is not
significantly correlated with HL, as shown in Fig. 1 (a);



(j) a large transient excursion is induced primarily on short genes;

(k) for what is known, changes in the transcriptional response are maintained at the level
of translation [14, 7].

Adaptation, intended as the mechanism by means of which a biological system is able
to recover the “optimal” working level of a variable in spite of a persistent stimulus, is
common to many biological systems. Examples are numerous: various signal transduction
pathways [15], bacterial chemotaxis [16], sensory transduction [17]. This property is typically
characterized by means of a negative feedback loop. In the present context, as the gene
expression returns to its pre-stimulus level regardless of the amplitude of the stimulus, the
system has to have an encoded robust regulatory mechanism as well as a memory of the
nominal pre-stimulus concentration value for each gene.

Following [18], a control-theoretic interpretation of adaptation involves an integral feed-
back loop. In this scheme, the integral of the displacement from a nominal level (i.e., of the
error) of a variable is fed back with negative sign. Adaptation is achieved as this variable re-
turns to the nominal level (that is as the error tends to zero) in spite of a persistent stimulus
that, in absence of feedback, would alter the steady state value. In the context of the present
paper, the variable being integrated is the relative mRNA abundance, and its integral may be
taken to represent the relative abundance of the corresponding “gene product”. We assume
here that this quantity acts homeostatically on the mRNA transcription rate, reequilibrating
the gene expression to the nominal level of concentration. Negative autoregulation of tran-
scription or “autogenous control” [19, 20] is a mechanisms that allows to reduce fluctuations
around the steady state [21] and to decrease the rise time of a response [22], although it
is often invoked for specific transcription factors repressing their own transcription. In our
case, we shall assume that negative autoregulation works as a general ubiquitous homeostatic
principle, opposing (permanent) changes into the mRNA levels with respect to an “optimal”
working concentration for the transcripts, and affecting preferentially the short genes for
which protein levels seem to fluctuate more. In the out of equilibrium scenario represented
by the transient response, the autoregulatory action is meant to represent homeostasis in
both the synthesis and the degradation components of the rate law. As such, the feedback
action can modulate the “effective” degradation rate in presence of transcriptional blockage,
coherently with data reported in [13].

Autoregulation, in practice, couples the dynamics of a gene and its product. On the
dynamical model, this coupling results into a second time constant, which for each gene can
be used in the description of the transient response. The aim of this paper is to show that
using a negative integral feedback to describe this coupling can explain not only adaptation
but also the very rapid transcriptional response to changes in other slower cellular variables
(such as the gene products). As a result, even a simple linear ODE model can reproduce all
the features listed above, provided that the modes (eigenvalues) of the system and the sign
of the input response are appropriately chosen.



2 Results

The experiments here analyzed (a list of the time series used is in the Supplementary Notes)
consist of two-channel microarrays in which the mRNA abundance during the transient is
hybridized against a basal pre-stimulus mRNA concentration, so that a value approaching
1 (or 0 if a log scale is considered, as in Fig. 1) corresponds to a return to the pre-existing
steady state. As can be seen from Fig. 1 (a), in each of the 5 time series of [3] (chosen among
those providing a sufficiently fast kinetics, see Supplementary Notes for details), we observe
that for almost 90% of the genes, the relative expression ranges within [− log2(1.5), log2(1.5)]
at the end of each transient (the percentage goes up to 95% if we consider an interval of
[−1, 1]), while during the transient only ∼ 50% of the genes remain inside the interval [−1, 1]
on each time series. Hence we can assume that globally the system undergoes a transient
excursion in response to each stimulus, and that such an excursion is reabsorbed in a time
scale of the order of the hour, meaning that the system has adapted in spite of a persistent
stimulation.

Expanding on the concept of autogenous control [19, 20], the basic assumption underlying
our model is that an increase of the abundance of a certain protein well above (resp. below)
the normal “working” level disfavors (resp. favors) the transcription of the corresponding
gene. Under such negative autoregulation, a basic model for transcription and translational
kinetics [23, 19, 24, 22], derived in Material and Methods, is the following:

dmi

dt
= −δi(mi − 1) − ai(pi − 1) + biu

dpi

dt
= −λi(pi − 1) + r(mi − 1),

(1)

where: mi =
[mRNA]red

i

[mRNA]green
i

is the mRNA concentration of the i-th gene relative to the basal

level, equal to the ratio between the “red” and “green” channels associated to the stimulus
response and the basal mRNA level, respectively; pi is the relative concentration of the
corresponding gene product; δi and λi are degradation rate constants; ai is the strength of
the negative feedback; r is a translational rate constant, assumed equal for all genes. The
expressions mi − 1 and pi − 1 are meant to represent displacements from the basal levels in
response to a stimulus u whose amplitude and sign (i.e., role as activator or repressor of mi)
are given by bi. Model (1) assumes linear kinetics, but this does not affect the qualitative
conclusions of the study, as shown in the Supplementary Materials. Moreover, model (1)
does not account for translational delays, e.g. due to the export and localization of the
mRNA, and/or the limited rates of translation initiation and peptidic chain elongation (see
Supplementary material for a model with delay).

For the limited time horizon considered here, a couple of hours, the model can be further
simplified. In fact, unlike the gene degradation rate δi, for which knowledge from several
genome-wide datasets is available in the literature [10, 11, 12], knowledge of protein degra-
dation rate λi is quite limited at a proteome-wide scale [25], but it is commonly accepted
[23, 25] that the protein degradation dynamics are slower (or much slower) than the corre-
sponding mRNA dynamics. For the stress response of yeast we have quantified this difference



using the recent data of [7] consisting of measurements of nine genes and their corresponding
proteins in response to redox stress (DTT)1. By fitting model (1) on these data, all model
parameters where precisely estimated (Table 1). In particular it turns out that on average
the ratio δi/λi is 20: while the genes have a HL (= ln(2)/δi) of approximately 35 min, in
line with the known degradation time constants [10, 11, 12], the HL of the corresponding
proteins is more than 11 hours. This means that in the time horizon considered here (a
couple of hours), the contribution of λi is totally irrelevant. To confirm this observation,
it is worth noticing that the protein time series of [7] show a growing front which is much
slower than the corresponding genes, and no decline (i.e., the “transient” growth is not yet
exhausted at the end of the recorded time series), see Fig. 1 (b). Thus, disregarding λi, the
model equations become:

dmi

dt
= −δi(mi − 1) − ai(pi − 1) + biu

dpi

dt
= r(mi − 1).

(2)

The second equation of (2) can be integrated and the resulting integral, i.e., the area under
the mRNA profile computed in the interval [0, t], represents an estimate of the protein
abundance pi(t). When fed back in the first equation of (2) with negative sign, it has the
effect of achieving perfect adaptation in mi, i.e. the mRNA abundance returns exactly to
its basal level in spite of a persistent stimulus u, (Fig. 2). A second effect of the negative
feedback is to speed up the transient response [22]. In order to understand how this is
achieved, consider the state and input matrices Ai and Bi of the linear system (2) (see
Material and Methods for details). Ai has two eigenvalues si,1 and si,2, meaning that the
effect of coupling the gene mi with the protein pi is to introduce a second dynamical mode
into the evolution of the system. These two eigenvalues are always stable and, if they are
chosen real so that damped oscillations are excluded, the explicit solution for (2) to a step
stimulus u is:

mi(t) = 1 +
bi

γi

(
esi,2t − esi,1t

)

pi(t) = 1 +
bir

γi

(
esi,2t − 1

si,2

−
esi,1t − 1

si,1

) (3)

where γI =
√

δ2
i − 4rai (see Materials and Methods). The two eigenvalues give rise to

two exponential modes: if si,2 is of the same order as the natural mRNA degradation time
constant (si,2 ∼ ln(2)/HLi), and si,1 < si,2, then, from the first equation in (3), the fast
mode si,1 induces a sharp rising front in the transient but is rapidly exhausted, and is then
followed by a more gentle decay to the pre-stimulus level which resembles a typical first order
degradation, governed by the slow mode si,2 which is more long-lived. This is exemplified in
Fig. 3 for a specific stress-inhibited gene and then extended to all genes: the difference in the

1The dynamical response to this type of stimulation is known to be slower than for example the heat
shock response [3, 26]. However, it is plausible to assume that the ratios δi/λi are similarly related.



two eigenvalues si,1 and si,2 induces a transient response which well reproduces the observed
time courses. In the case of real eigenvalues, the lack of oscillatory behavior implies that
pi(t) is typically monotonic and its displacement from the basal level has sign equal to that of
the mi transient (an effect similar to the “potentiation” described in [14]). Coherently with
the experimental data of Fig. 1 (b), the dynamics for pi are much slower than those of the
corresponding mi (Fig. 3, left). Nevertheless, this slow dynamics is crucial to speed up the
transient response of mi, see Supplementary notes for a further discussion on open-loop time
constants. It is worth noticing that the embedding of a fast regulation loop into a slower one
is a universal rule of thumb of an engineering control design requiring nested loops, because it
minimizes the cross talk between the two loops and therefore also the possibility of spurious
dynamical behaviors. Values of eigenvalues shown in Fig. 4 (top left panel) indicate that
the fastest mode of Ai (dominating the rising front of the transient) is always much more
negative than the slowest mode (dominating the decaying front): si,1 ≪ si,2 < 0. For all
5 responses of Fig. 1 (a), the time at which the transient gene expression peaks, tpeak, is
approximately 25 min. In (3), if tpeak ∼ 25min, then esi,1tpeak < 0.2 for 87% of the genes
(while esi,2tpeak < 0.2 for only 7%) meaning that indeed the transient response declines due to
the exhaustion of the fast mode. Since the mean HL is ≈ 25±15 min, in the time horizon of
the 5 series (the final time points are tend = 80, 60, 160, 90, 120 min for the 5 time courses),
the transient has sufficient time to decay back at almost basal level for most genes. In order
to evaluate the effect of different stimuli on a single gene, it is of interest to compare the
sign of the parameter bi across the five time series. Our results (Fig. 4 (top right panel)) say
that for at least 50% of the genes the sign assignement is unanimous in the 5 series.

The model permits to predict the value of gene product pi at the end of the observation
period tend, from the area under gene expression mi. To reduce the effect of noise in the
mRNA time series, it is convenient to lump together genes whose products form a protein
complex (PC). In fact these genes are known to have similar dynamics [12], observation
largely confirmed by our analysis. In Fig. 5 areas for the 5 time series of Fig. 1 are shown: it
turns out that for most of the neatly up or down-regulated PCs the 5 values have identical
sign. Similar results are obtained when instead of PC we consider co-localization on the
same metabolic pathway. See Fig. S3 for a similar analysis on the metabolic pathways of
the KEGG database. A good agreement is also found across different data sets (Fig. 6)
still showing correlation in the PCs and KEGG pathways areas. The comparison between
numerically computed areas under the mi data and model-based estimated areas (pi) is
shown in Fig. 6 (values are averaged over all genes forming a PC). Panels in the main
diagonal show the correlation between computed and estimated areas for all datasets which
is good, as expected. Not only a strong degree of correlation in the responses to various
inhibitory stimuli (such as thermal, oxidative, osmotic, acid stresses) can be reproduced
by the model, but also the anticorrelation between responses to inhibitory and excitatory
stimuli (such as the reciprocal stresses discussed in [3] or the nutrient inputs of [5]), see last
row and column of Fig. 6.

The basic autoregolation mechanisms discussed so far neglects any gene-gene regulatory
mechanism beyond co-participation in a protein complex or metablic pathway. A popular



example of such regulatory mechanisms is the causal relationship between a transcription
factor and its target genes. Having only mRNA profiles available, the only statistical test we
can perform to evaluate this type of regulation is a significance analysis of the corresponding
correlation coefficients on the transcriptional regulatory map of [27, 28]. For all of our time
series, however, the correlation between transcription factors and corresponding target genes
is always insignificant (Z-score test), see Fig. S2, Table S1 and the Supplementary Notes
for more details. This suggests that the transient excursion must be triggered by post-
transcriptional or post-translational modifications of the transcription factors which for the
time being are largely unknown. However, even when we look at genes co-transcribed by
the same transcription factor, we obtain that the correlation is still comparable to that of a
random choice of genes, unlike for example the co-participation in a PC, see again Fig. S2.
The approach of modeling the stress response in an “open-loop” fashion as the causal action
of the transcription factors on their target genes is pursued for example in [28]. It has several
drawbacks, like for example that the map of transcription factor-target genes, though largely
incomplete, is already combinatorially complex, condition-specific [27, 28, 9], and the sign
of the interactions (activator/repressor) is often unavailable. More importantly for us, this
open-loop approach is unable to satisfy all of the kinetic constraints on the time series, like
the sharpness of the rise front of the transient, and does not provide an explanation for the
adaptation observed for which a form of feedback is required.

3 Discussion

In this work we have proposed a kinetic model aimed at describing different features charac-
teristic of yeast transient response to stimuli, as listed in the Introduction. Here we discuss
these features versus model behaviour in details.

Stereotypical response ((a) and (b)) Analysis of the 5 time series of Fig. 1 confirms
that the similarities in their pattern are much more abundant than the stimulus-specific
differences. This can be deduced from the sign concordances of the bi values, see Fig. 4 (top
right panel). If the 5 time series are compared with others from [8, 1, 29] also representing
responses to prolonged stimuli, the pattern of up/down regulation is very similar. For the
same PC as in Fig. 5, the comparison of average areas is shown in Fig. 6. In [5] instead, yeast
is fed with pulses of glucose of different magnitude. In this case the sign of the responses
is reciprocal for most genes, as can be seen in the scatter plots in the last row and column
of Fig. 6 (see Supplementary Material). Sorting the PC complexes by the corresponding
pi(tend), see Fig. 5, reveals that the downregulated categories (negative areas in the log
scale of Fig. 5) are essentially all involved into transcriptional and translational processes,
while in the most upregulated categories are respiratory metabolism and proteolysis. Notice
that, coherently, also the ribosomal biogenesis is very different between the cytoplasmic
and mitochondrial compartments. Analogous results are obtained for the KEGG pathways,
see Fig. S2. Grouping the genes further according to KEGG hierarchy, we obtain the 15
macrocategories shown in Fig. S3 which give a general overview of the environmental stress



response strategy in agreement with e.g. [3, 9]. This consists in a reduction of the energy-
consuming (cytoplasmic) ribosomal biosynthesis and RNA processing machinery in favor of
energy-producing components such as the respiratory chain complexes and the mitochondrial
compartment in general.

Notice on Fig. 5 and S3 the correlation with the empirical values of HL assignable to these
categories. It is worth observing how the ordering of the categories found here resembles e.g.
the ordering of the phases of the peaks in the so-called yeast metabolic cycle [30], suggesting
the unfolding of a common gene expression program. See Fig. S4 and [31] for more details.

Robust adaptation ((c) and (d)) While a few genes required for reacting to a specific
cellular stress might show a permanent change in the gene expression steady state [9], the vast
majority of genes returns to their basal pre-stimulus level. It is for this category that we talk
about adaptation. The rapid and massive transient excursion characterizing stress responses
might help in activating immediate cellular reaction mechanisms (such as redistribution of
energetic resources) while adaptation might be a mean to resume a mode of action as close
as possible to optimal in spite of permanent environmental changes. The slower degradation
rates for the gene products observed in real data [7] and confirmed by our observation
(Table 1) guarantee that the proteins are long-lived and that the modified cellular response
is sustainable for a long period. As sketched in Fig. 2 (d), when the protein degradation is
not neglected, its effect on the model is to alter the steady state value of mi. The sign of
this modification agrees with that of the transient excursion.

Fast transcriptional response from slow feedback ((e) and (f)) The transcriptional
response to stresses can be activated directly by the external perturbation through signaling
mechanisms in an essentially open-loop fashion, or through changes in the cellular state (e.g.
amount of biomass or energy or metabolite composition) that induce feedback reactions
[4]. Some of these “internal variables”, such as growth rate, have been shown to happen
at a slower pace than the transcriptional response [4]. One of the characteristics of our
model is that slower dynamics are instrumental in inducing the fast transcriptional response,
provided that there is coupling between quantities as happens in presence of feedback. While
a feedback coupling between genes (faster) and gene products (slower) can optimize the
stress recovery by speeding up the system response, the signs of the transcriptional transient
excursions are instead directly correlated with the external perturbation and determine the
strategy of the cellular response. Once the signature of the transient is identified, any cellular
variable (for example the already mentioned growth rate) could in principle be used for the
integral feedback in place of the gene products we use here. The fact that most genes show
a synchronized peaking time for their transient may be a sign that a coordinated cellular
mechanism is indeeed responsible for the feedback. Experimental data for cellular quantities
such as the growth rate are however too few and difficult to obtain [32]. See Supplementary
Notes for more details and examples.



Stress response with transcriptional blockage ((g)) In [13], the stress response is
studied in conjunction with a blockage of transcription (delayed in time with respect to
the begin of the stressful stimulation). The mRNA profiling reveals that genes activated
during the transient response seem to be destabilized when the stress is followed by the
transcriptional arrest (i.e., the genes seem to degrade faster than expected by the known HL
values) and, viceversa, genes that are repressed in the transient seem to be stabilized by the
combination stress + transcriptional blockage. In our model, we assume that the transcrip-
tional arrest occurs at the peaking time of the transient, tpeak. Blocking transcription means
putting c = 0 in (5) and bi = 0 in (2), i.e., the ODE for the system reduces to

dmi

dt
= −δimi − ai(pi − 1)

dpi

dt
= r(mi − 1).

In our scheme, the negative autoregulatory feedback term has a dual role, influencing both
the synthesis and the degradation rate, and predicts correctly the altered degradation rates
in the perturbed system of [13]. Consider first the case of an upregulated gene. For it
mi(tpeak) > 1 and, from (2), pi(tpeak) > 1, implying −ai(pi(tpeak) − 1) < 0. Hence we have

−δimi − ai(pi − 1)
︸ ︷︷ ︸

degradation with negative autoregulation

< −δimi
︸ ︷︷ ︸

reference degradation

< 0

i.e., when pi is different from the nominal concentration (pi 6= 1) the rate dmi/dt is more
negative than expected, meaning that the upregulated gene is destabilized. On the contrary,
for a repressed gene we have 0 < mi(tpeak) < 1 and 0 < pi(tpeak) < 1, implying −ai(pi(tpeak)−
1) > 0, which leads to

−δimi
︸ ︷︷ ︸

reference degradation

< −δimi − ai(pi − 1)
︸ ︷︷ ︸

degradation with negative autoregulation

< 0.

In this case, the repressed gene is stabilized by the autoregulation.

Proportionality of transient peak amplitude and area of mi with HL ((i)) From
(3) we can obtain the following expression:

pi(tend) − 1 ≃
bir

γi

(
1

si,1

−
1

si,2

)

≃ −
bir

γisi,2

=
bir

γi

HLi.

This expression provides an explanation in terms of the model (2) of the roughly direct
proportionality observed between the area and the values of HL, shown in Fig. 4 (bottom
right panel) for the PCs of Fig. 5. Notice on the same Fig. 4 (bottom left panel) the tight
relationship between the amplitude (i.e., the signed peak in mi) and the area (computed
either via the model or from the data). From (3), model-based area and amplitude share
the same gene-specific multiplicative constant bi/γi.



Transiently perturbed genes are short ((j)) The transient excursion is induced (for
both upregulated and repressed genes) to a very large extent on short genes: 85% of the
genes labeled as transiently perturbed (| log2(pi)| > 0.5) have length 6 2kbp (p-value 10−5,
hyergeometric test; genes with ORF (acronym for Open Reading Frame, i.e., gene-encoding
DNA sequences) length 6 2kbp form ∼ 70% of the total), see Fig. 7 (a). The fact that also
downregulated genes are relatively short excludes the scenario in which a marked transient
excursion is only the consequence of an increased synthesis rate affecting more the short
ORF than the long ones. It is interesting to compare the behavior observed on the transient
with the average absolute abundance of the corresponding proteins, as estimated in [33] for
non-stressed yeast. From Fig. 7 (b) (right lower plot), the induced genes (again, both up-
and down-regulated) seem also to correspond to gene products having a low concentration
in the “ordinary, stationary” conditions of [33] (p-value 0.05, t-test). The short length of the
mRNAs certainly favours more rapid fluctuations which could induce more easily changes
also at the level of gene products. More marked changes in protein abundances favour the
feedback regulation we are hypothesizing. The model (2) does not explicitly include the
length of a gene in its parameters. However, as can be seen on the lower left plot of Fig. 7
(b), it tends to associate to a consistent fraction of short genes a high value of the forcing
parameter bi, meaning that the impact of the stimulation on the kinetics on these genes is
more pronounced.

4 Conclusions

Yeast reacts to a change of environmental conditions by means of a highly coordinated tran-
scriptional response which is faster than it would be expected from the “natural” degradation
time constant but which is only transient. In this paper we propose a model able to explain
this quick response by means of a feedback mechanism aiming at adapting the system to
the new condition. From a dynamical point of view, this can be formulated in terms of a
second mode, faster than degradation, which dominates the transient excursion but which,
being quickly exhausted, is not observable on standard turnover experimental curves. It is
shown that this second mode can be induced by a feedback mechanism from a much slower
dynamical variable, which could correspond to the concentration of gene products.

5 Materials and Methods

Model construction The changes in the relative concentration of mRNA with respect to
its basal level can be described with a typical model for the transcription kinetics [23, 34,
35, 36, 5, 2, 37]:

dmi

dt
= −δimi + fi, (4)

where the function fi describes the transcription synthesis rate for the i-th gene and is
usually zero-order in mi, i.e., independent of the concentration of mi. In the literature, fi



is often expressed as a function of the transcription factor(s) wi governing the expression of
mi, with various types of functional dependence like linear, Michaelis-Menten or of Hill type
[35, 36, 38, 5, 2, 39], see Supplementary Notes for examples. Following this approach requires
the knowledge of the transcription factor wi acting on each gene. Even if this information is
partially available for S.cerevisiae [27, 28], predicting the kinetics of the transient response
from them is troublesome for the reasons explained at the end of Section 2, and also because
in the literature the kinetic models mentioned above are mostly used for describing variations
in the steady state following a perturbation, not for the transient dynamics itself. Moreover,
under the assumption that the transcription synthesis rate fi is of zero-order in mi [35],
the fast rising front of the transient cannot be explained in terms of a model like (4) at
least for reasonable values of the degradation time constants δi (Fig. 2, see Supplementary
Notes for a thorough analysis). On top of all these complications, modeling the effect of
an external stimulus u on the transcriptional regulation means expressing wi as a function
of u. Nothing is known in general about this further functional dependence wi = wi(u).
Bypassing the transcription factors, the f(u) can for example be represented as an open-
loop impulse like in [26] or, more generally, as a finite width kernel, vanishing after some
time, see Fig. 2 (a). As the mi represent relative concentrations, these open loop models
entail (without explicitely explaining) a form of memory of the “ideal” pre-stimulus absolute
concentration, as well as a form of adaptation if one considers the stimulation u as a step
(e.g. a permanent increase in temperature). Both elements are characterized in our model
by means of a feedback term. In absence of such feedback, the transcription synthesis rate
fi consists for us only of a basal (constant) term plus a term linear in the stimulus u, of the
form of a zero order kinetics in mi:

dmi

dt
= −δimi + ci + biu. (5)

The parameter ci corresponds to the basal rate of transcription in absence of external stimuli
(u = 0). Therefore, since for the unperturbed system the steady state must be m̄i = ci/δi =
1, we have ci = δi. The parameter bi instead carries information about the activator/inhibitor
effect of u on the mRNA concentration. When u is a persistent stimulus, e.g. u(t) = 1, t > 0,
then in (5) the steady state value is modified to mi = (ci + biu)/δi = 1 + biu/δi 6= 1, i.e., the
system (5) is not adapted to step-like inputs u and cannot recover its pre-stimulus mRNA
level.

An increase in the transcription rate of the i-th gene induces an increase in the total
quantity of mRNA produced over time

pi(t) − p̄i = r

∫ t

0

(mi(τ) − m̄i)dτ = r

∫ t

0

(mi(τ) − 1)dτ (6)

where, as above, m̄i = 1 is the pre-stimulus relative mRNA abundance, r is a rate constant
(representing for example the ribosome density, and assumed to be the same for all genes)
and p̄i is an integration constant (representing the basal level of pi, see below). Differentiating
this expression,

dpi

dt
= r(mi − 1), (7)



we see that the variable pi represents a dynamical quantity “downstream” of transcription.
In this paper pi is taken to describe the concentration of the corresponding gene product
relative to the basal level, hereafter fixed as p̄i = 1. This (very common [23, 25, 24]) choice is
a simplification of the complex mechanisms characterizing translation and protein synthesis,
involving for example changes in the translation initiation, in the ribosomal density or in
the polysomal association [40, 14], all steps not well-characterized dynamically. From what
is known experimentally, the dynamics at the polysomes level for example seems to be
correlated with the transcriptional perturbation of the mRNAs (in [14] it is shown that the
frequency of association with polysomes increases for upregulated genes and decreases for
downregulated genes). An ODE like (7) for a gene product usually contains a degradation
term. Given that the transcriptional perturbation propagates through the protein synthesis
process with a time delay and that the protein turnover rate is typically considered slower
than the corresponding mRNA turnover rate [23, 25], the influence of the protein degradation
term on the dynamics becomes negligible for the time horizon of interest here, see Fig. 1 (b).

The homeostatic effect assumed in the paper consists of a feedback autoregulation acting
in correspondence of a displacement from the basal level (i.e., for pi 6= 1) and can be modeled
as in the system (2). The model (2) predicts that the equilibrium is reached for pi corre-
sponding to p̃i = 1 + b/a. In order to have p̃i > 0, the parameters must therefore satisfy the
consistency condition bi > −ai. De facto, the amplitude of pi depends on the rate constant
r. For all time series considered, a choice of r = 0.01 (motivated by the experimental data
rather than by the dynamical model chosen, see Supplementary Notes) is sufficient to have
biologically consistent values of p̃i for the range of ai, bi required by the fitting procedure.

Since the model misses a degradation term in pi, the protein concentration changes in
response to the persistent stimulus from p̄i to p̃i without ever returning to the basal level.
Introducing such a term as in (1) typically leads to only minor differences, although exact
adaptation in mi and monotonicity in pi are lost. For sufficiently high ratios of δi/λi (∼ 5
or larger), the differences with respect to (2) are minimal, and we can talk about “quasi-
adaptation” and of an autoregulatory feedback which behaves like a “leaky” integral, see
Fig. 2 (d). The system still has two modes with distinct time constants and the dominant
mode still affects primarily only the rising front of mi.

Model identification and analysis To simplify calculations, it is convenient to change

variables, shifting the steady state to the origin. Letting xi =

[
mi − 1
pi − 1

]

, and denoting the

state and input matrices for the systems as

Ai =

[
−δi −ai

r 0

]

, and Bi =

[
bi

0

]

, (8)

then for each gene we have the linear system (with input)

ẋi = Aixi + Biu (9)



whose solution for the step response is

xi(t) = eAitxi(0) +

∫ t

0

eAi(t−τ)Biu(τ)dτ. (10)

Since tr(Ai) = −δi < 0 and det(Ai) = rai > 0, the system is always stable and its eigenvalues
are:

si,1 = −
δi

2
−

γi

2
, and si,2 = −

δi

2
+

γi

2
(11)

where γi =
√

δ2
i − 4rai. A visual inspection of the time series shows that for the vast

majority of genes the large excursion corresponding to the transient is damped without
inducing oscillatory behavior (at least above what can be considered measurement noise).
Hence in the model fitting we assumed:

1. the two eigenvalues are real, i.e., δ2
i − 4rai > 0;

2. the time constant of the fastest eigenvalue is shorter than that of the “free degradation”
given by the HL alone.

The two conditions are compatible with each other and with the model structure. In order
to agree also with the available HL measures, we shall assume the following:

si,1 < si,2 ∼ −
ln(2)

HLi

< 0.

If we choose si,2 = − ln(2)
HLi

, then we obtain the following conditions:

{

ai = −si,2(δi + si,2)/r > 0

δi > −2si,2 > 0
(12)

In correspondence of a persistent stimulus, u(t) = 1 for t > 0, the system (10) can be
solved explicitly. Since at t = 0 the system is at rest (i.e., in the basal state xi(0) = [0 0]T

for all i, corresponding to mi(0) = 1 and pi(0) = 1), only the forced evolution (second term
in (10)) matters and we obtain:

xi(t) =
bi

γi

[
esi,2t − esi,1t

r
(

e
si,2t

−1
si,2

− e
si,1t

−1
si,1

)

]

(13)

i.e., Equation (3) for mi(t) and pi(t).
Notice that as t → ∞ from the second equation of (3) we obtain that pi(t) > 0 if

rbi (1/si,1 − 1/si,2) /γi > −1, i.e., for bi > −ai as mentioned above.
The first equation of (13) can be used to fit the parameters in the dynamical model (9).

For each gene, this corresponds to identifying the values of δi and bi that optimize the fit of
mi(t) to the experimental time series. With these parameters, (9) is completely determined.
The second equation of (13) can then be used to compare the area predicted by the model
with the area computed from the experimental data.
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Figure 1: In (a) five time series from [3] showing the “step response” to different environmen-
tal stresses are plotted. For visualization purposes, the 5 series are shown sequentially one
after the other. The time axis is in minutes, the relative mRNA abundance is in log2 basis.
In the left panels, the 5153 genes are clustered in five groups according to the respective HL
(in min). In the right panels the averages of the profiles in each cluster are computed. In all
responses the trend followed during the transient is highly correlated, i.e. genes with similar
HL behave similarly in the various responses. In particular, genes with short HL tend to
be downregulated while genes with longer HL upregulated. In (b) the linear model (2) is
fitted to the experimental time series of a pair gene/protein in response to treatement with
DTT (data from [7], scales are normalized). For this class of redox stimulations, the time
constants of the response are higher than in (a). Nevertheless, as predicted by the model,
the protein time series resembles the integral of the gene time series, which corresponds
to the adaptation scenario by means of integral feedback autoregulation. Parameter values
estimated by fitting model (2) to these data, as well as to those of the other eight genes, are
listed in Table 1.

Figure 2: Four different schemes for the step response in (4). (a): open-loop scheme with
nonvanishing/vanishing transcriptional synthesis term f(·). When f(w(u)) = f(w)u with
f(w) a Michaelis-Menten (MM) function of the transcription factors w, see Supplementary
Notes for details, then the dotted red line is obtained for mi. When instead f(w(u)) is
a vanishing function then the response also vanishes (shown in red, solid). This model is
equivalent to the so-called impulse model of [26]. However, if we think in absolute (rather
than relative) terms, it entails an exact knowledge of the nominal level (hence, implicitely,
a form of memory, like the one obtained here by means of integral feedback). Notice further
how for a synthesis term f which is zero-order in mi, the rising front has a limited slope
regardless of the form of f (see Supplementary Notes for a more detailed analysis of open-
loop time constants). (b): a regulation scheme with a proportional feedback, i.e., a feedback
directly on the relative mRNA abundance. Adaptation is not achieved, rather, the mRNA
level tends to “track” exactly the amplitude of the stimulus u. (c): regulation with integral
feedback. Adaptation is achieved for any value of nominal concentration. Both feedback
schemes (b) and (c) decrease the rise time of the response. In (c) this is achieved via the
much slower dynamical variable pi. In this case pi(t) represents the area under the mi(t),
computed in the interval [0, t]. (d): “Quasi-adaptation” in presence of protein degradation
terms. When a protein degradation term is added to the equations as in (1), then perfect
adaptation is lost. However, for reasonable values of protein degradation rates, the new
steady state is still close enough to the full recovery of the pre-stimulus level and the shape
of the transient is essentially unchanged. Hence we can talk about “quasi-adaptation”.
Notice how in this case the variation in the steady state has the same sign of the transient
excursion.



Figure 3: Time response of the system (2) to a step-like input for the category of cy-
toplasmatic transcription initiation genes and for gene GCD2/YGR083C (subunit of the
translation initiation factor eIF2B) in particular. The two modes have different real parts
(si,1 = −0.11 < si,2 = −0.04), thus their difference typically shows a profile like that repro-
duced in the middle left plot. The sign of bi then determines whether the gene is classified
as up- or down-regulated by the stimulus (still middle plot). The area under the mi(t) time
course, proportional to the gene product pi(t) shown in the bottom left plot, is monotoni-
cally growing with a much slower time constant, as expected. For the gene considered here,
the experimental and reconstructed profiles are shown in the top right panel (blue and red
respectively, both in log2 scale) while profiles and model-based predictions of the entire cate-
gory of cytoplasmic transcription initiation genes are shown in the middle and bottom plots
of the right column, respectively.

Figure 4: Relationship between eigenvalues si,1 and si,2 for all genes in the five time series
of Fig. 1 (top left panel). Sum of the signs of the forcing term bi (top right panel) in the five
time series for all genes and for the most perturbed genes, selected according to a threshold
kp, i.e. satisfying max |log2(mi(t))| > kp. Notice that, choosing kp = 1, for at least 50%
of the genes the sign assignement is unanimous in the 5 series of [3] (more than 60% for
kp = 1.5). In the bottom row, for the PC complexes of Fig. 5 the area under the mRNA
response measured on the data (i.e., in the log scale, log2(pi(tend))) is compared with the
corresponding maximal signed amplitude observed during the transient (left) and with the
HL (right). The high agreement between area and the sign of the peak of mRNA during the
transient is confirming that most transient excursions are not oscillatory.

Figure 5: List of significant PC and corresponding areas(i.e., log2(pi(tend)) in the log scale
used) for the 5 time series of Fig. 1 (a). The solid markers, representing the values in the
5 experiments, indicate that for most of the neatly up or down-regulated categories, the 5
values have identical signs. The color scale represents the value of HL associated to the
protein complex: blue means short HL (minimum HL is 6 min) and red long HL (> 40 min).



Figure 6: Comparison of the average area under the curve for the time series of [3] (labeled
“gasch”), [8] (“yoshimoto”), [1] (“causton”), [29] (“tirosh”) and [5] (’ronen”). In the upper
triangular part, in blue, the scatter plots represent the area of one set of data against
any of the other sets for the PC complexes of Fig. 5. In the bottom triangular part, in
red, the scatter plots are for the KEGG pathways represented in Fig. S2. While “gasch”,
“yoshimoto”, “causton” and “tirosh” are inhibitory stimuli (stresses), “ronen” are activatory
pulses of nutrient. Hence the antidiagonal pattern in the areas shown in the bottom row
and column. In the diagonal plots, the area predicted by the model (with parameters tuned
on the 5 series of [3]) is shown against the corresponding measured area for PC (in green)
and for the KEGG pathways (in magenta). In the simulation of the activatory stimuli of [5],
the signs of the bi are exchanged. This, together with the anticorrelated plots of the bottom
row and column, validates the reciprocity property already observed in [3] for some classes
of stresses.

Figure 7: In (a), the average area under the transient response for the 5 time series is plotted
against the length of the corresponding ORFs. Longer ORFs clearly tend to be perturbed
less, while the genes significatively perturbed (both up- and down-regulated) are for the
vast majority shorter than 2kbp (shown in red). There seems to be some degree of inverse
correlation also between ORF length and (absolute) protein abundances estimated in [33] in
ordinary (unperturbed) growth conditions, see (b) (top right), with, in particular, the really
abundant proteins corresponding to short ORFs. Likewise, the correlations of both ORF
lengths and protein abundances with HL seem to be to some extent skewed, with long lived
mRNAs corresponding to short genes. The color code in (b) is the same as (a). From it (in
particular the two plots on the right) we can deduce that most genes perturbed during the
transient stress response (red dots) correspond to products having low/medium abundances.
For a significant part of the short genes, the model identification returns a high value of the
forcing parameter bi (bottom left plot), indicating that their amplified response is attributed
to an higher sensitivity to the stressful stimulation.



Table 1: Gene and protein parameters estimated by fitting model (1) to the time series of [7].
In this case, the translational rate constant r is also considered a gene specific parameter.
The average value obtained for r corresponds to our choice in the rest of the paper.

ORF ai bi δi λi r

YBR001C 0.008 0.011 0.016 0.000 0.008
YBR196C 0.012 0.019 0.023 0.001 0.010

YDR074W 0.005 0.010 0.013 0.000 0.008
YDR261C 0.001 0.004 0.006 0.000 0.011
YER003C 0.013 0.019 0.023 0.001 0.009
YGL253W 0.013 0.016 0.023 0.001 0.010
YHR163W 0.005 0.012 0.033 0.000 0.013
YKL127W 0.009 0.012 0.017 0.000 0.008
YNL241C 0.010 0.016 0.020 0.001 0.009

mean 0.008 0.013 0.020 0.001 0.010
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