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In NMR spectroscopy, the collective measurement is weakly invasive and its back-action is called
radiation damping. The aim of this paper is to provide a control-theoretical analysis of the prob-
lem of suppressing this radiation damping. It is shown that the two feedback schemes commonly
used in the NMR practice correspond one to a high gain oputput feedback for the simple case of
maintaining the spin 1/2 in its inverted state, and the second to a 2-degree of freedom control
design with a prefeedback that exactly cancels the radiation damping field. A general high gain
feedback stabilization design not requiring the knowledge of the radiation damping time constant is
also investigated.

I. INTRODUCTION

In recent years, the theory [11, 13, 16, 18, 19] and practice [14] of (real-time) feedback for quantum mechanical
systems has gained momentum especially in contexts such as quantum optics [19]. In order to avoid wavefunction
collapse, the measurement is assumed weak and the feedback is seen as a way to influence the resulting dynamics
conditioned by the measurement back-action. This conditioning is stochastic for a single isolated quantum system
[18], but can assume the form of a deterministic back-action when considering the expectation values for an ensemble
of systems [12, 16, 17]. In this last setting, the effect of a weak measurement is described by a term in a Markovian
master equation which can be conservative (when the measurement is perfect, i.e., lossless) or dissipative (imperfect
measurement).

In NMR spectroscopy, in presence of a collective spin measurement the phenomenon occurring is called radiation
damping [5, 7, 8], and it is due to the electromagnetic field induced by the current passing through the detection coil
while doing a measurement. This field in turn interacts with the spins in the sample, hence it induces a back-action
on the system observed. If back-actions are hallmarks of quantum measurement, magnetic resonance is no exception
in this respect.

In high field and probes of high quality factor, radiation damping is typically an important effect at certain frequency
ranges, for example that of the abundant spin of the solvent. For these, it behaves much like a soft pulse steering
the magnetization vector back to its equilibrium value. For other bandwidths, the back-action signal is so weak it is
dominated by the relaxation effects, and hence it is negligible. In this work we assume to be dealing with one of those
situations in which radiation damping is of interest and relaxation is negligible.

An accepted model of radiation damping exists only for the spin 1/2 case, and its formulation closely resembles the
back-action term mentioned above for generic quantum systems under weak measurements, only it is always assumed to
be conservative, i.e., to preserve the norm of the Bloch vector. The efforts to engineer the NMR receiving/transmitting
system in order to reject this form of back-action have a longer history than in other quantum systems and by now
there are many ways to compensate for it, such as electronic feedback [9], rf pulse compensation [10], gradient field, or
composite pulse sequences. We are here interested only in the first two methods, which are standard in high-resolution
NMR spectrometers.

The aim of this paper is threefold. First, we provide a rigorous convergence analysis of the behavior induced by
the radiation damping effect and described qualitatively in several papers [1, 2, 5, 6, 15]. Second, we aim to give a
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system-theoretic interpretation of the electronic feedback and pulse compensation control designs. We will show that
the first scheme can be thought of as a high gain output regulation controller in which the lateral magnetization is
the output of the system. In this case, the basic task studied in [9], namely canceling the current in the only coil
that works both as a receiver and as an actuator, means regulating the output to zero, and corresponds to trying
to maintain the spin 1/2 in the “fully inverted” state (south pole of the Bloch sphere), although it works only for
this particular state. As for the second scheme [10], it can be thought of as a prefeedback that cancels exactly the
radiation damping dynamics and which can be superimposed to another active field (on the same coil) in order to
generate desired control actions via soft, as well as hard, pulses. In control terms, this design is a 2-degrees of freedom
(DOF) control design.

The third and last aim of this paper is to explore possible alternative schemes inspired by control theory. We will
see that a high gain state feedback can be designed in order to achieve tracking of a desired trajectory up to a limited
steady state tracking error. Unlike the 2 DOF scheme based on exact radiation damping cancelation, this feedback
controller does not require the explicit knowledge of the radiation damping time constant. For “high gain” we mean a
ratio of around an order of magnitude between the signal produced in the coil to transmitt the actuation command and
the NMR signal corresponding to (unactuated, i.e., “passive”) measurement. Hence this task of radiation damping
compensation can be performed in the soft pulse regime and therefore, in principle, measurement and actuation can
be performed simultaneously on the same coil. In turn this implies that real-time feedback makes sense in this context
even with a single coil available. When strong pulses are instead considered, the above transitter/receiver ratio is
several orders of magnitude higher, hence alternative designs such as, for example, an interleaved scheme of pulsing
and measuring, should be used instead.

II. THE MODEL FOR RADIATION DAMPING

In the following, we shall focus only on the spin 1/2 case, the only one for which an accepted model of radiation
damping exists [5, 7, 8]. Disregarding relaxation effects (i.e., in the limit T1 = T2 = ∞) and denoting with m =
[

mx my mz

]T
the normalized Bloch vector, (m = M/Mo where Mo is the equilibrium magnetization), the nonlinear

Bloch equations for radiation damping in a frame rotating with the circuit resonant frequency are

dmx

dt
=δmy − `mxmz

dmy

dt
= − δmx − `mymz

dmz

dt
=`(m2

x + m2

y)

(1)

where δ = ω − ωo is the offset between the Larmor precession frequency ωo and the circuit resonant frequency ω, `
is the radiation damping rate ` = 1

γTR
, with γ the gyromagnetic ratio and TR the radiation damping time constant

TR = 1

2πξMoQ
(ξ = coil filling factor, Q = probe quality factor) [2, 5, 8]. Denoting Ax, Ay and Az the real rotation

matrices around the x, y, and z axis, Lie(Ax, Ay, Az) = span(Ax, Ay, Az) = so(3), then (1) can be written as

dm

dt
= −δAzm + `〈〈mo, Axm〉〉Axm + `〈〈mo, Aym〉〉Aym (2)

where mo =
[

0 0 1
]T

is the north pole of the Bloch sphere (aligned with the static magnetic field applied to the

ensemble) and 〈〈 · , · 〉〉 denotes an Euclidean inner product in R
3.

Proposition 1 The system (2) has mo as an almost globally asymptotically stable equilibrium point, with region of

attraction S
2 \ {m1}, where m1 =

[

0 0 − 1
]T

is the south pole of the Bloch sphere.

Proof. Consider the S
2-distance

V = ‖m‖ − 〈〈mo, m〉〉.

Clearly V (m) > 0 ∀m ∈ S
2 \ {mo}, V (mo) = 0. Differentiating along the trajectories of (2):

V̇ = −〈〈mo, ṁ〉〉 = δ〈〈mo, Azm〉〉 − `〈〈mo, Axm〉〉〈〈mo, Axm〉〉 − `〈〈mo, Aym〉〉〈〈mo, Aym〉〉
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Since Azmo =
[

0 0 0
]T

, the first term disappears and hence

V̇ = −`〈〈mo, Axm〉〉2 − `〈〈mo, Aym〉〉2 6 0

Hence V (·) is a Lyapunov function for the equilibrium mo of (2). As V̇ = 0 only for m = mo or m = m1, mo is an
attractor for (2) with basin of attraction S

2 \ {m1}. �

It is straightforward to check that the inverted state m1 is an unstable equilibrium of (2). In fact, in the literature,
it is known that a weak perturbation or even a noise disturbing m can trigger the coherent radiation from m1 to the
lower energy state mo [6, 15].

III. FEEDBACK CONTROL STRATEGIES

The electronic feedback suppression of radiation damping of [9] works on the current obtained from the measurement
coil and compensates for it inducing a field on the spins through the same coil.

For a coil aligned for instance with the laboratory x axis, the measured NMR signal is a current which is generated
by the electromotive force induced in the coil by the magnetic field and which oscillates with the circuit resonance
frequency ω. However, for all practical purposes we can assume to be measuring directly the two components of the

lateral magnetization ix(t) = ηmx, iy = ηmy, where η is an efficiency factor. Clearly
√

m2
x + m2

y 6 1 with equal sign

reached only at the equator. Since ‖m‖ = 1, the norm of the oputput vector ic(t) = η
√

m2
x + m2

y = η
√

1 − m2
z is the

amplitude of the current measured by the apparatus. If we consider ix, iy as outputs of the system and include the
control terms ux, uy for the rf fields (on the same coil as the measurement but externally driven) then (2) becomes:

dm

dt
= −δAzm + (ux + φx(m))Axm + (uy + φy(m))Aym

[

ix
iy

]

= η

[

mx

my

] (3)

where
{

φx(m) = `〈〈mo, Axm〉〉 = `my

φy(m) = `〈〈mo, Aym〉〉 = −`mx.
(4)

Remark 1 Since the system (3) is conservative, the bidimensional output in (3) allows to recover the entire Bloch
vector m ∈ S

2 up to the sign of mz. Hence our distinction between “state” and “output” feedback design reduces in
practice to the knowledge of sign(mz).

In practice, since any NMR experiment entails a preparation of the “true” initial state m(0), mz(t) can be recon-
structed by numerical integration.

Proposition 2 The output of (3) has constant norm ic(t) ∀ t if and only if ui = −φi(m), i = x, y.

Proof. The condition ui = −φi(m), i = x, y implies that ṁ = −δAzm which leaves the lateral magnetization and
hence ic invariant. For the other direction, m2

x + m2

y = 1 − m2

z = const ∀ t implies that ṁz = 0. From (1) and (2),
this yields

`(m2

x + m2

y) + uxmy − uymx = 0

i.e.,

(`mx − uy)mx + (`my + ux)my = 0 ∀ mx, my such that m2

x + m2

y = const.

This is obviously satisfied only when `mx − uy = 0 and `my + ux = 0 simultaneously. �

In [9], the electronic feedback scheme is based on considering the output current as a signal to reject i.e., the
feedback task is formulated as ic(t) → 0. Clearly, from Proposition 2, ic(t) = 0 if and only if m2

x + m2

y = 0 i.e., on
m = {mo, m1}, meaning that in practice it works to reject radiation damping only for the inverted state.

Suppressing the output current through a negative feedback circuit entails the suppression of the radiation damping.
In fact, in absence of external driving, if the back-action due to radiation damping induces a current ic and a field of
components φx(m), φy(m), suppressing that current then means suppressing the radiation damping field. Hence the
output regulation result of [9] can be formalized for our model as follows.
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Proposition 3 For the system (3), the output feedback

ux = −kφx(m)

uy = −kφy(m)
(5)

k > 1, renders the south pole m1 asymptotically stable on the open lower emisphere E1 = {m ∈ S
2 s. t. mz < 0}.

Proof. It follows from (4) that the feedback design (5) is indeed an output feedback (no knowledge of mz is required).
Consider the function W = i2c > 0 ∀m ∈ S

2, W = 0 only in mo, m1. Its derivative is

dW

dt
= 2η2(mxṁx + myṁy) = 2η2(−`mz(m

2

x + m2

y) + uymxmz − uxmymz)

= −2`mzi
2

c + 2η2mz(uymx − uxmy)
(6)

Inserting the feedback (5),

dW

dt
= −2`mzi

2

c + 2η2`kmz(m
2

x + m2

y) = 2`mzi
2

c(−1 + k) < 0 ∀m ∈ E1 \ {m1}

�

Observe in the last row of (6) that when ux = uy = 0, since mz < 0 near m1, one has Ẇ > 0 i.e., the equilibrium
m1 becomes unstable, as already shown in Proposition 1.

Remark 2 While the exact cancellation of Proposition 2 requires the knowledge of ` (and hence of the radiation
damping time constant TR), the feedback (5) works for any ` (for sufficiently high gain k).

From the proof of Proposition 3, if k = 1 then the evolution is only stable but not an attractor (Ẇ = 0 in absence
of external controls) and, from Proposition 2, this corresponds to exact cancelation of the radiation damping.

In the case of Proposition 3, the task is to regulate the output to 0. More generally, we may be interested in
manipulating the spin state while suppressing at all times the effect of radiation damping. For this scope, we can
adopt a 2-degrees of freedom (DOF) control design composed of a prefeedback that cancels the unwanted dynamics
plus a controller that achieves the desired task, e.g. stabilize the state to the desired orbit of the drift term (i.e., a
horizontal circle characterized by a desired value of mz). The general scheme for such a 2-DOF output control design
is given by

{

ux = −φx(m) + vx

uy = −φy(m) + vy

(7)

with vx, vy the new control variables. This 2 DOF controller is the one proposed in [10]. The design of vx, vy can
for example follow the theory developed in [3]. As in [3], we shall not try to suppress the precession motion (which
would introduce singularities in the control law). Rather, we will formulate the stabilization to the orbit given by the
desired value of mz, call it md,z, as a state tracking problem for the dynamical trajectory described by the following
system

dmd

dt
= −δAzmd. (8)

The following proposition formalizes this result: a trajectory stabilizing state feedback superimposed with the prefeed-
back of Proposition 2 achieves asymptotic stabilization of m to md.

Proposition 4 Consider the system (3). The 2 DOF state feedback controller given by (7) and

{

vx = k〈〈md, Axm〉〉

vy = k〈〈md, Aym〉〉
(9)

k > 0, tracks the reference trajectory md given by (8) in an asymptotically stable manner for all m(0) ∈ S
2 with the

exception of the antipodal point m(0) = −md(0) and of m(0), md(0) both lying on great horizontal circles.
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Proof. Consider the candidate Lyapunov function

V = ‖md‖
2 − 〈〈md, m〉〉

and differentiate it:

V̇ = −〈〈ṁd,m〉〉 − 〈〈md, ṁ〉〉

= δ〈〈Azmd, m〉〉 + δ〈〈md, Azm〉〉 − vx〈〈md, Axm〉〉 − vy〈〈md, Aym〉〉

= −k
(

〈〈md, Axm〉〉2 + 〈〈md, Aym〉〉2
)

6 0

where the cancellation of the two drift terms occurs since AT
z = −Az. Hence the reference trajectory md(t) is at least

stable. The proof of convergence and the analysis of the basin of attraction is now formally identical to that carried
out in Proposition 1 of [3] (see also examples in [4]). �

IV. COMPENSATING WITHOUT KNOWLEDGE OF `

The feedback controller in Proposition 4 requires: i) full state information (i.e., the knowledge of mz, especially its
sign, which is not directly retrivable form the output equation); ii) the knowledge of ` (i.e., of the time constant TR of
the radiation damping). The interesting question is whether a high gain (state or output) feedback scheme (similar to
Proposition 3) can be obtained without the explicit knowledge of ` for the more general task studied in Proposition 4.

Proposition 5 Consider the system (3) and the reference trajectory (8). Assuming that the radiation damping rate
` is unknown, the system with the state feedback

{

ux = k〈〈md, Axm〉〉

uy = k〈〈md, Aym〉〉
(10)

k > 0, converges to an orbit which approaches the reference trajectory (8) when k is large. The steady state tracking

error (i.e., the S
2-distance between the two orbits) is 1 − (k + `md,z) /

√

k2 + `2 + 2k`md,z.

Proof. Once again, the argument is based on a Lyapunov function, but for a reference trajectory Mf = kmd + `mo.

From (8)
dMf

dt
= −kδAzmd, but, since Azmo = 0, also

dMf

dt
= −kδAzMf . Since, tipically, Mf /∈ S

2, consider mf =
Mf

‖Mf‖
, where ‖Mf‖ =

√

k2m2

d,x + k2m2

d,y + (kmd,z + `)2 =
√

k2 + `2 + 2k`md,z, and, consequently,
dmf

dt
= −δAzmf .

This expression implies that considering Vf = ‖m‖2 −〈〈mf , m〉〉 and differentiating, the drift terms disappear and we
have

V̇f = −〈〈ṁf ,m〉〉 − 〈〈mf , ṁ〉〉

− 〈〈mf , (ux + φx)Axm〉〉 − 〈〈mf , (uy + φy)Aym〉〉

= −〈〈mf , Axm〉〉2 − 〈〈mf , Aym〉〉2 6 0

i.e., we have convergence to mf = (kmd + `mo)/‖Mf‖. As md(t) is symmetrically distant from mo ∀ t, also mf (t) is
so, meaning that to compute the distance between the attractor orbit mf and the desired one md a simple S

2-distance
can be used, regardless of the initial condition:

d(mf , md) = 1 − 〈〈mf , md〉〉 = 1 − 〈〈kmd + `mo, md〉〉/‖Mf‖

= 1 − (k + `〈〈mo, md〉〉) /‖Mf‖ = 1 − (k + `md,z) /
√

k2 + `2 + 2k`md,z.

�

It is clear from Proposition 5 that when the feedback gain k is high (say an order of magnitude higher than `), the
steady state tracking error becomes negligible, in particular near the equator. In Fig. 1 we show an example of how
this steady state tracking error shrinks when the gain k is increased. Notice how this tracking error depends on the
sign of md,z and is larger for orbits on the lower emisphere, see Fig. 2.
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FIG. 1: High gain state feedback stabilization without radiation damping exact compensation. The two plots show each two
curves of the system (3) with the feedback (10) from different initial conditions (blue solid lines). Clearly both converge to a
orbit that is different from the desired one of (8) (shown in red dashed line). However, in the right plot where a higher gain is
used this orbit is closer to the desired one than on the left plot (the ratio of the two gains is 4; the higher value of k is 10 times
`).
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FIG. 2: Steady state tracking error depends on the sign of md,z. The two figures show the same tracking problem as in Fig. 1,
with the only difference that now md,z has negative sign. Proposition 5 predicts that the steady state tracking error is larger
than in the case of Fig. 1. This is particularly visible for the low gain situation (left plot).

V. CONCLUSION

As for many other aspects of the NMR literature, we find that also the methods developed for the purpose of
suppressing radiation damping admitt nontrivial control theoretical formulations. Part of the aim of this paper is to
translate this problem and its solutions into language and techniques familiar to a control audience. In particular, we
obtain that feedback control strategies can be classified into two types of methods: high gain feedback and 2 DOF
controllers with a prefeedback exactly canceling the radiation damping term. We also show how to use the first type
of controller for more general tasks than considered in the literature, while still not requiring exact knowledge of the
time constant of radiation damping (a necessary condition for the methods based on exact cancelation).
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