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∗∗∗ABB Corporate Research, Väster̊as, Sweden

Abstract: Fault detection algorithms (FDAs) process data to generate a test quantity. Test
quantities are used to determine presence of a fault in a monitored system, despite disturbances.
Because only limited knowledge of the system can be embedded in an FDA, it is important to
evaluate it in scenarios relevant in practice. In this paper, simulation based approaches are
proposed in an attempt to determine: i) which disturbances affect the output of an FDA the
most; ii) how to compare the performance of different FDAs; and iii) which combinations of
fault change size and disturbances variations are allowed to achieve satisfactory performance.
The ideas presented are inspired by the literature of design of experiments, surrogate models,
sensitivity analysis and change detection. The approaches are illustrated for the problem of wear
diagnosis in manipulators where three FDAs are considered. The application study reveals that
disturbances caused by variations in temperature and payload mass error affect the FDAs the
most. It is also shown how the size of these disturbances delimit the capacity of an FDA to relate
to wear changes. Further comparison of the FDAs reveal which performs “best” in average.

Keywords: Fault detection and diagnosis; Sensitivity analysis; Robotics.

1. INTRODUCTION

Fault detection and fault diagnosis can be used to im-
prove safety, reliability, availability, and maintainability
of technical systems [Isermann, 2006]. In fault detection,
observations from the system, e.g. data, are processed and
compared to available knowledge of the system to generate
symptoms. Symptoms are a partial diagnose of the system,
i.e. a statement about which states of the system could
possibly explain the current observations. The diagnosis
of complex systems typically makes use of several fault
detection methods, each containing partial information of
the system. In fault diagnosis, the different symptoms are
processed to generate a statement of the state (condition)
consistent to all observations and knowledge embedded in
the diagnosis solution.

While increasing the amount of symptoms used for fault
diagnosis may increase the quality of the diagnostic pro-
cess, it is clear that the accuracy of the symptoms are cru-
cial. The design and verification of fault detection methods
are therefore important. Fig. 1, shows an overall scheme of
a fault detection scheme. The monitored system is affected
by input factors which are relevant for diagnostics, e.g.
faults and disturbances, and generates observations. The
observations are processed to extract relevant features that
can describe the status of the system (e.g. parameters,
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residuals, signal spectra). The behavior of the features are
then compared to (known) reference behaviors (e.g. based
on distances) to generate a test quantity. The combined
tasks of feature extraction and behavior comparison is de-
noted fault detection algorithm (FDA). Finally, a decision
rule (e.g. a threshold check or a statistical test) is used
to accept or reject the reference behaviors that the test
quantity can explain, i.e. it generates a symptom.

1.1 Problem Description and Motivation

The accuracy of the symptoms generated by fault de-
tection is determined by the ability of the test quantity
generated by the FDA to relate to changes in the system
behavior. It is thus natural to evaluate fault detection
methods based on the test quantities alone, independent of
the decision rule used. This is for instance in line with the
theory of statistical hypothesis testing, when an optimal
test is determined only by the statistical behavior of the
test quantity, see e.g. Van Trees and Kristine [2013].

It is considered that a test quantity, denoted y, is a
scalar that measures deviations from one or more reference
behaviors. The reference behaviors can be represented by
states of interest, e.g. different fault types. In this work, the
focus is on the analysis of a single fault, denoted f . Rather
than considering test quantities which are time sequences,
e.g. generated from residuals, the focus is restricted to
batch fault detection algorithms, which produce a scalar y
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Fig. 1. Overview of a fault detection scheme. The monitored system is affected by input factors and generates observations. Features are
extracted from the observations which are compared against reference (known) behaviors of the features to generate test quantities. A
decision rule determines which behaviors better explain the observations, i.e. it generates a symptom.

for an entire data batch. Batch methods are common for
signal/data-driven approaches and parameter estimation,
but similar ideas could be used also for time sequences by
summarizing the sequence to a scalar, e.g. by considering
steady-state values or some norm.

In practice, the data input to fault detection (and thus y)
are not only affected by f but by a collection of n
factors z = [f,wT ]T , where w = [w1, · · · , wi, · · · , wn−1]T

relates to nuisance factors, e.g. disturbances. The nuisance
factors, w, may cause undesired variations in y, deterio-
rating its capacity to distinguish changes in f and thus
complicating a decision. Under specified conditions and
assumptions, optimality of FDAs might be possible, see
e.g. Frank and Ding [1997], Li and Zhou [2009], Liu and
Zhou [2008], Wei and Verhaegen [2011], and it may be
possible to compare different schemes [Isermann, 1994,
2006]. However, since only partial knowledge of the system
can be embedded in any FDA, it is important to evaluate
it in scenarios which are relevant for its practical use.
From a practical perspective, given a complex system and
candidate FDAs, the following questions are of relevance:

Q-1 Which factors in w affect y the most? And should
therefore be given more relevance for further devel-
opment of the FDA.

Q-2 How can test quantities generated from different
FDAs be compared and evaluated against each other
to enable selection of the “best” FDAs?

Q-3 What is the effective scope of an FDA? That is, for
what region in the z space is the ability of y to relate
to f satisfactory?

Notice that the focus is not on properties of a particular
FDA but to define approaches to evaluate and compare
any FDA.

These questions can be addressed at different levels of
closeness to the real application. Level 0 corresponds
to the ideal case where the FDAs are evaluated with
operational data. This is particularly difficult since it
may take extremely long times for faults to appear. To
overcome this, data can be collected from experiments
performed in a lab, where faults and disturbances are
induced, corresponding to Level 1 studies. Even at Level 1,
an extensive evaluation is often inviable due to the extreme
costs and time required. Furthermore, it is often the case
that all (or parts of) the factors z are unmeasurable and
therefore a complete analysis based on real data is difficult.
At Level 2, data are generated based on a simulations of
the monitored system, which is a more viable alternative.
The simulation study must, on the other hand, be designed
carefully so that it is representative of scenarios of practical
relevance.

1.2 Main Contributions and Outline

In this paper, ideas inspired by the literature of design of
experiments, sensitivity analysis and change detection are
presented to address these questions based on simulation
studies. Even in simulation studies, an extensive analysis
of the effects of z to y may exhaust the computational
resources and time available. An important idea considered
here is to bypass the need for simulation/experimental
data using a surrogate (or meta) model. Different types
of surrogate models are possible, e.g. based on neural
networks and Gaussian processes. For its simplicity and
tractability, the surrogate models considered here will
take the form of a linear regression,

y = ϕ(z)Tθ + ε, ϕ(·) : Rn 7→ Rnθ , y, ε ∈ R (1)

where the regressors function ϕ(·) makes a direct map
from z to y through the regression coefficients θ and ε
is an additive uncertainty term. The surrogate model
incorporates both the monitored system and FDA. Studies
based on surrogate models are denoted as Level 3. In
such approach, the choice of factors z and regressors, the
identification of θ and model validation are important
and are subject of study in the field known as design of
experiments (DOE) which is presented in Sec. 2.

An answer to Q-1 is presented in Sec. 3, where the
coefficients θ of the regression models are studied using
sensitivity analysis to determine which factors in w affect y
the most. A main advantage with the use of surrogate
models is that Monte Carlo (MC) simulations can be
performed efficiently. MC runs are used in Sec. 4 to
evaluate a measure of average effects of changes in y by f
which is used to address Q-2. In Sec. 5, a measure of
satisfactory performance is suggested which is evaluated
with MC runs under various combinations of z in an
attempt to answer Q-3. In Sec. 6, the ideas are illustrated
for the evaluation of methods used for wear diagnosis in
industrial robots. Relevant characteristics of the problem
and methods are revealed from the study. Concluding
remarks are given in Sec. 7.

2. DESIGN OF EXPERIMENTS

Design of experiments (DOE) can be applied to any
system where the experimenter has control over the input
variables, or input factors, and that the output can be
measured [Kleijnen et al., 2005]. Here, the object of study
is an FDA applied in combination to a monitored system.
The input factors are, e.g., faults and disturbances present
in the monitored system, and the output is the test
quantity y. The next sections are organized to give an
introduction to the field, for more details see e.g. Box et al.
[1978], Kleijnen et al. [2005], Sanchez [2006].



2.1 Choice of Input Factors

The first task in designing an experiment is the selection
of the input factors z and their possible range of values.
Factors can be included according to the objectives of the
study to verify or falsify assumptions about the behavior of
the test quantity and to study their relations in detail. The
choice of factors should be performed carefully, with the
help of experts in the application, since a poor specification
may generate misleading results. For the context here,
input factors include the fault f and nuisance factors w
such as external disturbances, operating points, etc.

Once the factors are chosen, the experimenter must decide
their range of values and a discrete set of factor levels that
shall be considered in the study. A more detailed study
is possible by increasing the number of levels, m, in a
compromise with the number of experiments required. The
factor levels chosen will have an impact on the study and
it is therefore very important to choose levels which are
extreme but not impossible for realistic situations. Two
representations of factor levels are typically used:

• natural levels are the values for the factors that are
used in the experiment or simulation;
• coded levels all factors are normalized to the same

scale. Used when identifying the surrogate models.

2.2 Surrogate Models as Linear Regressions

Linear regression models as in (1) are simple, tractable
and easy to interpret. For these reasons, they are a popular
choice in the DOE literature. A limitation is that they may
misrepresent the relations between z and y. To circumvent
this, more complex model structures, such as neural net-
works and Gaussian processes could be considered, see e.g.
[Oakley and O’Hagan, 2004]. Compared to linear regres-
sions, more complex models may be less interpretable and
tractable which are important characteristics for surrogate
models. Easy to interpret models are particularly impor-
tant for sensitivity analysis, studied in Sec. 3.

Many different model structures of linear regressions can
be considered. From the DOE literature, two structures
are commonly used. A main effects model has regressors
that are directly dependent on the inputs factors, i.e.

ϕ(z)T = [ 1 zT ] = [ 1 f w1 · · · wn−1 ] (2a)

θT = [ b {θi} ] (2b)

where b is a bias term and θi has indices i∈ [0, · · · , n−1].
Since this is a simple model it may not be a realistic
representation of the system. A second-order model
extends the main-effects model with interaction (cross)
and quadratic terms as

ϕ(z)T = [ 1 zT svec(zzT )T ] (3a)

θT = [ b {θi} {θij} {θii} ] (3b)

where svec(·) maps a symmetric matrix of size N to a
vector of length N(N+1)/2 and i, j∈ [0, · · ·n−1] with i>j.
A second order model can capture more complex relations
between the factors than a main effects model. However,
since each factor is included in several terms, it is more
difficult to analyze the effects of different factors to y.
Notice that the models can be extended further with three
way interactions and terms of higher orders.

2.3 Identification

Consider that N experiments are performed with inputs

Z = [z1, · · · , zN ]T ∈ RN×n (4)

and outputs y=[y1, · · · , yN ]T ∈ RN . Given that the test
quantities can be described by (1), the resulting model

is y = Φ(Z)θ + ε with Φ(Z) , [ϕ(z1), · · · , ϕ(zN )]T . To
find the coefficients θ, a least-squares error criterion gives

θ̂ = arg min
θ
‖y − Φ (Z)θ‖22

= [Φ (Z)
T

Φ (Z)]−1Φ(Z)Ty. (5)

Notice again that the coded levels should be used
when identifying the regression coefficients. Otherwise, the
scaling of the variables will hinder some of the analyses
presented further.

2.4 Design Matrix

A design matrix represents the user choice of simulation
experiments to be performed. Typically, the columns cor-
respond to the factor levels and rows are design points, i.e.
a specific choice of the coded levels z. Using the previously
introduced notation, a design matrix corresponds to a
specific choice of Z in (4).

A full factorial design considers all possible combinations
of the m levels and n factors possible, giving mn ex-
periments. A fractional factorial design considers only a
fraction mn−p of the full factorial design, thus reducing
the number of experiments by mp. A central composite
design extends a two level, i.e. m=2, factorial design (full
or fractional), with points at the center of the factor levels
and 2n “star points” which represents extreme values for
the factors, see the example. A central composite design
allows for estimation of higher order models with small
number of experiments. For more, see e.g. Atkinson et al.
[2007], Fedorov [1972], Kleijnen et al. [2005].

Example. A n = 3 central composite design
based on 23 full factorial design (black), a
center point and star points at the faces (gray).

2.5 Design Parameters

The validity of a surrogate model is of course limited.
For example, it should not be expected that the same
model can be used for different monitored systems or for
different FDAs. The settings that determine the validity
of the surrogate models are called design parameters. One
surrogate model should be identified for each different
combination of design parameters.

2.6 Model Validation

The analyses performed in this paper are based on surro-
gate models and it is therefore important to validate them.
Model validation is used to assess whether the model will
generalize to input values independent of those used during
the model identification. Model validation can be done by
cross-validation, where a fresh dataset, denoted Zv, is used
with the sole purpose of validation.



The model fit [Ljung, 1998] can be used as a criterion to
assess the validity of a model. It is defined as

fit = 100

(
1−
‖y − ŷ‖2
‖y − ȳ‖2

)
, ȳ ,

1

N

N∑
i

yi (6)

where the model output ŷ is evaluated at Zv. For a linear

regression ŷ , Φ(Zv)θ̂. The model fit relates to how well
the model predicts the output in average.

3. DETERMINING RELEVANT FACTORS

An approach to address Q-1 is to study how changes in a
factor affect the output y. The partial derivatives of the
surrogate model with respect to the factors z reveal how
the first order properties of y are affected by z. This type of
study is part of sensitivity analysis [Saltelli et al., 2008].
For the main-effects model (2), the derivatives are given
directly by the coefficients θ. Because coded levels of z are
used in the regression models, the size of a coefficient θi
relates to how y is affected by the associated factor. For
more complex models, such as the second-order model (3),
the partial derivatives depend not only on θ but also on
the values of z where they are evaluated. Therefore, a
direct comparison of the coefficients does not have the
same character as for a main effects model, but can still
be used to provide insights about the behavior of y.

3.1 Normalization of Coefficients

For regressors written as

ϕ(z)T = [ 1 f · · · ] (7a)

θT = [ b θ0 · · · ] (7b)

the coefficient θ0 relates to the direct effect of the fault f .
To facilitate the study and comparison of coefficients, the

identified coefficient vector θ̂ can be normalized as

θ= θ̂/θ̂0. (8)

In this manner, the coefficients have values relative to the
direct effect of f . A normalized coefficient with |θi| < 1
would thus mean that f has a direct effect to y which is
larger than that caused by the regressor associated with θi.
The situation where |θi| > 1 is possible but undesirable
(unless θi also relates to f). Notice that θ0 =1.

3.2 Group Analysis

The normalized coefficients in (8) can be grouped to-
gether over a subset of the design parameters to investigate
different aspects of the problem. For example, consider a
problem with two design parameters corresponding to the
FDA used and the system monitored. Groups formed for
each FDA over all monitored systems would allow for an
overall comparison of the FDAs sensitivity. On the other
hand, groups formed for each monitored system could be
used to reveal which systems are more difficult to perform
fault detection, independent of the FDA chosen.

Suppose there are K groups, where each kth group has Nk

regression models. The following matrix can be formed for
the kth group

Bk =
[
θ

1
, · · · , θNk

]T
∈ RNk×nθ . (9)

Each group can be analyzed using box plots for each
column (each group of coefficients) of Bk. This type of
analysis is illustrated further in Sec. 6.2.

4. COMPARING FAULT DETECTION ALGORITHMS

A simple approach to address Q-2 is to analyze the average
effects a change in f gives to y when random changes of
the nuisance factors w are present. To proceed, a change
is defined in terms of hypotheses in Sec. 4.1 and a measure
of average change in the output is defined in Sec. 4.2.

4.1 Two Hypotheses

The performance of a test quantity is associated to how
well it can be used to relate the presence of a change
from nominal in f , irrespective of variations in the dis-
turbances w. Given an observation y, two hypotheses
are considered. The null hypothesis, H0, represents the
case where y was collected when f was nominal and the
alternative hypothesis, H1, states that an abnormal change
in f was present. These hypotheses can be described by
the particular choices of input factors

H0 : f = f0, w ∼ p(w), (10a)

H1 : f = f0 + ∆, w ∼ p(w), (10b)

where f0 is the nominal value of f , ∆ is the fault change
size and p(w) is a distribution for the (considered random)
nuisance factors w. Output values collected under the
different hypotheses are denoted as y|H0 and y|H1.

4.2 A Measure of Average Effects

Denoting [µ0, µ1] and [σ0, σ1] the mean and standard
deviation of y|H0 and y|H1 for the hypotheses given
in (10), the signal to noise ratio (SNR), defined as

SNR ,
µ1 − µ0

σ1
, (11)

relates to the average effects a change of size ∆ in f
causes to the test quantity in relation to effects of random
variations in w. The larger the SNR value, the easier it
will be to distinguish the change in f . In order to find
the quantities used in the computation of the SNR, Monte
Carlo runs can be performed for different realizations of w
until enough samples of y|H0 and y|H1 are collected for
the estimation of µ0, µ1, σ1. Here, the use of regression
models instead of experiments allows for efficient MC
runs, and the quantities can be found accurately and in
short time.

4.3 Group Analysis

In a similar manner as discussed in Sec. 3.2, the SNRs
can be grouped over subsets of design parameters to asses
different aspects of the problem. Notice that the SNRs
are already normalized quantities. The use of SNRs for
comparison of test quantities is illustrated in Sec. 6.3.

5. DETERMINING THE EFFECTIVE SCOPE

To address Q-3, a measure of satisfactory performance of
a test quantity must be defined. Once the performance
criterion is defined, it is possible to investigate what region
in the z space is the criterion fulfilled. That is, the effective
scope of the test quantity can be found.



5.1 A Measure of Satisfactory Performance

For fault detection, the behavior of the test quantity
should allow for a correct generation of symptoms. For a
given decision rule, the accuracy of the fault detection can
be defined in terms of the probabilities of false, Pf , and
correct detection, Pd, of a fault presence. A natural per-
formance criterion is thus defined according to acceptable
levels of Pd and Pf . This can be tested with the function

pass =

{
1, if Pf ≤ P ′f and Pd ≥ P ′d,
0, otherwise

(12)

where P ′f and P ′d are the chosen performance requirements.
For a satisfactory performance of the test quantity, low Pf

and high Pd are typically desirable.

The presence of an abnormal fault can be modeled with
two hypotheses, e.g. given in (10). In this case, Pf relates
to accepting H1 when H0 is true, and Pd relates to
acceptingH1 whenH1 is true. The probabilities Pf and Pd

are however dependent on the decision rule used. Different
decision rules are possible, see e.g. Gustafsson [2000]. Here,
a threshold check is considered since it is one of simplest
and is also a common choice. It is defined as

{Choose H1 if: y ≥ ~.Otherwise, choose H0} (13)

where ~ is a threshold. The decision rule chosen and hy-
potheses (10) define a binary hypothesis test [Van Trees
and Kristine, 2013]. Let p(y|H0) and p(y|H1) denote the
probability densities of y under the different hypotheses.
For the threshold check (13) with threshold value ~, Pf

and Pd can be computed as

Pf =

∫ ∞
~

p(y|H0) dy, Pd =

∫ ∞
~

p(y|H1) dy. (14)

Notice that according to (14), for a fixed Pf there is an
associated ~ and thus a Pd. The criterion (12) can therefore
be verified by first finding ~ for the limiting value P ′f ,
computing the associated Pd and checking whether it is
larger than P ′d. The hypotheses densities can be estimated
given a large number of observations for y|H0 and y|H1,
which can be achieved efficiently with MC runs using the
regression models. Here, a kernel density estimator is used,
see e.g. [Bowman and Azzalini, 1997].

5.2 Finding the Effective Scope

To find the scope of a test quantity, criterion (12) can
be verified for multiple binary hypothesis tests where the
hypotheses in (10) are varied. In order to simplify the
analyses, one nuisance factor is varied randomly at a time,
while the others are kept constant. This setup can be
described by the hypotheses

H0 : f = f0, wj 6=i = w′j , wi ∼ p(w) (15a)

H1 : f = f0 + ∆, wj 6=i = w′j , wi ∼ p(w) (15b)

i.e. the ith nuisance factor is varied randomly while the
remaining are kept constant. By checking (12) for different
values of ∆ and p(w) in (15), it is possible to gather
understanding of the effective scope of the test quantity.

With this purpose, it might be useful to restrict how
the distribution p(w) can be varied. Consider for instance
that p(w) has zero mean and variance σ2. By varying σ,
it is then possible to study how much variability of wi is

allowed for a satisfactory performance. Considering that ∆
and σ can be chosen from the discrete sets

∆ = [∆1, . . . ,∆N∆ ]T , σ = [σ1, · · · , σNw ]T , (16)

all possible combinations of (∆, σ) define a grid of
size N∆×Nw. The result of the performance test (12)
for each pair (∆, σ) in the grid can be stored in a binary
matrix of the same size, denoted scope matrix. Because
each entry in a scope matrix relates to whether the per-
formance criterion is achieved, its inspection allows for a
straightforward analysis of the scope of a test quantity.

5.3 Group Analysis

Scope matrices can be found for each regression model. In
a similar manner as discussed in Secs. 3.2 and 4.3, scope
matrices can be grouped over subsets of design parameters.
Because each entry in the matrices is either zero or one, the
information in the group can be summarized by summing
over its scope matrices. In this case, the entry values of
the resulting group scope matrix will correspond to how
many times has successful performance been achieved for
the corresponding combination of (∆, σ) over the design
parameters in the group. This type of analysis is illustrated
in Sec. 6.4 for the robotics application.

6. EVALUATION OF FAULT DETECTION
ALGORITHMS FOR WEAR DIAGNOSIS IN ROBOTS

The framework is illustrated for the problem of wear diag-
nosis in an industrial robot joint. As empirically shown in
Bittencourt et al. [2011] from accelerated wear tests (Level
1 studies), wear in a robot joint can lead to variations of
friction. Since the friction torques must be overcome by
the motor torques during operation, it is possible to ex-
tract information about friction (and wear) from available
signals. Friction is however dependent on other factors
than wear, such as temperature and load. The effects
of temperature are specially difficult since temperature is
not measured in typical robot applications. These effects
should nevertheless be considered when evaluating differ-
ent fault detection algorithms.

To simplify the presentation and due to confidentiality
issues, the FDAs considered in the study are treated as
black-boxes, processing data to generate a test quantity y,
recall Fig. 1. The focus is placed on the FDAs evaluation
and comparison. The FDAs considered in this study share
the following characteristics, which are relevant for the
presentation of the paper:

C-1 Process data batches collected from a test-cycle;
C-2 Outputs a scalar quantity for each data batch;
C-3 Require nominal (wear-free) data.
C-4 Process data for a single axis and should indicate wear

changes only for that axis;
C-5 The behavior of a test quantity depends on a combi-

nation of FDA, robot, axis and test-cycle;

Data is collected at Level 2, i.e. based on simulation
experiments, using an ABB internal simulation tool and
the analyses are performed at Level 3 with the use of
surrogate models. A simplified version of the friction model
presented in Bittencourt et al. [2011] is included in the



simulation model. The model used to describe friction in
the robot joints is given by the static nonlinear function

τf (φ̇, T, f) = η0 + (η1 + η2T )e
−
∣∣ φ̇
η3+η4T

∣∣
+

(η5 + η6T )φ̇+ η7e
−
∣∣ φ̇
η8f

∣∣
+ η9φ̇f

(17)

and relates to the effects of angular speed, φ̇, temperature
(as measured in the joint lubricant), T , and wear fault, f ,
to friction, τf . The remaining quantities η in (17) are
model parameters, see Bittencourt and Gunnarsson [2012],
Bittencourt et al. [2011] for more on friction models and
their identification. The complete study includes:

S-1 Three FDAs (A,B,C) for wear diagnosis;
S-2 A medium robot with max. payload of 10-25kg,
S-3 A large robot with max. payload of 100-250kg;
S-4 Wear is studied in the three first axes of these robots.
S-5 A total of six different test-cycles.

The study is aimed at answering questions Q-1 to Q-3
for the robotics application. The next sections define the
experiments performed and presents the results.

6.1 Design of Experiments

Input factors The following factors are considered rele-
vant and are included in the study.

Wear. According to S-4, wear is introduced in three of the
axes. Recalling that the FDAs process data for a single axis
(C-4), the wear introduced in that axis will correspond to
the fault factor f . When wear is present in the other two
axes, they may cause variations in y due to coupling effects.
Since these variations may complicate fault isolation, they
are considered as nuisance factors, w1 and w2. The wear f
in (17) is a dimensionless quantity with values between
0 (no wear) and 100 (a total failure due to wear), see
Bittencourt et al. [2011]. In this study, it is considered that
values in the range [0, 50] are of interest. This is because
the detection of a partial failure is more interesting for
condition-based maintenance since it gives more time to
perform maintenance before an eventual stop.

Temperature. The friction model used given in (17) in-
cludes temperature dependencies which will affect the data
used for the FDAs. The temperature factor is assigned
as w3. The temperature range considered is [30, 70]◦C
and is based on a typical temperature behavior for a
robot operating in a room with controlled environment
temperature. The range copes with variations due to self-
heating caused by losses in the joint and changes in the
environment temperature.

Point-to-point delay. In point-to-point movements, the
robot is required to fulfil a set of criteria in order to guar-
antee that a certain position was reached before issuing a
command to move to the next position. During real-time
path execution, the time required for the verification of
these criteria may differ, causing variations to the trajec-
tory. This varying “delay” is considered to have an effect
on the test quantities and is thus included as a factor, w4.
The range of values for w4 is [25, 75]ms and is based on
values found for the robots studied.

Payload mass error. The control system used in the
robot relies on the defined payload mass. The closed-loop

Table 1. Definition of the factor levels used.

Coded Levels
-2 -1 0 1 2

Factor Natural Levels Unit

f, w1, w2, wear 0 12.5 25 37.5 50 -
w3, temperature 30 40 50 60 70 ◦C
w4, point-to-point delay 25 37.5 50 62.5 75 ms
w5, payload mass error -10 -5 0 5 10 %

Table 2. Some entries of the design matrix.

Row f w1 w2 w3 w4 w5 . . .
1 -1 -1 -1 -1 -1 -1 41 0 0 0 0 -2 0
2 -1 -1 -1 -1 1 1 42 0 0 0 0 2 0
3 -1 -1 -1 1 -1 1 43 0 0 0 0 0 -2
4 -1 -1 -1 1 1 -1 44 0 0 0 0 0 2
5 -1 -1 1 -1 -1 1 45 0 0 0 0 0 0

system (and data) will thus be affected in case there is
an error in the defined mass. The payload mass error is
assigned as w5 and has values in [−10, 10]% relative to the
correct mass.

For the study, five levels are considered for each factor,
i.e. m = 5. The levels are distributed linearly within the
suitable range for the factors. The factor levels used can
be seen in Table 1. According to C-3, the test quantities
require nominal (wear-free) data which are generated
according to the following coded levels,

z0 = [−2 −2 −2 0 0 0 ]
T
, (18)

i.e. no wear is present in any of the axes, with temperature
at 50◦C, 50 ms of point-to-point delay and no error in
payload mass.

Regression Models Two model structures are considered,
a full second-order model as in (3) and a simplified second
order model of the form

ϕ(z)T = [ 1 f wT svec(wwT )T ] (19a)

θT = [ b θ0 {θi} {θij} {θii} ] (19b)

where i, j ∈ [1, · · · , n] with i>j. Notice that there are no
cross-terms for the fault f in model structure (19), only for
the disturbances w. An interpretation of the coefficients
for this model is thus simpler compared to the full second-
order model.

Design Matrix A central composite design based on
a 2n−1 fractional factorial design with one center point
and star points at [2,-2] is considered, requiring a total
of N=45 experiments. Parts of the values for the design
matrix are seen in Table 2.

Design Parameters According to C-5, the test quantities
produce comparable results only when the same FDA,
robot, axis and test-cycle is used. Therefore, for different
combinations of these design parameters, a different re-
gression model should be used. This gives a total of 3×
2× 3× 6 = 108 regression models corresponding to the
number of FDAs, robots, axes and test-cycles considered.
Notice though that the same design matrices can be used
to identify all regression models. And further that the same
simulated data for a robot can be used to identify the
models for all FDAs and for all axes. Each regression model
requires N=45 experiments, a total of 108/(3×3)×45=540
simulations are therefore needed to identify all regression



Table 3. Factor levels used for validation.

Factor Natural Levels Unit

f, w1, w2, wear 5 15 25 35 45 -
w3, temperature 35 42 49 56 63 ◦C
w4, point-to-point delay 31 41 51 61 71 ms
w5, payload mass error -9 -6 -3 0 3 %

Table 4. Model fits for a robot and test-cycle.

Model Fit [%]
FDA Model Eq. Axis 1 Axis 2 Axis 3

A (19) 83.2 72.5 82.1
A (3) 87.9 83.7 88.1
B (19) 64.6 65.5 65.7
B (3) 87.8 91.0 91.9
C (19) 89.8 84.2 85.6
C (3) 95.0 85.3 89.9

models in the study. Each simulation experiment takes
around ten seconds to be performed, requiring 90 min for
all 540 simulations.

Identification and Validation The simulation experi-
ments are performed and the regression models are iden-
tified using (5). The design matrix used for identification,
given in Table 2, is also used for validation of the regression
models but with different factor levels, given in Table 3.
The model fits, computed as in (6), are shown in Table 4
for a certain robot and test-cycle. The fits are generally
high for all FDAs, with higher values for the full second-
order model, specially for FDA B.

6.2 Determining Relevant Factors

Sensitivity analysis are used here to address Q-1, i.e. to
determine which input factors cause more variations to
the output of an FDA. The regression coefficients are
normalized as in (8) and are grouped for each FDA
according to (9). Because model (19) is simpler to analyze
than model (3), only the coefficients for this model are
shown here. Each of the group matrices, as in (9), have
dimensions (36×21), corresponding to a combination of
the design parameters left and number of coefficients in
the regression model.

In Fig. 2, the 21 normalized coefficients are displayed in
box plots for each test quantity. The statistics for the
box plots are computed over each column of the group
matrices. Recall that, because of the normalization used,
coefficients with values larger than 1 indicate that the
corresponding regression term has a larger effect to the
output compared to the direct effect of f , i.e. wear. An
inspection of the graphs allows to conclude that factor w3,
temperature, considerably affects all FDAs. FDA C has the
lowest value for the median of coefficient θ3, related to the
direct influence of temperature. For FDA A, values greater
than 1 are found for θ5, the direct influence of payload
mass error, while FDAs B and C show a less significant
response for this factor. The factors related to wear in
other joints, w1 and w2, and point-to-point delay w4 show
insignificant responses.

6.3 Comparing Fault Detection Algorithms

As discussed in Sec. 4, the SNRs can be seen as a
measure of average performance of a test quantity. For

the computation of the SNRs, the parameters defining the
hypotheses in (10) are set as

f0 =−0.5, ∆=1, p(w)=N (0, Iσ2), σ=0.25, (20)

i.e. the main wear factor, f , is changed by a fourth of its
allowed range and the nuisance factors w are considered
as Gaussian random variables independently distributed
with a common standard deviation which is 1/16 of their
range. Model structure (3) is considered in the study
since it presented larger fits in general (recall Table 4).
For each regression model, the SNRs are computed based
on 1 105 MC runs. The total 1.08 107 MC runs needed for
all regression models took approximately 12 seconds in a
standard desktop PC. To perform the same analysis using
Level 2 studies, i.e. with the simulator, would have taken
nearly three and a half years.

The SNRs grouped according to FDA are displayed in box
plots in Fig. 3. The SNRs can be used to rank the different
FDAs. If the median over each group is used as a criterion,
this example reveals that FDA C gives better performance,
followed by FDAs B and A.

6.4 Determining the Effective Scope

The use of scope matrices is illustrated here to de-
termine how the factors w3 and w5, i.e. temperature
and payload mass error, delimit the scope of the test
quantities. Criterion (12) is considered for the study
with P ′f =0.01 and P ′d =0.99. The hypotheses in (15) are

defined with f0 =−2 and w′j 6=i are set to the nominal

values given in (18). The criterion is evaluated for values
of ∆ ∈ [0, 4] and σ ∈ [0.01, 1] based on a linear grid of
size 30×30. The hypotheses densities are estimated using a
kernel density estimator based on 1 105 MC runs. The total
MC runs needed for the study is of 30×30×1.08 107 =9.72 109

which took approximately 3h15min using the regression
models. To evaluate these analyses at Level 2, with the
simulator, would have taken more than three millennia.

Group scope matrices are formed for each FDA. An entry
in the resulting matrix can take values between zero
and 36. The resulting matrices for w3 and w5 are shown
in Fig. 4 with a colormap associated to the entry value
in the scope matrix. From an inspection of the figures, it
is possible to determine the minimal size of ∆ for which
an FDA performs satisfactorily given a fixed disturbance
variation σ, and vice-versa. From analyses of Fig. 4(b),
it is possible to note that FDA C is the least affected
by payload disturbances. As seen in Fig. 4(a), all test
quantities are considerably affected by temperature, but
FDAs A and C allow for more variations of temperature
compared to FDA B.

7. CONCLUSIONS

This paper proposed a framework for evaluation and com-
parison of fault detection algorithms (FDAs) based on sim-
ulations. An extensive investigation of the different FDAs
is made possible with the use of surrogate models which
considerably reduce the time needed for the evaluation of
the analyses. As illustrated in the application example, this
was in fact the only viable alternative. The approaches
suggested may be used to reveal which inputs affect an
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Fig. 2. Normalized regression coefficients for the model (19) grouped according to FDA. In the box plots, the dotted circle indicates the
median, the extremities of the bar relate to the 25th and 75th percentiles and the isolated circles are outliers. Notice the different scales.
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Fig. 3. SNRs grouped for the different FDAs. The box plots are
for groups over all design parameters where the dotted circle
indicates the group median, the extremities of the bar relate to
the 25th and 75th percentiles and circles are outliers.

FDA the most, which FDA performs best in average and
the effective scope of an FDA.

It should be noted that conclusions drawn based on
simulations or surrogate models should always be carried
out carefully since they are a limited representation of
reality. Results achieved in this manner give good insights
about the problem and support decisions but, ultimately,
the test quantities should be evaluated based on real
experiments. In the robotics application, accelerated wear
tests can be used with this purpose, but with much higher
costs and time required for a statistically significant study.

The framework is rather general and can be extended to
study various aspects of fault detection algorithms. For
example, tuning parameters and sampling frequency could
be included in z to study how they affect the test quantities
and support their choices.
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