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Abstract

Performing experiments for system identification is often a time-consuming task which may also interfere with the process
operation. With memory prices going down, it is more and more common that years of process data are stored (without
compression) in a history database. The rationale for this work is that in such stored data there must already be intervals
informative enough for system identification. Therefore, the goal of this project was to find an algorithm that searches and
marks intervals suitable for process identification (rather than performing completely automatic system identification). For
each loop, 4 stored variables are required; setpoint, manipulated variable, process output and mode of the controller.

The proposed method requires a minimum of knowledge of the process and is implemented in a simple and efficient recursive
algorithm. The essential features of the method are the search for excitation of the input and output, followed by the estimation
of a Laguerre model combined with a chi-square test to check that at least one estimated parameter is statistically significant.
The use of Laguerre models is crucial to handle processes with deadtime without explicit delay estimation. The method was
tested on three years of data from more than 200 control loops. It was able to find all intervals in which known identification
experiments were performed as well as many other useful intervals in closed/open loop operation.
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1 INTRODUCTION

In the process industry, models are relevant for differ-
ent purposes, such as optimizing production, improving
control performance and supervision. In many occasions
the task of building a process model is complemented
with an identification procedure, where the model pa-
rameters are identified from measured data. Performing
dedicated experiments for system identification is often
a time-consuming task which may also interfere with the
process operation. Nowadays, it is common to store mea-
surement data from the plant operation (without com-
pression) in a history database. Such data is a very useful
source of information about the plant, and might con-
tain suitable data to perform process identification. Due
to the size of such databases, searching for data intervals
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suitable for identification is a challenging task. Prefer-
ably, this task should be supported by a data scanning
algorithm that automatically searches and marks data
intervals of interest.

Relatively little can be found in the literature that di-
rectly addresses this problem. In [1], a data removal cri-
terion is presented that uses the singular value decom-
position (SVD) technique for discarding data which is
only noise dependent and leads to a bigger mean square
error (MSE) of the estimated model parameters. Horch
introduced in [2] a method for finding transient parts of
data after a setpoint change, specifically targetting the
identification of time delay [3]. In [4], the authors discuss
persistence of excitation for on-line identification of lin-
ear models but do not deal with finding intervals of data
that are persistently exciting. Data mining techniques
have been proposed to give a fully automated modeling
and identification, based solely on data. In [5], the au-
thors proposed a method to discover the topology of a
chemical reaction network, whereas in [6] a method is
proposed to find the dynamical model that generated the
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Fig. 1. Control loop.

data using symbolic regression. In [7], the authors con-
sider the use of historical data to achieve process models
for inferential control, some guidelines are suggested on
how to select intervals of data to build models, but no
algorithm is proposed with this objective.

Process plants have specific characteristics that make a
fully automated modeling and identification a challeng-
ing task, see e.g. [8]. This work focuses on models that
are suitable for the design/tuning of low order controllers
like PI and PID. For this purpose, it is clear from the
above considerations that a fully automated identifica-
tion is challenging. Instead, the objective of this work
is to develop a data mining algorithm that retrieves in-
tervals of data from a historic database that are suitable
for process identification. The method outputs the in-
tervals together with a quality indicator. The user can
then decide on the model and identification method to
be used.

1.1 Problem Formulation

Consider the control loop in Fig. 1, at time k the opera-
tion mode m(k) is either manual or automatic. In man-
ual mode, the input to the process u(k) is decided by
the user. In automatic mode, u(k) is given by the con-
troller. The controller is driven by the control error e(k),
formed from the setpoint r(k) subtracted by the mea-
sured process output y(k), which is corrupted by noise
v(k). It is considered that the system can be described
by an unknown modelM(θ), which is a function of the
parameters θ.

A collection of data ZN =[Z(1)T , · · · , Z(N)T ]T is avail-
able, where Z(k)=[m(k), r(k), u(k), y(k)]. The objec-
tive is to find time intervals ∆ = [kinit, kend] where the
data in ZN is suitable to perform identification of the
process parameters.

For its practical use, the following characteristics are
sought:

I Minimal knowledge about the plant is re-
quired. That is, none (or little) input is expected
from the user.

II The resulting algorithm should process the
data quickly. For example, a database containing
data from a month of a large scale plant operation
should not take longer than a few minutes to be
processed.

III For each interval found, a numeric measure
of its quality should be given. This can be used
by the user in order to select which intervals to use
for identification.

In order to achieve both I and II, some simplifying as-
sumptions are taken:

Assumption 1.1 (SISO) The complex interconnec-
tions present in a plant are disregarded and it is assumed
that only SISO control loops are to be estimated.

Assumption 1.2 (Linear models) It is assumed that
the process can be well described by a linear modelM(θ).

For a process in operation there are mainly two scenarios
to hope for that may result in data informative enough
for system identification (see [9,2]):

• The process is operating in manual mode and the in-
put signal u(k) is varied enough to be exciting the
process.

• The controller is in automatic and there are enough
changes in the setpoint r(k) to make identification
possible.

As a consequence, the method developed below is treat-
ing these two cases separately.

2 SYSTEM IDENTIFICATION PRELIMI-
NARIES

Consider first the case of open loop operation. Even
under Assumptions 1.1 and 1.2, there are many model
structures and numerical identification methods possi-
ble. Since we have a clear requirement on low computa-
tional complexity it is natural to focus on model struc-
tures based on linear regression:

y(k) = ϕT (Z̄k−1) θ + v(k), (1)

where the data Z̄k−1 contains past inputs u(k −
1), . . . , u(1) and outputs y(k − 1), . . . , y(1). The vec-
tor ϕ is a regressor and its choice defines the model
structure M of the process. The n dimensional vector
θ contains the unknown parameters and v(k) is white
noise with variance γ.

A common choice of identification approach is the
prediction error method, where the prediction error
ε(k, θ) = y(k) − ϕT (Z̄k−1)θ is minimized according
to some criterion. Using a least squares criterion, the
estimate is given by

θ̂N = arg min
θ

1

N

N∑
k=1

[
y (k)− ϕT

(
Z̄k−1

)
θ
]2
, (2)
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which has the solution, [9],

θ̂N = R̂−1
N

1

N

N∑
k=1

ϕ(Z̄k−1)y(k), (3)

R̂N ,
1

N

N∑
k=1

ϕ(Z̄k−1)ϕ(Z̄k−1), (4)

The feasibility of this solution depends on whether the
information matrix R̂N is invertible.

Assume that the true system is described by a linear
regression with true parameters θ0, and with a true noise

variance γ0. Then, as N → ∞, the estimate θ̂N will be
asymptotically normally distributed, [9]. More precisely

√
N(θ̂N − θ0) ∈ AsN (0, P ) , P , γ0

[
lim
N→∞

R̂N

]−1

.

(5)

This means that for finite number of data, N ,

θ̂N ∼ N (θ0, PN ) , (6)

where an estimate of the covariance matrix P̂N is given
by

P̂N =
1

N
γ̂N [R̂N ]−1, γ̂N =

1

N

N∑
k=1

ε2(k, θ̂N ). (7)

The matrix R̂N therefore determines the quality of the

estimate θ̂N . Notice that R̂N is a function of the data
ZN as well as the model structureM. In order to make
the covariance small, R̂N should be made large in some
sense. This idea is explored, for instance, in experiment
design (choosing u) for system identification. A data set
ZN is therefore suitable for identification of the model
structureM if it is such that the matrix R̂N is large. An-
other important piece of information in (5) is the size of
γ̂N , i.e. how small the optimal prediction errors are. To
test how informative an interval of data is in Sec. 3 we
define quantities that relate to these measures of identi-
fication quality.

However, before defining test quantities, two other rel-
evant issues should be addressed. The first is related to
the solution of θ̂N and the related quantities. A solution
based on explicitly forming the inverse as in (3) is not
numerically well conditioned. In the proposed method
this is overcome with a numerical solution based on QR
factorization, which is presented in Sec. 2.1. The sec-
ond issue is related to the fact that any condition based
on R̂N demands knowledge of the model structure M,
which is assumed to be unknown by the Requirement I.
An idea to circumvent this is to use a model structure

flexible enough to explain the input-output relation of a
large variety of processes. Such issues are addressed in
Sec. 2.2.

2.1 Solution to the Least Squares Problem based on QR
factorization

An equivalent formulation of (2) is

θ̂N = arg min
θ
‖Y − Φθ‖22, (8)

where

Y T =
[
yT (1) · · · yT (N)

]
,ΦT =[ϕ(1) · · · ϕ(N)] . (9)

Because the norm in the minimization is not affected by
an orthonormal transformation, apply the QR factoriza-
tion as [Φ Y ] = QR, where Q is orthonormal, QQT = I.
R is a matrix of the form

R =


R0

· · ·
0

 , R0 =

R1 R2

0 R3

 , (10)

where the matrixR0 is square upper triangular of dimen-
sion n+ 1 and R3 is a scalar. Applying the orthonormal
transformation QT from the left in (8), then

‖Y − Φθ‖22 =
∥∥QT (Y − Φθ)

∥∥2

2
= (11)∥∥∥∥∥∥

R2

R3

−
R1θ

0

∥∥∥∥∥∥
2

2

= ‖R2 −R1θ‖22 + |R3|2, (12)

Hence, the θ̂N which minimizes (12) is given by the so-
lution to

R1θ̂N = R2, (13)

Since R1 is upper triangular, solving for θ̂N in (13) is
easier and better numerically conditioned than using (3).
Similarly,

γ̂N =
1

N
‖Y − Φθ̂N‖22 =

1

N
|R3|2. (14)

Furthermore

R̂N =
1

N
ΦTΦ =

1

N
RT1 R1. (15)

2.2 A Flexible Model Structure

Even restricting to linear regression, there are many
potential model structures to choose from. A common
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choice is the so-called ARX model structure leading to
regressorsϕ containing sequences of past inputs u(k−1−
d), . . . , u(k−nu−d) and outputs y(k−1), . . . , y(k−ny),
where d corresponds to the process delay and nu, ny
are the model orders. For processes with a nonzero delay
(commonly found in the process industry), the delay d
needs to be known, in order to form the regressor, which
is not the case. Since deadtime estimation is in itself
a complicated matter (see e.g. [10]), alternative model
structures are considered.

Another appealing model structure is Finite Impulse Re-
sponse (FIR) models, resulting in regressors only con-
taining lagged values of the input u. In the presence of
deadtime an FIR model will lead to close to zero es-
timates of the leading parameters. The drawback with
FIR is that a process with slow dynamics requires very
many parameters leading to a very large, and impracti-
cal, size of R̂N .

Luckily, there are model structures available that com-
bine the advantages of ARX and FIR models, without
suffering from their drawbacks. One such model struc-
ture is the Laguerre model:

y(k) =

n∑
i=1

θi Li(q, α)u(k) (16)

where Li(q, α) is the Laguerre filter

Li(q, α) =

√
1− α2

q − α

(
1− αq
q − α

)i−1

. (17)

Hence, the Laguerre filter of order i consists of one low-
pass filter cascaded with (i−1) first-order all pass filters,
which acts effectively as a delay approximation of order
i− 1. The substitution of the delay operator with a La-
guerre filter has important characteristics that makes it
a more suitable choice than an FIR model [11].

The parameter α determines the transient response of
the low pass filter. It controls the settling time of the first
Laguerre output L1(q, α) and should be set as equal to
the largest time constant in the system [12]. The maxi-
mum delay d̄ a Laguerre model can explain can be found
by comparing a Padé approximation of a delay with the
all pass part of the Laguerre filters [10,13] and is given by

d̄ = −2(n− 1)Ts/ logα (18)

where Ts is the sampling interval. If the real pole α and
order n are selected properly, then the Laguerre model
can efficiently approximate a large class of linear systems
[2]. In general, the performance of the identification is
relatively insensitive to the choice of α [14].

Plants with an integrator

Because a Laguerre model has a finite gain at low fre-
quencies, it is not a good approximation for plants with
an integrator. This is in fact an important limitation of
Laguerre models since many processes in process indus-
try (most notably level control) have an integrating be-
havior. To overcome this, it is assumed known whether a
plant has an integrator or not. For integrating processes,
a Laguerre model between the integrated input ū(k) and
output sequences is considered instead:

y(k) =

n∑
i=1

θiLi(q, α)ū(k), ū(k) =
u(k)

1− q−1
. (19)

3 DATA FEATURES FOR PROCESS IDEN-
TIFICATION

Based on the previous section, the testing of three data
features with increasing computational complexity and
theoretical justification are presented below.

3.1 Variability in the data

The first test of potential excitation is to check that there
is an actvitity in the input and output signals at all. An
empirical and simple solution is therefore to monitor the
signals’ variability over time k. Changes in the signal
variances can be used with this purpose.

3.2 Numerical Conditioning of R̂N

A more theoretically based approach is to monitor R̂N .
From (3), the least squares problem solution is well posed

only if R̂N is invertible. A near singular matrix R̂N might
occur when the input data is not exciting enough to fit
a model of order n. The condition number, κ(M) of a
matrix M is defined as the ratio of the largest and small-
est singular values of M . The accuracy with which the
model parameters can be estimated are related to the
condition number [1]. An information matrix with con-
dition number close to 1 means that the least squares
problem is numerically well-conditioned. If a QR algo-
rithm is used, then the relationship R̂N = ΦTΦ = RT1 R1

gives

κ(R̂N ) = κ(R1)2, (20)

This is easily seen by taking the SVD of R1 and com-
paring the singular values of R1 and the ones of R̂N =
RT1 R1.

3.3 Statistical Significance of θ̂N

The first two tests proposed above do not consider the ac-
tual correlation between the input and output sequences,
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and whether it appears as it is possible to fit a linear
model between them. A more conclusive test is to in fact
compute θ̂N and check whether any of the estimated pa-
rameters are significantly non-zero.

According to the null hypothesis (θ0 = 0) and (5), the

estimate θ̂N is asymptotically normal N (0, P ), i.e.

X̂N , θ̂TN P̂
−1
N θ̂N ∈ X 2

n (21)

where the degrees of freedom n for the chi-square dis-
tribution is the dimension of the parameter vector θ.

Hence checking whether θ̂N is non-zero, rejecting the null
hypothesis, corresponds to comparing the quantity X̂N
with the ones in a table of the chi-square distribution.

If the QR solution is used, then

X̂N = θ̂TN P̂
−1
N θ̂N = [R−1

1 R2]T
N

γ̂N
R̂N [R−1

1 R2]

=
1

γ̂N
RT2 R2 =

N

|R3|2
RT2 R2 =

∥∥∥∥∥
√
N

|R3|
R2

∥∥∥∥∥
2

2

.

Notice that the quantity X̂N behaves directly propor-
tional to the statistical significance of the the parame-
ters. In fact, this quantity can be used to compare the
quality of different data sets (larger meaning better).

4 METHOD OUTLINE

At this point, it is possible to define a method to search
for suitable data to perform process identification. La-
guerre models are used between the input-output data
and the idea is to monitor the data features described
in the previous section to consider whether the data is
relevant. The signals are first scaled and the operating
points are removed since linear models are being consid-
ered.

The features discussed in Sec. 3 have very different com-
putational complexity. In order to avoid excessive com-
putations, the features are computed conditionally in a
cascade of events as

Compute variances of u(k) and y(k), vu(k) and vy(k).
if vu(k) and vy(k) are large then

Compute κ(R̂N ).

if κ(R̂N ) is large then

Compute X̂N .
if X̂N is large then

Mark data interval as useful.
end if

end if
end if

The ordering also considers that the variances check is
more easily satisfied than the condition number, and
that the statistical significance is the most demanding
test.

Since we are interested in finding relevant changes in
the data, it is natural that the features are computed
recursively, over a window of data or in a forgetting fil-
ter scheme. An efficient implementation can be achieved
with an exponential moving average (EMA). For in-
stance, the variance of the output signal, vy(k), can be
estimated as

v̂y(k) =
2− λm,y

2

[
λv,y [y(k)−my(k)]

2

+ (1− λv,y) vy(k − 1)
]

(22a)

m̂y(k) = λm,y y(k) + (1− λm,y) my(k − 1) (22b)

where my is the estimate of the mean and 0 <
λv,y, λm,y < 1 are tuning parameters which control the
effective size of the window. A moving average is also
used to update the information matrix recursively.

The algorithm flowchart for open-loop data is shown
in Fig. 2, where Lk = [L1(q, α)u(k), · · · , Ln(q, α)u(k)],
U = [u(1), · · · , u(N)] and η are thresholds. After
loading/scaling the data and removing the operating
points, the sample where the input is first changed, k0

is searched to avoid unnecessary computations. If the
plant is integrating, the input signal is integrated. Sev-
eral quantities used are computed from k0 to N ; the
Laguerre outputs L, the regression matrix Φ and the
variance estimates of the input and output (computed
with an EMA).

The algorithm enters in a loop, searching for excitation
in the data k0 to N . Before any criteria are checked, it is
required that vL1

(k) exceeds a minimum threshold, in-
dicating that excitation might have started. This sample
is marked as a candidate for the start of an interval kinit.
The first check for data excitation is then performed us-
ing the estimated variances. Only if passed, the infor-
mation matrix R̂k is update using an EMA, followed by
checking if the condition number of R̂k is small enough.

Finally, if all tests so far were successful, the statisti-
cal significance of the estimates are compute using QR
factorization and the interval is marked up to the cur-
rent sample, ∆=[kinit, k]. If any test fails, the algorithm
moves to the next sample and continues until the data
is over. In case any useful data was found, the algorithm
outputs the interval ∆ and the value of X̂kinit:k as an es-
timate of the data quality.

There are a total of 11 design parameters: The order
of the Laguerre model, n, and its pole α, the moving
average filters coefficients [λL1

, λv,y, λm,y, λR] and the
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Fig. 2. Algorithm flowchart.

thresholds [ηinit, ηL1
, ηy, ηκ, ηX ]. Notice that the same

values of these design parameters are used, for any type
of control loop or operational mode.

4.1 Closed Loop Data

For data collected in automatic mode, we first search for
excitation in the setpoint, i.e. change u to r in the first 2
tests. Then, for the final statistical test, X̂∆ is computed
for a tentative model between u to y, because at the end
of the day it is an input-out model we aim to identify.

5 TEST DATA EVALUATION

To test the developed method, historic data from a chem-
ical plant was used. It contains data from 211 control

Loops where any ∆ was found by mode

closed loop 143 (67.7%)
open loop 185 (87.7%)

both 190 (90.1%)

Average length of ∆’s found (samples) by mode

closed loop 102.8
open loop 125.3

both 114.1

Average ∆’s found by loop type

Density 239
Flow 660

Concentration 84
Level 130

Conductivity 0
Temperature 35.3

Pressure 100
Table 1
Some quantities characterizing the performance of the
method when applied to the test data.

loops of density, flow, concentration, level, conductivity,
temperature and pressure types. The loops have con-
siderably different dynamics but most of them can be
modeled as a first order model and a delay, and it is not
hard to tell beforehand which ones that will have an in-
tegrator. The delays can vary up to 10 min. The data
is mainly from closed loop operation, but there is also
open loop data. The database contains data of nearly 37
months of operation, sampled every 15s, in almost 1.1G
samples and requires 6.7GB of memory to be stored.

The proposed method is applied to these data, taking
approximately 1.5h to process it all. Table 1 summarizes
the results. In total, about 1.5% of data was found to be
useful for process identification.

The 3 year database contains stretches of data where
we know that the control group at Perstorp conducted
identification experiments, performed in manual mode
with a sequence of steps in u(k). All of these intervals and
many others were found with the proposed algorithm.
The models built using the data intervals selected by the
new method were found very similar to those obtained
during the identification experiments. The related X̂∆

were also consistently large. Fig. 3 presents two examples
of intervals found, in open/closed loop operation. It also
illustrates the quantities used to infer the data quality
to process identification.

6 CONCLUSIONS

From the quite extensive testing it seems that the
method developed in this paper can successfully find
intervals of data relevant for system identification. It re-
quires minimal knowledge of the control loops, namely,
whether the process is integrating or not. It is imple-
mented efficiently in a recursive manner. A day’s worth
of data, from all loops in the test plant, takes less than
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(a) Temperature, open loop. (b) Density, closed loop

Fig. 3. The shaded regions are the found identification data intervals.

5s to be processed despite that we have not yet fully
optimized the algorithm for computational speed.

The developed method is based on classical results from
identification theory of linear systems. As an initial
screening, it checks that input and output signals are
varying at all. Then it forms an information matrix
and checks its condition number. Finally, it estimates a
provisional model using a Laguerre model structure. If
the parameter estimates of this provisional model are
found to be statistically non-zero the data interval is
marked as potentially useful for system identification
and a quality measure is also provided.
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(PIC-LI). The authors would also like to thank Professor
Lennart Ljung for encouraging and inspirational meet-
ings early in the project.

References

[1] Carrette P, Bastin G, Genin Y, Gevers M. Discarding data
may help in system identification. IEEE Transactions on
Signal Processing. 1996;44(9):2300–2310.

[2] Horch A. Condition Monitoring of Control Loops. Ph.D.
thesis, KTH, Signals, Sensors and Systems. 2000.

[3] Isaksson A, Horch A, Dumont G. Event-triggered deadtime
estimation from closed-loop data. American Control
Conference, Arlington VA, June 25-27. 2001;pp. 3280–3285.

[4] Green M, Moore J. Persistence of excitation in linear systems.
Systems & Control Letters. 1986;7(5):351–360.

[5] Cho YJ, Ramakrishnan N, Cao Y. Reconstructing chemical
reaction networks: data mining meets system identification.
In: Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD
’08. New York, NY, USA: ACM. 2008; pp. 142–150.

[6] Schmidt MD, Lipson H. Data-Mining Dynamical
Systems: Automated Symbolic System Identification for
Exploratory Analysis. ASME Conference Proceedings. 2008;
2008(48364):643–649.

[7] Amirthalingam R, Sung SW, Lee JH. Two-step procedure
for data-based modeling for inferential control applications.
AIChE Journal. 2000;46(10):1974–1988.
URL http://dx.doi.org/10.1002/aic.690461010

[8] Ng YS, Srinivasan R. Data Mining for the Chemical Process
Industry. In: Encyclopedia of Data Warehousing and Mining,
edited by Wang J, pp. 458–464. IGI Global. 2009;.

[9] Ljung L. System identification: Theory for the user. Prentice-
Hall Englewood Cliffs, NJ, 2nd ed. 1998.

[10] Björklund S, Ljung L. A review of time-delay estimation
techniques. In: Decision and Control, 2003. Proceedings.
42nd IEEE Conference on, vol. 3. 2003; pp. 2502 – 2507 Vol.3.

[11] Wahlberg B. System Identification using Laguerre Models.
IEEE Trans on Automatic Control. 1991;.

[12] Wang L, Cluett W. Building transfer function models
from noisy step response data using the Laguerre network.
Chemical Engineering Science. 1995;50(1):149–161.

[13] Isaksson M. A Comparison of Some Approaches to Time-
Delay Estimation. Master’s Thesis ISRN LUTFD2/TFRT-
-5580--SE, Department of Automatic Control, Lund
University, Sweden. 1997.

[14] Park H, Sung S, Lee I, Lee J. On-line process identification
using the Laguerre series for automatic tuning of the
proportional-integral-derivative controller. Ind Eng Chem
Res. 1997;36(1):101–111.

7




