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Abstract

Industrial robots have been used as a key factor to improve productivity, quality
and safety in manufacturing. Many tasks can be done by industrial robots and
they usually play an important role in the system they are used, a robot stop or
malfunction can compromise the whole plant as well as cause personal damages.
The reliability of the system is therefore very important.

Nevertheless, the tools available for maintenance of industrial robots are usu-
ally based on periodical inspection or a life time table, and do not consider the
robot’s actual conditions. The use of condition monitoring and fault detection
would then improve diagnosis.

The main objective of this thesis is to define a parameter based diagnosis
method for industrial robots. In the approach presented here, the friction phe-
nomena is monitored and used to estimate relevant parameters that relate faults
in the system. To achieve the task, the work first presents robot and friction
models suitable to use in the diagnosis. The models are then identified with
several different identification methods, considering the most suitable for the
application sought.

In order to gather knowledge about how disturbances and faults affect the
friction phenomena, several experiments have been done revealing the main in-
fluences and their behavior. Finally, considering the effects caused by faults and
disturbances, the models and estimation methods proposed, a fault detection
scheme is built in order to detect three kind of behavioral modes of a robot (nor-
mal operation, increased friction and high increased friction), which is validated
within some real scenarios.
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we shared during my stay in Väster̊as proportionating a nice work atmosphere.
Special thanks for my supervisor, Niclas Sjöstrand, for providing me the op-
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Chapter 1

Introduction

Industrial robots have been used as an important factor to increase productivity
and quality in the industry since the past few decades. The first robots to appear
have been considered as break-through technologies and represented a huge
effort on research and development in each new concept. For several years the
efforts on robot development were mostly related to improvements of accuracy
and speed of these machines. Nowadays however, industrial robots have reached
satisfactory performance levels for what has been its main application field,
the manufacturing industry. With the maturity of the robotic systems, new
demands appeared to keep the competitiveness which are mostly related to
prices reduction and reliability.

The importance of the reliability of a robot is easily understood when taking
the example of a robotized assembly line, where the damages caused by an
unpredicted stop are counted in function of hours and sometimes minutes. To
avoid this situation, it is usual to have some scheduled preventive maintenance
of the robot and components in the line. This scheduling, however, is in general
based on the estimated robot and components life time and not in its real
conditions, remaining a lack of information of the actual system.

The primary objective of this thesis is to define a routine and methods to
monitor the mechanical condition of an industrial robot. The approach used to
achieve this is the monitoring of the friction phenomena in robot joints. As will
be shown, the friction phenomena can relate to faults appearing in the robot
and therefore can be used to generate a diagnosis of the system.

1.1 Outline

The thesis outline is as follows.
Chapter 2 presents an introduction to fault detection presenting some re-

marks to the application sought.
Chapter 3 briefly introduces the field of robotics, presenting the main rele-

vant phenomena and some usual models.
Chapter 4 presents the identification of robot arms where both identification

methods and experiments are presented over different models.
In Chapter 5 the friction phenomena in industrial robot arms is presented.

Containing a review of the friction phenomena, and a study of the phenomena
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8 CHAPTER 1. INTRODUCTION

in robotics over several operational conditions.
Chapter 6 presents an approach for fault detection based on observations

of the friction phenomena in industrial robots. The method is presented and
analyzed with some case studies.

Finally, Chapter 7 presents the conclusions of the thesis and leave comments
for future work.

In addition, Appendix A presents a more detailed study of the temperature
influence on the friction phenomena.

1.2 Contributions

The main contributions of this thesis are:

• The methods and experiments for robot and friction identification pre-
sented in Chapter 4.

• The friction behavior of robot joints under several different conditions and
variables presented in Chapter 5.

• The fault diagnosis framework based on friction estimated parameters
presented in Chapter 6.

• The insights on the temperature influence in Appendix A.



Chapter 2

Fault detection in industrial
robots

This chapter presents a review of the main aspects of fault detection and isola-
tion (FDI) methods with the focus on the application on friction change detec-
tion in industrial robots.

2.1 Fault detection and isolation overview

This section was based on [3, 13, 18] and provides the reader with a brief
overview of FDI (Fault Detection and Isolation) methods. Basically, the pur-
pose of FDI is to monitor dynamic systems and should be able to perform the
following tasks:

• Fault detection: FDI recognizes that a fault has occurred.

• Fault isolation: FDI recognizes where and when a fault has occurred (some
FDI extend this concept to include the type, size or cause of the fault).

When a FDI runs during a normal operation of the system, it is called an
on-line FDI. If however, the FDI demands the system to be run in a specific
manner, the FDI is called off-line.

To choose the algorithm of the FDI it is important to know which kind of
fault is present in the system. Basically the fault types can be classified by its
time behavior and effects on the system.

The first category of fault can be summarized as:

• Abrupt : faults that occur very quickly in the system.

• Incipient : faults that occur gradually during time.

• Intermittent : faults that affect the system during certain time intervals.

The way a fault affects the system’s behavior can be summarized as:

• Additive: faults that are effectively added to the system’s input or output.

• Multiplicative: faults that change the parameters of the system.

9



10 CHAPTER 2. FAULT DETECTION IN INDUSTRIAL ROBOTS

• Structural : faults that introduce new governing terms to the describing
equations of the system.

Figure 2.1 illustrates additive faults in the input signal (fu) and output
signal (fy) as well as a multiplicative faults (fpar) in a system.

Figure 2.1: Additive and Multiplicative faults

Remark 1 Friction changes in robotic systems are generally associated with
wear and affects a parameter of the system. Therefore, it can be classified as an
incipient and multiplicative fault.

2.1.1 Fault detection and isolation Methods

FDI methods can rely or not on a model of the system. Three convenient
categories for model-free methods are:

• Hardware redundancy : these systems rely on extra hardware which are
specially used to detect faults.

• Spectral analysis: utilize mechanical vibration, noise, ultrasonic, current
or voltage signals to detect and diagnose faults.

• Expert/Logic systems: rely on previous knowledge about the behavior and
characteristics of the system (age, statistical data, operating condition,
etc) under different circumstances. It is a logical method therefore it does
not need extra hardware.

Model free methods have been applied successfully in the industry but these
methods present some clear drawbacks. In the case of hardware redundancy,
extra costs and weight are added to the system; model free methods make use
of a priori (and often empirical) knowledge of the system signal characteristics,
which are dependent on the system operational point and can be costly to define
if no previous knowledge about the signals are available.

Dynamic systems like robots have a wide range of operating points making
difficult the use of such techniques for FDI, therefore this work will focus on the
use of the so-called Model-based methods. The next section gives an overview of
the several model-based FDI techniques emphasizing its application to robotic
systems.
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2.2 Model-based FDI methods

This class of methods are based on the principle of analytical redundancy. In-
stead of comparing several signals outputs for the same variable as in hardware
redundancy, they compare analytically generated signals with the system out-
puts.

Figure 2.2 displays the general flowchart of a model-based FDI method.

Figure 2.2: Model-based FDI flowchart

Residuals are a fault indicator, based on a deviation between measurements
and model-equation-based computations. The residuals are usually generated
by filtering techniques that take measured signals and transform them to a
sequence of residuals that resemble white noise before a change occurs. There
are three main ways of generating residuals in a model-based approach:

• Parity space: the system model directly produces outputs that are com-
parable with the measured outputs.

• Diagnostic observers or state estimators: an observer is designed to re-
construct the states of a system, which are compared to the real states
generating the residual.

• Parameter estimation: an estimation of some physical parameters of the
system is compared with its healthy values to generate the residuals.

Since multiplicative faults, like friction change, by definition alter parameters
of the system, it makes a natural choice the use of parameter estimation for
detection of such faults.

Remark 2 According to Balle in [4], more than 50% of the applications to de-
tect additive fault use observer methods while more than 50% of the applications
to multiplicative faults utilizes parameter estimation methods.

Nevertheless, one can find several successful applications of observer methods
to detect multiplicative faults utilizing for example augmented states where the
unknown parameters are modeled as a state of the system. The parity space
will not be further discussed since these methods work in an open-loop fashion
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which requires a precise model of the system with fixed parameters, which is
generally not the case in industrial robots. An example of the use of a parity
space approach to fault diagnosis in robots can be found at [22].

In the following subsections, some of the methods for residual generation
and fault detection found in the literature will be reviewed and discussed, the
focus will be in parameter estimation and diagnostic observers.

2.2.1 Residual generation methods - parameter estima-
tion

Parameter estimation is the process of estimating some parameters of a system
model using its input and output measurements. Residuals can be generated
when the estimated parameters are compared with fault-free values of such
parameters (Figure 2.3). For example, the friction coefficient value can be a
good indicator of the condition of a gearbox in a robot joint, monitoring this
parameter is then of great interesting for a diagnosis system.

Since the measured signals are stochastic (corrupted by noise) and physical
systems are generally nonlinear, recursive estimators like nonlinear observers,
extended Kalman filters or recursive least squares are generally used to update
the parameter estimates. These parameters are usually initially guessed and
then converge to a final value after multiple recursive steps.

Figure 2.3: Parameter Estimation Block Diagram

There are various different but related conceptual bases for continuous-time
system parameter estimation, see [3, 21]. They are briefly described here.

1. Output error methods, OE : this is maybe the most intuitive parameter
estimation approach. The parameters are estimated in order to minimize
the error between the model output and the system output.

ε′(t) = y(t)− B̂

Â
u(t) (2.1)
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where Â and B̂ are the estimates of the governing polynomials of the
system. In this case, no direct calculation of the parameters is possible,
because ε(t) is nonlinear in the parameters. The loss function is therefore
minimized as an optimization problem.

2. Equation error methods, EE : this approach is clearly derived from an
analogy with static regression analysis and linear least squares estimation.
The error function is generated directly from the input-output equations
of the model.

ε′(t) = Ây(t)− B̂u(t) (2.2)

From Equation (2.2) it is clearly seen that it implies the generation of
the time derivatives of the signal, which might be a problem when the
signal is too noisy. Young [21] proposes a solution for this utilizing a
’generalized equation error’ that filters the measured signals and provides
filtered derivatives of the signals.

After sampling, the estimation can be solved as a least square estimate or
in a recursive form (recursive least squares). Isermann, see [3], emphasizes
that for numerical properties improvement, square-root filters algorithms
are recommended.

3. Prediction error methods, PE : the equation of the error is the same as
the OE case, Equation (2.1), the difference is that the output estimate
is defined as a ’best prediction’ depending on the current estimates of
the parameters a which characterize the system and the noise models,
ŷ(t)=̂ŷ(t|a). ŷ(t|a) is a conditional estimate of y(t) given all current and
past information of the system, while ε(t) is an ’innovations’ process with
serially uncorrelated white noise characteristics (see [31] for more). The
PE can be written as an OE, Equation(2.3), or EE, Equation (2.4).

ε′(t) =
Ĉ

D̂

[
y(t)− B̂

Â
u(t)

]
(2.3)

ε′(t) =
Ĉ

D̂Â

[
Ây(t)− B̂u(t)

]
(2.4)

4. Maximum likelihood methods, ML: a special case of PE methods, sepa-
rated here because of its importance, with the additional restriction that
the stochastic disturbances to the system have specified amplitude prob-
ability distribution functions. In several applications, this assumption is
restricted further for analytical tractability to the case of a Gaussian dis-
tribution.

5. Bayesian methods: extension of ML where a priori information on the
probability distributions is included in the formulation of the problem. It
is important in the FDI context because most recursive methods can be
interpreted as being a Bayesian type.
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An usual solution for parameter estimation is the use of linear models. Here
we summarize the main parameter estimation methods for linear continuous-
time models based on sampled signals, see [7] for more.

1. Least-squares parameter estimation: this is a well-known case of optimiza-
tion where the estimated parameters vector θ̂ are estimated by the non
recursive estimation equation below.

θ̂ = [ψTψ]−1ψT y (2.5)

where ψ is the data vector and y is the measured output. These parameters
are biased by any noise, therefore, a good signal-to-noise ratio must be
achieved to use this method.

2. Determination of the time derivatives: as mentioned before, the estima-
tion of the signals derivatives by numerical differentiation is not a good
approach because of the inherent noise in the signals. A state variable filter
is therefore utilized that calculates the derivatives and filter the noise.

3. Instrumental variables parameter estimation: instrumental variables can
be used to overcome the bias problem due to noise. The instrumental
variables introduced are only insignificantly correlated with the noise-free
process output. A major advantage of instrumental variables is that no
strong assumptions and knowledge on the noise is required. However,
when dealing with closed loop configurations biased estimates are obtained
because the input signal is correlated with the noise.

4. Parameter estimation via discrete-time models: one can try to estimate
the variables in discrete-time models and then calculate the parameters
of the continuous-time model. These methods, however, require extensive
computational effort and are not so straightforward.

2.2.2 Residual generation methods - state estimation (ob-
servers)

This category of FDI methods uses a state observer to reconstruct the unmea-
surable state variables based on the measured inputs and outputs. It can be
shown that an additive fault is easily detected with this technique, this kind of
fault makes the residual (generally taken as the estimation error) deviate from
zero with a bias.

Remark 3 The influence of multiplicative faults in residuals generated by state
observers is not as straightforward recognizable because in this case the changes
in the residuals could be caused either by parameter, input and state variable
changes.

The main advantage of observer-based methods is that they do not require
special excitation of the system, making it a good choice for on-line fault detec-
tion.

Observer-based FDI methods also require an accurate mathematical model
of the process, therefore it is important to try to robustify the residual evalu-
ation in order to cope with the inherited uncertainties of any physical model.
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Investigations of robust observer-based approach can be found for example at
[17, 15].

The following FDI methods with state estimation are known, see[3]:

1. Dedicated observers for multi-output processes: the design of specific ob-
servers allows the detection of specific faults, combining and arranging the
observers one can detect multiple faults.

(a) Observer excited by one input : one observer is driven by one sensor
output while the other outputs are estimated and compared with
the measures allowing the detection of single sensor faults (additive
faults).

(b) Bank of observers, excited by single outputs: several of the first case
allowing the detection of multiple sensor faults.

(c) Kalman filter, excited by all outputs: the residuum changes the char-
acteristic of zero mean white noise with known covariance if a fault
appears, which is detected by a hypothesis test.

(d) Bank of observers, excited by all outputs: several of the above de-
signed to detect a definite fault signal.

(e) Bank of observers, excited by all outputs except one: as before, but
each observer is excited by all outputs except one sensor output which
is supervised.

2. Fault detection filters for multi-output processes: the feedback state ob-
server is chosen so that particular fault signals in the input change in a
definite direction and fault signals at the output change in a specific plane.

3. Output observers: another possibility is the use of output observers (un-
known input observers) if the reconstruction of the state variable is not of
primary interest. A linear transformation is applied so that the residuals
are dependent only on additive input/output faults.

2.3 Change (fault) detection methods

After the generation of the residuals, it is needed to establish whether there was
a change (fault) on the system or not. This role is done by the change detector
which can be classified under three categories, see [18]:

1. One model approach: The filter residuals εt are transformed to a distance
measure st (computed from the no-fault values), a stopping rule decide
whether the change is relevant or not. A schematic is show at Figure 2.4.

Figure 2.4: One model approach for change detection

The most natural distance measures are:



16 CHAPTER 2. FAULT DETECTION IN INDUSTRIAL ROBOTS

• Change in the mean, st = εt.

• Change in the variance, st = ε2t − λ, where λ is a known fault-free
variance.

• Change in correlation, st = εtyt−k or st = εtut−k for some k.

• Change in sign correlation, st = sign(εtεt−1), this test is used due to
the fact that white residuals should change sign every second sample
in the average.

2. Two model approach: In this case the residuals are generated by two
filters, a slow (with a great data window or the whole data) and a fast one
(with a small data window) which are compared, Figure 2.5 illustrates the
procedure. If the model based on the smaller data window gives larger
residuals, than a change is detected. The main problem is to choose an
adequate norm for the comparison, typical norms are:

Figure 2.5: Two residual generators running in parallel, one slow to get good
noise attenuation and other fast to get fast tracking. The switch decides whether
a change occurred or not.

• The Generalized Likelihood Ratio (correlation between fault signa-
tures).

• The divergence test.

• Change in spectral distance.

Remark 4 The choice of the window size of the fast filter is a trade-off
between quick detection and accurate model (avoiding false alarms).

3. Multi-model approach: This approach makes use of the so-called matched
filters, that can generate white residuals for a specific change even after
it was inserted in the system. The idea is to enumerate all conceivable
hyphoteses about changes and compare the residuals generated from the
matched filters, the one with the ’smallest’ residuals will be an indication
of the change, Figure 2.6 shows the procedure. Since a batch of data is
needed, this approach is off-line, but many proposed algorithms makes the
calculations recursively, and are consequently on-line.
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Figure 2.6: Several matched filters (residual generators) that are compared in a
hyphotesis test.

2.4 Concluding remarks

The chapter presented a review of some fault detection methods. Emphasis
has been given on methods for monitoring unmeasurable quantities like process
parameters and process state variables.

In designing of FDI methods, the following aspects should be taken in con-
sideration, see [7]:

• Process models: since the methods are based on the deviation of a nor-
mal operation, one should define the normal operation of the system (for
example, nominal values of parameters) and also which kind of model. If
the system or process is running only with small changes of the variables,
linearized models can be used. However for many applications this is not
the case (see for example [16, 14, 23]) and one should take this in consid-
eration while defining which kind of model should be used. Isermann and
Ballé, see [4], mention that there is an increase on the use of non-linear
models for parameter estimation.

Besides the use of analytical models (change detection of the outputs of
an analytical model), a diagnosis system can also rely on heuristics of the
system. These heuristics can be translated for example in fault-symptom-
trees or fuzzy logic and are important for the fault isolation.

• Parameter and state estimation: as discussed through the chapter, state
estimation has its main applications in the detection of additive faults and
has the drawback that it is difficult to identify the source of the fault since
the residuals are deviations of the system states.

On the other hand, parameter estimation techniques are the most indi-
cated approach for the identification of multiplicative faults. On [6, 26]
several multiplicative faults could be identified utilizing parameter estima-
tion, validating its importance. A main drawback of parameter estimation
is that the system input signal must be informative enough to identify the
parameters of the system, which makes it difficult to implement in on-line
diagnosis systems.

In a complete diagnosis system, where both additive and multiplicative
faults are required, the FDI methods utilizing parameter and state es-
timation complements each other. For example, an observer-based FDI
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method that detects faults on sensor and actuators could run on-line,
whether an actuator fault is detected an off-line test utilizing a parameter
estimation FDI method could be used to fault diagnosis and isolation.

• Faults: the way that a fault affects the system is very important when
designing FDI methods (see Section 2.1). It is also important to define
the main faults present in the system.

• Performance: fault detections must be sensitive to the appearance of faults
but insensitive to other changes (noise, operating points, modeling errors,
etc.). Because these requirements often contradict each other, the follow-
ing trade-offs must be analyzed:

– size of fault vs detection time;

– speed of fault appearance vs detection time;

– speed of fault appearance vs process response time;

– size and speed of fault vs speed of process parameters changes;

– detection time vs false alarm rate.

Methods that are sensitive to abrupt faults for example, might not be
suitable to detect incipient faults. Therefore, several methods can be used
in parallel.

• Practical aspects: a FDI method should take in consideration the practical
aspects when defining the experiments to detect the faults. An industrial
robot application generally contains several restrictions (restricted work
envelope of the robot, measurements with noise, limited computational
effort, limited sensors available, system under feedback action, etc.) and
should be robust enough to cope with them.

• Testing : the introduction of artificial faults is also important to validate
the system reliability and should try to approximate to real faults.



Chapter 3

Robotics and robot
modeling

This chapter presents a general description of an industrial robot and dynamic
models considering its relevant aspects in the context of a parameter based fault
detection such as nonlinearities caused by flexibilities and backlash.

3.1 Industrial robots

An industrial robot (Figure 3.1) can be described as a mechanical manipula-
tor which is programmable and controlled to achieve tasks as moving objects
and tools through a predetermined trajectory. The mechanical structure of a
standard industrial robot is composed by links and joints. Links are the main
bodies that make up the mechanism, these links are connected in pairs by joints.
The way the links are connected by the joints define the kinematic chain of a
robot, if one link is only connected to one other link, the robot is called serial.
According to the application a tool is also coupled at the output link of the
robot.

A joint add constrains to the relative movement of the links connected to
it. According to these constrains, a joint can be called for example revolute
(permits rotation in one direction between the links), prismatic (allows linear
movement in one direction), etc, see [27]. According to the kind of joints and its
number, a robot will have more or less degrees of freedom (DOF). Here, serial
robots with 6 revolute joints will be considered (6 DOF) . The first three joints
gives mobility to the arm and the other three (also called wrist) proportionate
orientation to the end-effector of the robot. Nowadays, industrial robot joints
are driven in general by electric motors and a gearbox to give the necessary
torque to move the links.

An industrial robot is a complex system where the dynamics and kinematics
aspects are very important to its general performance. Therefore, there is a
demand for realistic models of robots to use in simulation, control design and
diagnosis. However, it is not an easy task to design an accurate global model
due to a lot of non-linearities and phenomena that are not fully understood.
The following sections presents some usual models of industrial robots and the
main phenomena present.
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Figure 3.1: An ABB industrial robot (IRB 6600) and its axes

3.2 Robot modeling overview

There are some known aspects of a robot that should be considered while de-
signing a model:

Flexibilities In general, robot links can be considered as rigid-bodies (no
flexibilities) but nowadays there is a special demand on reducing production
costs which generally means reducing weight. Making lighter links reduces the
production costs of the mechanical part of a robot (which represents more than
50% of its total price) but on the other hand, the flexible modes of the links
get more evident. Also, the gearboxes present in a joint, specially the harmonic
drive type, introduces flexibilities due to elastic deformation of bearings and
gears. Such flexibilities are nonlinear which makes the system more challenging
to control, model and estimate.

Friction Friction affects any mechanical moving parts and has extensively
been studied due to its importance in mechanical systems. Even though there is
no analytical model for friction, there are some well-known friction phenomena
and models based on empirical experiments to describe it. An usual way of
modeling friction is to consider only its static effects like Coulomb, viscous and
Stribeck friction (see Chapter 5 for more aspects of the friction phenomena).

Backlash Backlash is present in all mechanical system where the motor is
not directly coupled to the load. It can be described as the clearance between
mating components when movement is reversed and contact is re-established.
For a gear for example, the backlash is the amount of clearance between mated
gear teeth. When the backlash gap is opened, the movement of the load is
autonomous and the moment generated by the motors drives only the motor
itself and not the load. Several attempts to control, model and identify backlash
can be found in the literature, see [28, 29] for examples.
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Torque Ripple In general, electric AC permanent magnet motors are used as
joint actuators. This motors are compact, fast and robust. A drawback is that
the generated torque changes periodically with the rotor position. Distortion
of the stator flux linkage distribution and variable magnetic reluctance at the
stator slots are the main causes of the resulting torque ripple. The ripple caused
by the magnetic reluctance is proportional to the current and periodical in the
rotor position and affects the performance of the system. See [24, 30] for more.

Measurement inaccuracies Besides the inherent noise in any measurement
system, position measurements in robots are generally obtained by using Track-
ing Resolver-to-digital converters, which error can be modeled as a sum of si-
nusoids.

The choice of a model is always a trade-off between fidelity of the model (how
well it represents the real system) and its complexity (inclusion of nonlinearities,
flexible modes, etc). Each application requires a level of fidelity of the model,
for example, if the model should be used in an accurate simulation, one should
try to include all physical aspects to the model.

In the next sections, some dynamic models are proposed to accomplish the
task of parameter based fault detection in industrial robots. The models of the
arm presented in Sections 3.3 and 3.4 are derived under the simplifications that:

• the controllers of the electrical motors are neglected and the torque ref-
erence is viewed as the applied torque to the system. This assumption is
fair since the electrical dynamics of the motors are comparatively much
faster than the mechanical system.

• the arm is modeled in an axis without the influence of gravity (axis one
for example). The aspects of the gravity influence will be discussed in
Section 3.5.

• the backlash is neglected. Backlash models will be discussed in section
3.6.

• only one axis is excited at a time.1

The notation presented in Table 3.1 is used through the chapter.

3.3 Rigid body model

The first model presented is a classic two-mass rigid-body model of a robot arm
as show in Figure 3.2

The model is composed by two masses, Jm representing the joint inertia
and Ja representing the links (arm) inertia. The shafts inertia and backlash
are not included and both joints and arm are considered as rigid-bodies. The
masses are coupled through an ideal gearbox with ratio r. The assumption of a
stiff coupling between the masses gives ϕa = rϕm. The representative dynamic

1Coupling forces are then neglected.
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Table 3.1: Notation used
Parameter Description
Jx inertia at x side. When only J is

used it relates to the whole robot
inertia.

r gearbox ratio
ϕx position at x side.
τx torque at x side. When only τ

is used it relates to the applied
motor torque.

fc Coulomb friction parameter.
fv viscous friction parameter.
dx damping constant at x side.
kx stiffness constant at x side.
CoG center of gravity.
ϕCoG angle formed from moving axis

and center of gravity.
M arm mass.
g gravity constant.

Figure 3.2: The two mass rigid body model
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equations are:

τ = Jmϕ̈m + Jaϕ̈a + τf

τ = (Jm + r2Ja)ϕ̈m + τf (3.1)

3.4 Including flexibilities

3.4.1 Two mass flexible model

A two-mass flexible model can be utilized to include all flexibilities in one spring
coupling two masses, Figure 3.3.

Figure 3.3: Two mass flexible model

The resulting dynamic equations for this model are:

Jmϕ̈m + rda(r ˙ϕm − ϕ̇a) + τf + rτa = τ

Jaϕ̈a − da(r ˙ϕm − ϕ̇a)− τa = 0 (3.2)

Where τf is the friction torque and τa the spring torque. The spring torque
can be represented by a simple linear model with one parameter τa = ka(rϕm−
ϕa) or as a nonlinear function τaNL

= ka1(rϕm − ϕa) + ka2(rϕm − ϕa)3.
The two mass flexible model can be considered as a good representation of

the manipulator when it is not moving too fast and the arm can be considered
stiff when the only relevant flexibilities are related to the gearbox.

3.4.2 Three mass flexible model

To separate the gearbox and arm flexibilities, the model is extended to a three
mass model.

Figure 3.4: Three mass flexible model
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The masses in Figure 3.4 represents the motor, gearbox and arm from left
to right. The model dynamic equations are:

Jmϕ̈m + rdg(r ˙ϕm − ϕ̇g) + τf + rτg = τ

Jgϕ̈g + da(rϕ̇g − ϕ̇a)− dg(r ˙ϕm − ϕ̇g) + τa − τg = 0
Jaϕ̈a − da(rϕ̇g − ϕ̇a)− τa = 0 (3.3)

See [34] for more on flexibilities modeling and identification.

3.5 Including gravitational forces

In axes where the position of the moving joint does not change the resulting
gravitational force (for example axis 1 at Figure 3.1) it is only dependent on
the position of the other joints and the load. For axes where these torques
are dependent on the moving joint position, like axis 2, a simple model can be
proposed.

Figure 3.5: Gravitational torque in a robot arm

Figure 3.5 models the gravitational torque acting in axis 2 of a robot arm.
According to the robot and load masses distribution, the Center of Gravity
(CoG) around axis 2 will be somewhere in the space. ϕa and ϕCoG are angles
in the arm side. The resulting torque on the joint will be

τCoG = Mgx

τCoG = Mglsin (ϕa + ϕCoG)
τCoG = Mgl (sin(ϕa)cos(ϕCoG) + cosϕasin(ϕCoG)) (3.4)

The resulting gravitational torque is then added to the model and acts in
the applied torque as

τ ′ = τ − τCoG (3.5)

Where τ ′ is the new applied torque to the joint. Considering the movement
in only one axis at a time ϕCoG remains constant, otherwise ϕCoG will be a
function of the distribution of the links and load masses in the space, which
may be difficult to estimate, specially if the load mass is unknown.

The gravitational torque modeled in this section assumes that the robot
center of motion is in the same plane of its center of gravity. If this is not the
case a component of the gravitational force will also appear along the axis that
is moving. Nowadays there is a trend to design asymmetric robots to achieve
bend-over movements which makes the force along the axis more evident.
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3.6 Backlash models

Figure 3.6 is an extension of the rigid-body model presented in Section 3.3
including backlash in the shaft.

Figure 3.6: Backlash included in the rigid body model

A classical approach to model backlash is to consider it as a deadzone, ne-
glecting damping, where the shaft torque is proportional to the shaft twist,
θs = ksDα(θd) where θd = θm − θa is the displacement angle between motor
and arm and the deadzone function (D(x))

D(x) =

 x− α x > α
0 | x |< α
x+ α x < α

(3.6)

Including the damping we have the shaft torque as

θs = ksθs + csθ̇s (3.7)

defining the backlash angle θb = θd − θs it is possible to obtain the dynamic
equation

θb =


max

(
0, θ̇d + ks

cs
(θd − θb)

)
θb = −α(τs ≤ 0)

θ̇d + ks

cs
(θd − θb) | θb |< α

min
(
0, θ̇d + ks

cs
(θd − θb)

)
θb = α(τs ≥ 0)

(3.8)

3.7 Friction models

There are several models for friction proposed in the literature, see for example
[1, 10, 11, 12]. A brief summary of these models and its properties are presented
here.

Classical models Whether there is no need for the use of a high fidelity
model of the friction, one can model it as a simple static model. Figure 3.7
shows usual examples of static friction models.

It is important to note that this kind of models are not causal, since the
discontinuity at zero speed allows the friction to assume several values. Some
solutions for this problem can be found at [1, 11].
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(a) Coulomb friction (b) Coulomb and Viscous friction

(c) Static, Coulomb and Viscous fric-
tion

(d) Static, Coulomb, Viscous and
Stribeck friction

Figure 3.7: Static friction models. 3.7(a), the friction component that is only
dependent of the direction of velocity, not of the magnitude of the velocity;
3.7(b), the friction component that is proportional to velocity (viscous) and
goes to zero at zero velocity with the Coulomb term; 3.7(c), the torque or force
necessary to initiate motion from rest (the so called break-away force, generally
larger than the Coulomb term) with the static and viscous terms; 3.7(d), the
friction phenomenon that arises from the use of fluid lubrication and gives rise
to decreasing friction with increasing velocity at low velocity with Coulomb,
static and viscous terms.
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Dynamic models Nowadays, the interest in dynamic models for friction has
increased due to demands for precision servos as well as advances in hardware
that makes feasible the implementation of friction compensators. Several dy-
namic models have been purposed in the literature, see for example [1, 10]. Here
two of them are presented:

• Bliman-Sorine The Bliman-Sorine model is a second order model (4 pa-
rameters) that can be seem as a parallel connection of two Dahl models,
see [1]. It models static, viscous and Coulomb friction of the static fric-
tion phenomena and only pre-sliding displacement of the dynamic friction
phenomena.

• LuGre The LuGre model can be seen as a first order Dahl model (6 pa-
rameters) with a velocity-varying coefficient to give stiction. The model
is inspired by the bristle interpretation of friction in combination with lu-
bricant effects. It models the Stribeck effect and also the rate dependent
friction phenomena such as varying break-away force and frictional lag.

Coulomb
Model

Coulumb
and Viscous
Model

Coulomb,
Viscous and
Static Model

Coulomb, Vis-
cous, Static and
Stribeck Model

Dahl
Model

Bliman-
Sorine
Model

LuGre
Model

Static Friction Phe-
nomena
Coulumb Friction X X X X X X X
Viscous Friction X X X X X
Static Friction X X X X
Stribeck Friction X X
Dynamic Friction Phe-
nomena
Pre-sliding displacement X X X
Varying break-away force X
Frictional Lag X
Number of parameters 1 2 3 ≥ 4 2 4 6

Table 3.2: Comparison of friction models

Table 3.2 shows that the LuGre Model is the most complete one. The draw-
back is that it also demands the estimation of more parameters. For most
engineering applications though, a static friction model is enough, experimental
works comproved that a good static friction model can approximate real friction
forces with 90% of confiability, see [11]. Some efforts on using more complete
models can be found in [1, 12].

The simple model including the Coulomb and viscous terms can be described
by:

τf = fcsign( ˙ϕm) + fv ˙ϕm (3.9)

Where fc represents the direction-dependent Coulomb friction and fv is the
velocity proportional viscous friction. A great advantage of this model is its
simplicity with only two parameters.

The more realistic model, presented by Feeny-Moon in [2], describe also the
nonlinearities of the friction phenomena present in the low velocities:

τf = fv ˙ϕm + fc

(
µ+

(1− µ)
cosh(β ˙ϕm)

)
(3.10)

The friction phenomena in robot joints will be further investigated in Chap-
ter 5.
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3.8 Concluding remarks

This chapter introduced the robotics field presenting the main phenomena and
robot models. The choice of a model depends on the application, in the context
of fault detection using parameter estimation for example, the most important
is the parameter capability to relate faults. Not always a more complex model
will give more information about the faults.

The next chapter presents the results of the identification of industrial robot
arms focusing the task of friction change detection.



Chapter 4

Robot identification

As mentioned by Wernholt in [25], parameter identification in Robotics can
be divided in at least three groups: robot kinematics, robot dynamics (often
divided in rigid body and flexible body models) and joint model. The kinematics
parameters are generally obtained through CAD softwares while the other two
are usually experimentally identified.

Robot dynamics identification covers inertial (rigid body) as well as flexi-
bilities parameters (elastic effects on the robot structure). Joint identification
involves motor inertia, friction, backlash, and gearbox flexibilities.

This chapter covers the identification of robot dynamics and joint parame-
ters. First a method to identify the rigid body parameters and joint friction is
presented and analyzed in detail followed by robot identification including joint
flexibilities, finally Section 4.4 presents the identification of friction parameters
over its characteristic curve.

Before continuing it is important to take some considerations about param-
eter identification in industrial robots:

• Feedback influence: sometimes it is necessary to operate the identification
under the influence of feedback (closed-loop). This is the case of industrial
robots where feedback is needed to maintain the arm in a desired position.
Two challenges arises when identifying systems under feedback influence.
First, it will be a non-zero correlation between the input signal and the
disturbance of the measured output. The second is that the data contain
less information about the open-loop system since the purpose of feedback
is to make the closed-loop less sensitive to changes in the open-loop system.
Prediction error methods works well for systems under feedback if the
model represents the true system and the data is informative enough.

• Restricted input signal : the controller architecture of commercial indus-
trial robots is usually closed, with only point-to-point programming avail-
able under pre-defined velocities. The use of more complex signals like
multi-sines and chirps are then restricted.

• Restricted sensors available: in industrial robots, usually only variables
at the motor side are measured, and it includes motor applied torque,
motor position and motor velocity, meaning that without including extra
sensors, the variables at the arm side are not available.

29
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These properties certainly influences the identification method and experi-
ments used and should be considered.

4.1 Rigid body parameters estimation

As presented in Chapter 3, the dynamic model of a rigid body arm under gravity
influence can be represented by the following equation:

τ = Jmϕ̈m + Jaϕ̈a + τf + τCoG

τ = (Jm + r2Ja)ϕ̈m + τf + τCoG (4.1)

where τ , τf and τCoG are respectively motor applied torque, friction torque
and gravity torque.

A simple representation of friction can include the Coulomb and viscous
terms:

τf = fcsign( ˙ϕm) + fv ˙ϕm (4.2)

and the gravitational torque:

τCoG = Mglsin(ϕa)cos(ϕCoG) + cosϕasin(ϕCoG) (4.3)

leading to

(Jm + r2Ja)ϕ̈m + fcsign( ˙ϕm) + fv ˙ϕm

+Mgl(sin(ϕa)cos(ϕCoG) + cosϕasin(ϕCoG)) = τ (4.4)

Considering that commanded torque to the motor (τ), motor velocity ( ˙ϕm)
and acceleration (ϕ̈m) can be measured or estimated, Equation (4.4) leaves five
parameters to be identified: the robot inertia, J = (Jm+r2Ja), the velocity pro-
portional friction coefficient, fv, the direction of movement proportional friction
coefficient, fc and the gravitational terms Mglcos(CôG), Mglsin(CôG).

In this manner Equation (4.4) can be rewritten as the linear regression:

τ̂k = ΦkΘT + ek (4.5)

Φk = [ ¨ϕm,k ˙ϕm,k sign( ˙ϕm,k) sin(ϕa,k) cos(ϕa,k)]
Θ = [J fv fc Mglcos(ϕCoG) Mglsin(ϕCoG)]

Θ, τ̂k, Φk and ek are respectively the parameters vector, predicted motor
torque, data vector and noise sampled terms.

Defining the prediction error as the difference between the measured motor
torque, τ(k), and the predicted motor torque τ̂(k|θ)

ε(k, θ) = τ(k)− τ̂(k|θ) (4.6)

and choosing a minizing criteria for Equation (4.6) such as the quadratic pre-
diction error

VN (θ) =
1
N

N∑
k=1

1
2
ε2(k, θ) (4.7)
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Since the prediction error here is linear in the parameters, the minizing vector
θ̂N for VN is the solution to a standard least-squares problem

θ̂N = arg
θ

min VN (θ) =

[
1
N

N∑
k=1

Φ(k)ΦT (k)

]−1

1
N

N∑
k=1

Φ(k)τ(k) (4.8)

which is easy to compute and analyze. For more information on system identi-
fication and parameter estimation see Ljung [31].

4.1.1 Experiment design

The concept of informative experiments defines that a data set Z is informative
enough with respect to a model set M∗, meaning that the data allow discrimi-
nation between any two different models in M∗. Basically this can be translated
as requirements to the input signal to the system. The main objective is to use
an input signal that excites all relevant frequencies for the identification and has
a small crest factor, which is a measure of the distribution of the input power at
the frequencies range (signals with small crest factor have a spread amplitude
spectrum).

Scope The experiments were held with the robot configuration as an inverted
L, only axis 1 was moved while the other axes remained still. Even though the
identification has been performed in all axis, for simplification reasons only axis
1 (without gravity influence) will be considered here, the results, however, can
easily be extended to other axes.

Input signal choice In order to identify the rigid body parameters, with
focus on the friction parameters, it is desirable that the input signal (here the
motor velocity is considered as input) attend the following requirements:

• Low frequencies of excitation: as will be shown in Section 4.2, the fricton
parameters are affected only by low frequency range signals therefore it
is desirable that the input signal amplitude is concentrated in the low
frequency range.

• Steady state velocities: if the acceleration is too high, the flexible modes
of the system will be excited and therefore the assumption of a rigid body
model is not valid and the estimation will be biased.

The objective now is to design an input signal under the limitations men-
tioned that is informative enough to perform identification and that only needs
to be activated for a short time.

The chosen signal is shown in Figure 4.1. It was generated by changing the
velocity of the robot as a stair between two points (−50◦ to 50◦). The signal is
activated for 40 seconds and goes through 20 different steady-state velocities.

Data preprocessing The system is excited while commanded torque and
velocity are acquired. No acceleration measurements are available, which is
estimated from the velocities measurements by the central difference algorithm:
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ϕ̈(k) =
ϕ̇(k + 1)− ϕ̇(k − 1)

2Ts
(4.9)

In order to improve the SNR (Signal to Noise Ratio) of the estimated accelera-
tion a non-causal lowpass filter is used.

To generate the sign( ˙ϕm) signal avoiding fluctuations near zero velocity
caused by the high frequency noise, first the velocity measurements are lowpass
filtered and then an adapted function of sign(x) is used such as:

sign thold(x, thold) =
{

0 if |x| < thold
sign(x) else

(4.10)

Before estimating the model it is good to have a measure of the data set
quality to the estimation. The concept of condition number can be used
for this purpose. The condition number associated with the linear equation
Ax = b gives a bound on how inaccurate the solution x will be after approximate
solution. For this problem the condition number can be defined as

cond number(Φk) = ||Φk
−1||.||Φk||
for ||Φk||2

cond number(Φk) =
σmax(Φk)
σmin(Φk)

(4.11)

where σmax(Φk) and σmin(Φk) are the maximal and minimal singular values
of Φk. A problem with small condition number is said to be well-conditioned,
while a problem with a high condition number is said to be ill-conditioned.

Estimation The final data set used in the estimation, with condition number
400.47, can be seen in Figure 4.1.

The estimated parameters values with its confidence intervals are shown in
Table 4.1.

Parameter Identified Values
J 0.0184 ± 0.0002
fc 0.6042 ± 0.0849
Fv 0.0107 ± 0.0007

Table 4.1: Estimated parameters

4.1.2 Validation

The next step is to validate the model to assure that the system is well repre-
sented by the model. A new data set is used which was generated by exciting
the same trajectory as in the estimation but in reverse way.

Figure 4.2(a) shows a model fit higher than 70% which is a reasonable result
considering the simplified model used for both robot dynamics and friction.
The cross-correlation values, Figure 4.3, are inside the confidence interval (the
auto-correlation is high because of the feedback present in the system).
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Figure 4.1: Identification Input Signal, note the higher acceleration values for
the higher velocities.
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Figure 4.2(b) shows the prediction error, Equation (4.6), between the pre-
dicted and measured torque, where it is easy to realize that the error is greater
for higher acceleration values, which is explained by the simplified model used.

(a) Model fit to validation data

(b) Model prediction error.

Figure 4.2: Model validation

Figure 4.3: Correlation Analysis.

4.1.3 Evaluation of RB parameters identification method

It is evident that the simplified rigid body model will not be a good representa-
tion of the system for all kind of inputs and operational conditions. Therefore,
further analysis on the influence of the acceleration of the input signal and on
the use of simplified trajectories have been performed.
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Input Acceleration Influence

As discussed in Section 4.1.1 an important issue when choosing the input signal
to the identification of rigid body is the avoidance of high accelerations. As seem
in Figure 4.1, the acceleration assumes high values for this trajectory, specially
for the higher speeds. To check the acceleration influence on the estimated pa-
rameters as well as on the numerical conditioning of the problem, the data used
on Section 4.1.1 was filtered by Algorithm 5, which takes away the data from
the data vector Φ where the acceleration values are greater than a threshold:

Algorithm 5 Acceleration thresholding

j=1;
for i=1:K

if |ϕ̈m(i)| ≤ thold
then

ΦNEW (j) = Φ(i);
τNEW (j) = τ(i);
j = j + 1;

end
end

where K is the length of the data vector Φ, ΦNEW and τNEW are the new
filtered data vector and applied motor torque respectively and thold is the ac-
celeration threshold of the filter. With ΦNEW and τNEW , the linear regressor
from Equation (4.6) is used to estimate the parameters through a range of dif-
ferent thold values. The result can be seem in Figure 4.4.

Remark 6 This approach is only valid because the linear regressor from Equa-
tion (4.8) at sample k only depends of the data sampled at k and not from past
or future data.

Figure 4.4: Parameters with its standard deviation (limiting lines) and the
condition number for different acceleration threshold values.
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The following conclusions can be drawn about the effect of thresholding the
acceleration on the estimation signal.

• ↓ thold ⇒ ↓ σfv and σfc: this result confirms that the friction parameters
are more affected by the low frequency input as already discussed. How-
ever, it is only considerable when the threshold is smaller than 200 (10%
of the maximum acceleration observed).

• ↓ thold ⇒ ↑ σJ : this result is consistent since the inertia parameter is
directly determined by the acceleration signal.

• ↓ thold ⇒ ↓ Condition number : the decrease on the condition number is
specially relevant in the first iterations, where the condition number could
be reduced by more than half. Of course that this conclusion is not valid
for too low thresholds which would reduce the data size too much and
increase the condition number.

Simpler trajectories

To verify the assumption of a rigid body model and the estimation method
presented in Section 4.1.1, the method was performed with simpler identification
data sets. The identification sets were generated moving the robot axis between
two points [−30◦, 30◦] with different commanded speeds. The parameters and
condition number of each data vector Φ are then compared.

Figure 4.5: Rigid body parameter estimation applied to point-to-point trajec-
tories with different speeds.

Analyzing the results at Figure 4.5 it is easy to conclude that the rigid
body identification method will only produce good results when the input signal
is informative enough. The condition number increases exponentially which
indicates that this approach is not valid, restricting the use of this method to
well conditioned input signals. For better results with such simple trajectories,
more complex models can be used and\or more variables measured.
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4.1.4 Concluding remarks

Some characteristics of the rigid body identification method proposed:

• The estimation quality is directly dependent on the input signal. The
method will only produce good results if the input signal is constrained
so that it only excites the desired frequencies for the identification and
passes through several steady state velocities. This characteristic restricts
the method application to situations where the arm can be excited in a
certain range of the work envelope so that an informative enough trajec-
tory can be applied. This also restricts its use to off-line identification
using a specific trajectory to the identification.

• The method is simple and fast, the data can be rapidly collected and
processed and the identification is done in only one step.

4.2 Joint flexibilities parameters identification

One of the main sources of flexibilities in industrial robots are in the gearboxes
which appear due to elastic deformation of bearings and gears. As presented in
Chapter 3 a model for the robot arm including flexibilities can be represented
by following dynamic equations

Jmϕ̈m + rada(r ˙ϕm − ϕ̇a) + τf + rτa = τ

Jaϕ̈a − da(r ˙ϕm − ϕ̇a)− τa = 0 (4.12)

where the subscripts a relates the variables to the arm side (after the gear-
box) and m to the motor side. A challenge that arises with this model is that
the a variables cannot be measured or estimated and therefore, the problem
cannot be solved by simple linear regressors and the use of black box techniques
are then needed.

In this document a state space linear model of Equation (4.12) is used to
estimate the parameters. Considering the linear models for τf and τa as

τf = fv ˙ϕm

τa = k1(rϕm − ϕa)

the corresponding state-space model in the form of ẋ = Ax + Bu, y =
Cx+Du is

X =
[
rϕm − ϕa ˙ϕm ϕ̇a

]T

(4.13)

A =

 0 r −1
−(rk1)

Jm − (fv+r2d)
Jm

rd
Jm

k1
Ja

rd
Ja − d

Ja


B =

[
0 1

Jm
0

]T

C =
[

0 1 0
]

D =
[

0
]

(4.14)
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with τ as input and ˙ϕm as output. The model can be considered as a state
space representation with known structure and unknown elements.

4.2.1 Experiment design

Before estimating the model it is important to check at which frequencies each
of the unknown parameters are excited. This is easily seem by looking at the
frequency response of the state-space model described by Equation (4.14) when
the parameters are changed. Figure 4.6 shows the results for a 20% of changes
in the nominal values of the parameters (Table 4.2).

Parameter Nominal value
fv 0.0107
k1 1500
d 4000
Jm 0.0043
Ja 709

Table 4.2: Nominal values. The nominal value for Jm has been taken from the
manufacturer specification while fv and Ja from the rigid body identification
step (J = (Jm + r2Ja)). k1 and d were guessed.

Figure 4.6: Parameters exciting frequencies.

The following conclusions can be drawn from Figure 4.6:

• fv affects the low range frequencies.

• Jm affects the high range frequencies.



4.2. JOINT FLEXIBILITIES PARAMETERS IDENTIFICATION 39

• d and Ja affects the middle range frequencies.

• k1 also affects the middle ranges but with only a small influence.

Input signal choice Two main considerations might be taken when design-
ing the input signal for the identification of the two mass model with joint
flexibilities of Equation (4.14):

• Excite all range of frequencies: as seem above, the parameters excites all
range of frequencies.

• Avoidance of static friction: since the linear model do not include the
static friction fc term, it is advisable that the input signal have as less as
possible zero velocities crossings.

The signal chosen for the estimation is a periodic triangle wave as the one
shown in Figure 4.7.

Figure 4.7: Periodic estimation input signal.

Data preprocessing To improve the SNR of the estimation signal, it has
been averaged over the periods with an arithmetic average. This also reduces
the amount of data in which the model will be estimated and consequently the
processing time.

Estimation Given the initial values for the parameters as the ones found in
Table 4.2, the model is estimated using an iterative prediction error method.
Function pem from the Matlab c© System Identification Toolbox is used to esti-
mate the state-space model of the form

x(t+ Ts) = Ax(t) +Bu(t) +Ke(t)
y(t) = Cx(t) +Du(t) + e(t) (4.15)

where K is the noise model which was set to zero during the estimation.
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Data post processing The estimated model returns a set of parameters on
the state space form such as:

A =

 0 r −1
θ1 θ2 θ3
θ4 θ5 θ6


B =

[
0 θ7 0

]T

to obtain the physical parameters from the estimated black box model, the
linear equations are solved as

Jm =
1
θ7

k1 =
−θ1Jm

r

Ja =
k1

θ4

d =
θ5Ja

r

fv = −θ2Jm − r2d (4.16)

The estimated parameters obtained after 1000 iterations are shown in Table
4.3.

Parameter Estimated value
fv 0.0157
k1 2881.3
d 52982
Jm 0.0088
Ja 59.6364

Table 4.3: Estimated values.

4.2.2 Validation

To validate the model the data set used in the identification of the rigid body
parameters is used.

Besides the evident improvements with this model there is still a bias for
velocities near zero as seem in Figure 4.8. This behavior can be explained by
the non included static friction fc in the model.

4.2.3 Conclusions

Some characteristics of the rigid body identification method proposed:

• Sensibility to initial values of the estimated model. Since the identification
is proceeded in a black box model the choice of the initial parameter values
are very important, the results can vary a lot with the initial conditions,
sometimes converging to unfeasible values (negative friction or inertia).
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Figure 4.8: Validation of the linear state space model with data used on the
rigid body identification.

It is very important then that the rigid body parameters are consistent
before estimating the model.

• Non inclusion of static friction produces a bias on the estimates for ve-
locities near zero.

4.3 Non-linear grey box identification

Given the initial parameters as the result of the other two presented estimations
methods, a non-linear model which includes the static friction is used to achieve
a better performance. The model is defined by the dynamic equations:

ẋ1 = rx1 − x2

ẋ2 =
−r(k1x1)− rd(rx2 − x3)− fvx2 − fcsign(x2) + τ

Jm

ẋ3 =
k1x1 + d(rx2 − x3)

Ja
(4.17)

where

x1 = rϕm − ϕa

x2 = ˙ϕm

x3 = ϕ̇a (4.18)

the initial parameters values are set as the ones identified in the steps de-
scribed before which values are shown in Table 4.4.

The input signal for estimation is the same as the one used in Section 4.2.1,
a triangle wave averaged over periods. fc and fv are set as fixed parameters
and the others set as free. The model is estimated using an iterative prediction
error method, function pem from the Matlab c© System Identification Toolbox.
The estimated parameters are shown in Table 4.5.

4.3.1 Validation

Three data sets have been used to evaluate the final model:
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Parameter Nominal values
fc 0.6042
fv 0.0107
k1 2881.3
d 52982
Jm 0.0043
Ja 59.6364

Table 4.4: Nominal values.

Parameter Estimated value
fc 0.6042
fv 0.0107
k1 2769.0
d 51544
Jm 0.013
Ja 203.0

Table 4.5: Estimated values.

1. Validation data 1: same data used to validate the rigid body model (Figure
4.9).

2. Validation data 2: same data used to validate the joint flexibilities model
(Figure 4.10).

3. Validation data 3: point-to-point trajectory with one predetermined ve-
locity (Figure 4.11).

Figure 4.9: Validation data 1 FIT.

4.3.2 Conclusions

The non linear grey box model presents the best performance amongst all pro-
posed models, reducing the bias for low velocities and representing the system
well for several types of inputs. The drawback is that, as the linear flexible
model, it is also sensible to the initial values, besides of being more complex,
requiring longer estimation times.
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Figure 4.10: Validation data 2 FIT.

Figure 4.11: Validation data 3 FIT.

4.4 Friction parameters identification

The identification methods presented until now in this chapter are used to de-
scribe the robot system completely including the identification of dynamics and
joint parameters. This section, however, deals only with the identification of
the friction phenomena.

Besides of utilizing data from the system measured signals, the friction pa-
rameters are estimated from the friction characteristic curve. First, then, a
method to estimate the friction curve is presented.

4.4.1 Friction curve estimation method

Equation (4.19) presents a generalized model of an industrial robot arm, where
M(ϕ̈a) is the inertia matrix, C(ϕa, ϕ̇a)ϕ̇a is referred as to the velocity dependent
term and includes the centrifugal, Coriolis and friction forces and τg(ϕa) is the
torque that appears due to the gravity and is position dependent (changes on
the center of mass). τ is the applied torque to the robot (in the motor side).

M(ϕ̈a) + C(ϕa, ϕ̇a)ϕ̇a + τg(ϕa) = τ (4.19)

Supposing that only one joint is moved at each time. For steady-state ve-
locities the trajectory does not excite flexible modes so that ϕa = rϕm and also
Coriolis and centrifugal forces can be neglected, Equation (4.19) is then reduced
to:

τf ( ˙ϕm) + τg(ϕa) = τ (4.20)



44 CHAPTER 4. ROBOT IDENTIFICATION

where τf ( ˙ϕm) is the friction torque.
Neglecting the directional dependency of the friction phenomena, the gravi-

tational torque τg(ϕa) at the validation point ϕa and friction torque τf ( ˙ϕm) at
velocity ˙ϕm can be estimated as:

τfwd = τf ( ˙ϕm)fwd + τg(ϕa)

τbwd = −τf ( ˙ϕm)bwd + τg(ϕa)

τg(ϕa) =
τfwd + τfwd

2

τf ( ˙ϕm) =
τfwd − τfwd

2
(4.21)

Position, velocity and applied torque measurements in the motor side are
usually available in robot applications. Therefore, using the method presented,
one can estimate the value of the friction torque for several different validation
velocities ˙ϕm and draw a curve for friction torque vs velocity.

Experiment design

The objective now is to define a trajectory that excites the system through
several different steady-state velocities and an algorithm to compute the friction
torque at each steady-state velocity.

The trajectory proposed (gray curve in Figure 4.12(a))goes through 22 dif-
ferent steady-state velocities and is generated with simple point-to-point trajec-
tories for each different velocities.

(a) The identification trajectory is marked
in gray while the estimation data in black.

(b) Gravity influence. Note the slope of the
applied torque in steady-state velocities.

Figure 4.12: Identification trajectory and gravity influence.

An algorithm searches for the steady-state velocities preparing the data for
the estimation. Two main considerations might be taken when designing such
algorithm.

Gravity influence For axes under gravity influence, axis 2 for example, the
applied torque at a steady-state velocity is not constant since the gravitational
torque will be a function of the arm position (see Chapter 3 for more). Therefore,
the gravitational torque influence requires that the data used in the estimation
to be taken at the same position ϕa in the backward and forward directions for
each steady-state velocity (see Figure 4.12(b)).
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Noises A basic requirement is that the evaluation torque and velocity values
are estimated as precise as possible besides the noise. In the method presented
here, this is achieved by taking the average of torque and velocity measurements
around the validation point ϕa inside an interval (ϕa − lim, ϕa + lim).

The final data used for the estimation of friction is marked in black at Figure
4.12(a).

The data is then processed as presented earlier in this section to take away
the gravity influence and estimate friction. The result of such estimation is a
curve with the friction torque at several velocities as shown in Figure 4.13.

Figure 4.13: Estimated friction torque (N.m).

4.4.2 fc and fv estimation

The simple model that includes only the viscous and Coulomb friction parame-
ters can be estimated over the friction characteristic curve with the simple linear
regressor below:

τ̂f = ΦkΘT + ek

Φk = [ ˙ϕm,k sign( ˙ϕm,k)]
Θ = [fv fc]

The result of the estimation is presented together with real friction curves
in Figure 4.4.2.

From Figure 4.14(b) it is easy to see that the simple model that approximates
all the friction phenomena for non zero velocities as a straight line can give big
errors.

4.4.3 A more complete model

The more realistic friction model

τf = fv ˙ϕm + fc

(
µ+

(1− µ)
cosh(β ˙ϕm)

)
(4.22)
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(a) Characteristic curve with little nonlin-
earities.

(b) Characteristic curve with high nonlin-
earities.

Figure 4.14: Friction estimated model output and friction characteristic curves.

gives a better estimation of the friction phenomena for the whole velocities
range. The model, however, is nonlinear in the parameters and cannot be
estimated directly with a simple linear regression.

To estimate the model parameters, the linear regression is combined with
extensive search that varies the parameters µ and β in a predefined range until
a prediction error equation is minimized. The linear regressor is updated for
each pair of values µ and β as:

τ̂f = ΦkΘT + ek

Φk =
[

˙ϕm,k

(
µ+

(1− µ)
cosh(β ˙ϕm)

)]
Θ = [fv fc]

From the model output presented in Figure 4.4.3 it is easy to realize the
better representation of this model.

(a) Characteristic curve with little nonlin-
earities.

(b) Characteristic curve with high nonlin-
earities.

Figure 4.15: Friction estimated model output and friction characteristic curves.
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4.5 Concluding remarks

This chapter covered dynamics and joint parameters identification of industrial
robots. The choice of which model to use and the experiment to identify is
one of the most important tasks in parameter driven fault detection and can be
considered as a trade off between reliability of the parameter and the complexity
of the identification method.

Table 4.6 presents a summary of each of the methods presented here.

Model Technique Parameters Advantages Disadvantages
Rigid
body

linear re-
gressor

fc, fv, J Simple method and
simple experiment
(one step identifica-
tion). Parameters
identified directly
from the data.

Poor representa-
tion of the real
system.

Joint
flexibili-
ties

Black
box
state-
space

fv, Ja,
Jm, k1, d

Good representa-
tion of the system.

Two step iden-
tification. sen-
sibility of the
estimation to the
initial parame-
ters choice.

Joint
flexibili-
ties

Non lin-
ear Grey
Box

fc, fv, Ja,
Jm, k1, d

Best representation
of the system.

Three step
identification.
Time consum-
ing estimation.
Sensibility to ini-
tial parameters
choice.

Simple
friction

linear
regressor
from
charac-
teristic
curve.

fc, fv Simple method
and experiment.
Parameters identi-
fied directly from
the characteristic
curve.

Poor representa-
tion of the char-
acteristic curve.

Complete
friction

linear
regressor
with ext
search
from
charac
curve.

fc, fv, µ,
β

Simple method
and experiment.
Parameters identi-
fied directly from
the characteristic
curve.

Extensive search
can be time con-
suming.

Table 4.6: Identification methods comparison.
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Chapter 5

Friction phenomena in
robot joints

Friction exists in all mechanism to some extent. As defined by Olsson in [1],
friction is the tangential reaction force between two surfaces in contact, which is
physically dependent on contact geometry and topology, properties of the bulk
and surface materials of the bodies, displacement and relative velocity of the
bodies and presence of lubrication.

The success of a fault detection system is related to its ability to generate
alarms only when a real faulty state is present in the system, avoiding false
alarms. Therefore, it is vital to have as much knowledge as possible about how
the monitored variables are influenced by the system. In this sense, this chapter
presents the friction behavior under several different circumstances, delimiting
the boarders of a fault detection using friction as a parameter.

5.1 Friction phenomena

Friction is a highly nonlinear phenomena which has been constantly explored by
researchers due to its importance in a lot of applications, including the robotics
field. Since friction is the result of complex interactions between contact surfaces
and lubricants, there is not a predictive model for the phenomena based only in
the characteristics of the materials. Therefore, the models are invariably defined
through experimental data.

Generally, friction has been modeled with simple static models (constant
velocities), but nowadays, the interesting on dynamic models for friction has
increased considerably in order to have some better estimation of the friction.

Some of these dynamical behaviors of friction can be summarized below:

• Pre-sliding displacement (Dahl effect) The spring-like behavior of friction
that causes a displacement linear dependent on the applied force if this
applied force is less than the break-away force (force necessary to overcome
the static friction).

• Varying break-away force (rising static friction) The dependence of the
break-away force on the rate of increase of the applied force.

49
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• Frictional Lag The delay in the change of the friction force as a function
of a change in the velocity.

Besides the friction phenomena mentioned above, some other effects with
respect to friction are reported in the literature:

• Time-dependent friction From experiments it is known that friction changes
with time. These changes appears, for instance, due to loss of lubricant,
deformation of the surface material, change in temperature due to gener-
ated heat and/or accumulation of wear debris.

• Position-dependent friction A dependence of the friction on the position
of a system is another effect that is experimentally observed and is well
known by a lot of researchers. This position-dependency is caused by
spatial inhomogeneities in the transmission of the system due to contact
geometry and/or loading which varies as a function of position. As the
load varies, the normal force between the sliding surfaces varies, causing
a varying friction (friction is linear dependent on the normal force). By
preloading the transmission elements and roller bearings this dependency
of friction on the load can be decreased.

• Direction-dependent friction A lot of researchers have found the friction
to be dependent on the direction of the motion of a system. Different
Coulomb and viscous friction levels in the left and right directions of a sin-
gle, linear motion have been observed experimentally on many occasions.
Theoretically, this may be due to anisotropies in material or geometry.

The friction phenomena is usually classified as pre-sliding and sliding, as
illustrated in Figure 5.1. The Coulomb friction, or the phenomena present in
low velocities (pre-sliding range) can be explained by the complex interactions
between the surfaces in a non sliding motion, while the viscous friction is de-
pendent on properties of the oil layer formed in the sliding regime between the
two contact surfaces.

Figure 5.1: Friction regimes. Pre-sliding, friction phenomena that appears in
the low velocities range; Sliding, friction phenomena in the greater velocities
range.
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5.2 Friction in robot joints

In robotics, the friction phenomena can be influenced by several variables and
aspects, such as:

• Operational temperature

• Joint velocity

• Gearbox oil

• Robot joints configuration (different inertias)

• Motion positions (operational point)

• Load/tool coupled to the robot

• Usage

• Backlash (gear play)

• Robot model

• Different individuals for the same robot model

A successful fault detection method should generate alarms only when faulty
states are present in the system, regardless disturbances. In this sense, it is
vital when designing the fault detection method to have a great understanding
of how the faults affect the parameter as well as the disturbances. For example,
it is known that, before a gearbox breakdown, the friction phenomena increases
significantly; also, that due to the use of lubricant oil, the temperature influence
is relevant.

These informations will build up the basis to choose the estimated param-
eters to use with the change detection purpose. Nevertheless, it is a very chal-
lenging task to gather all this information. In general, before the decision of
the design of a diagnosis system there is lack of information about the faults,
its transiency and the effects in the system, as well as what should be called as
the system normal operation behavior. Such knowledge is mainly acquired from
long term experiments or domain experts.

The next sections of this chapter presents the result of an effort to gather
knowledge about the friction behavior in robot joints through several of the
mentioned variables.

5.3 Fault-free friction behavior in robot joints

Using the method described in Section 4.4.1 to estimate the friction curve, the
aspects below have been studied in detail. They are here considered as to
be fault-free since they are not directly related to joint malfunctions but to
situations present in a normal operation of any industrial robot.

• Operational point dependency : due to asymmetries on the joints it is
known that the friction phenomena is operational point dependent.
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• Presence of load : the load presence obviously affects the robot inertial
moments and therefore it is important to analyze its influence.

• Robot joints configuration: also affects the robot inertial moments but in
a different way. If for example the new center of mass is too far from
the moving axis, the link flexibilities may be more evident. Changes on
configuration are also important because they can simulate how different
tools attached to the robot would behave.

• Oil : there are different types of lubricant used in gearboxes, with different
properties that are known to affect the friction phenomena, specially in
the sliding regime.

• Temperature Influence: friction, specially the viscous part, is affected by
the temperature operation of the robot.

5.3.1 Operational point, load, joints configuration

The friction behavior for the axis 2 of an ABB IRB 6650 industrial robot has
been analyzed for changes in operational point, attached load and joints config-
uration.

Experimentation

A description of the experiments and its results can be found respectively in
Figures 5.2 and 5.3. Each case has been realized with and without a load of
175kg coupled to the robot and in all experiments the robot was in thermal
equilibrium with the environment temperature.

Concluding remarks

The analysis of the results of these experiments reveals the following about the
friction phenomena:

• Operational point dependency: the friction phenomena did not change
significantly with the different operational points.

• Robot joint configuration: the friction phenomena did not change signifi-
cantly with the different robot configurations.

• Presence of load : the presence of load affected the friction phenomena
with more relevance for the lower velocities than for the higher ones.

• Gravity influence: there is an increase of the friction phenomena in the
cases where the moving joint is under a higher influence of the gravitational
torques. This is easily seem when comparing the Operational Point A
5.2(b) (higher gravitational torques) and Configuration B 5.2(d) (lower
gravitational torques).
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(a) Default. Movements
around 0◦; all other axes
configurations in 0◦.

(b) Operational Point
A. Movements around
20◦; all other axes con-
figurations in 0◦.

(c) Configuration A.
Movements around 0◦;
axis 3 configuration:
50◦.

(d) Configuration B.
Movements around 0◦;
axis 3 configuration:
−90◦.

(e) Configuration C.
Movements around 0◦;
axis 3 configuration:
−170◦.

Figure 5.2: Experiment cases for axis 2.

(a) Experiments without load. (b) Experiments with load.

(c) Comparison withwithout load.

Figure 5.3: Result of experiments for axis 2.
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5.3.2 Oil and temperature

The friction phenomena in the sliding regime is dependent on properties of the
oil layer formed between the contact surfaces. The property of an oil that may
cause the biggest change in friction is its viscosity, it is natural to think that the
friction will increase with the oil viscosity and, since the oil viscosity is sensible
to temperature, that the oil temperature will also affect the friction phenomena.

In this work three oils with different viscosity and properties are considered:

• Oil 1

– Kinematic viscosity at 40◦C (mm2/s): 150

– Kinematic viscosity at 100◦C (mm2/s): 18

• Oil 2

– Kinematic viscosity at 40◦C (mm2/s): 220

– Kinematic viscosity at 100◦C (mm2/s): 34.4

• Oil 3

– Kinematic viscosity at 40◦C (mm2/s): 320

– Kinematic viscosity at 100◦C (mm2/s): 52.7

Note the different values of kinematic viscosity of the oils and its great
sensibility to temperature.

Experimentation

The friction is monitored in an ABB IRB 6650 industrial robot. Since the tem-
perature directly affects the viscosity of the oil, the friction curves are estimated
with several different temperatures (varying from 24− 50◦C).

The experiments are realized in the following routine:

• Warm-up cycle: the gearbox is warmed-up moving the axis from -50◦ to
50◦ with maximum speed for 30 min.

• Cooling down with friction estimation: after the gearbox reaches a certain
temperature, the experiment to estimate the friction is realized several
times with a 30 min interval between each other in order to have as many
different temperatures as possible.

Environment and oil temperature measurements are available during the
whole routine, which is repeated for the three different oils. Figure 5.4 shows
the temperature measurements during one of the experiments with the warm-up
and cooling down cycles.

Figure 5.5 shows the friction torque for each oil at the same gearbox tem-
perature of 22◦C. Note that the main changes appears in the sliding regime.

For the same oil, the temperature influence is shown in Figure 5.6 where the
gearbox temperature was varied from 24− 50◦C. It is easy to realize the effects
in friction caused by the different temperatures.

For comparison reasons, the friction torques for all three oils in the whole
temperature range are plotted as surfaces in Figure 5.7.
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Figure 5.4: Gearbox and environment temperature measurements during the
experiments.

Figure 5.5: Estimated friction torques with different oils and same temperature.
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Figure 5.6: Estimated friction torques for same oil with different temperatures.

Figure 5.7: All surfaces plotted together.



5.4. FAULTY FRICTION BEHAVIOR IN ROBOT JOINTS 57

Concluding remarks

The main effects caused by the use of different oils and temperature ranges
are directly related to the viscosity of the oil, greater viscosities will cause an
increase of the friction torques. Summarizing:

• Oil : greater friction torques with greater viscosities.

• Temperature: smaller friction torques with greater temperatures.

• Shape of the curves: the changes are mostly observed in the sliding regime.
It is known that in this range the friction phenomena is highly dependent
on the lubricant properties.

See Appendix A for more on temperature influence.

5.4 Faulty friction behavior in robot joints

In the context of fault detection, besides the knowledge of the normal variation
of the observed phenomena, it is also important to understand how the fault
affect the observations.

To gather the knowledge of how the faults affect the system, the friction
was estimated in several worn-out robots. These robots had been operating for
several years, starting to reach the end of their life time.

5.4.1 Wear

One of the common phenomena that appears before the breakdown of a gearbox
is an increase of the friction. The phenomena is directly related to the fact that
the gearbox metals start to peel with usage, increasing the free particles inside
it and concomitantly the friction. At this point, the vibrations in the joint also
increases.

The phenomena is shown in Figure 5.8 where it is obvious to identify the ill
conditioned robot.

Figure 5.8: Increased friction phenomena caused by wear.
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Transient behavior

Is is also important to understand how the fault develops with time. For this,
extensive experiments were held in a robot which has been ran with a dedicated
cycle to simulate the wear down process while the friction estimation experiment
was realized concomitantly. The transient behavior of the fault caused by wear
is shown in Figure 5.9;

Figure 5.9: Transient behavior of the increased friction phenomena caused by
wear.

5.4.2 Conclusions

It can be seem from Figure 5.9 that the influences appears with greater relevance
in the pre-sliding regime, in this case for velocities lower than 100rad/s, and, of
course, as an increase of the friction.

5.5 Concluding remarks

The results presented in this chapter are vital to define which parameters should
be considered for the fault detection task. The observations from the faulty and
fault-free system can be summarized as follows:

• Fault-free behavior

– Inertial torques: the variables operational point, robot joint config-
uration and load presence affect the friction phenomena in a similar
manner. For cases where there is an increase of the inertial torques
to overcome either caused by a load, increased gravitational torque
or arm inertia change, it is observed an increase of the friction phe-
nomena, which is explained by the increase of the interactions forces
between contact surfaces in the gearbox.

– Gearbox lubricant: the use of more viscous lubricants will increase
the friction phenomena, with greater relevance in the sliding regime.
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– Temperature: temperature was shown to be a very important vari-
able in friction phenomena, affecting considerably the slopes in the
sliding regime.

• Fault effects

– Wear: the presence of free metals inside the gearbox caused by wear
increases the friction phenomena.

– Transient behavior: the friction increase with the wear down process,
the phenomena has special relevance in the pre-sliding regime.

• Common observed phenomena

– Shape of the curves: for the cases presented here, the shape of the
friction curve did not vary considerably. Composed by a pre-sliding
regime with high nonlinearities and the sliding regime where the
curve approximates a line.

– Individuality: even though not extensively presented in this chapter,
it is important to note that the friction curves values varied with
robot type, axis and robot individuals. This is important when de-
limiting the change detection range (for example, whether the same
method and values can be used for all robot types or only for the
same individual).

Considering the aspects presented until now, Chapter 6 presents a method
to detect faults using friction as a parameter for fault detection.
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Chapter 6

Friction change detection

The past Chapters have built the needed knowledge basis to perform the detec-
tion; Chapter 5 presented how the faults and disturbances affects the monitored
friction phenomena while Chapters 3 and 4 presented methods and experiments
to identify relevant parameters from the friction phenomena.

Using this knowledge, the objective of this chapter is to define a change
detection method and to explore its performance over some case studies.

6.1 Definitions

Some definitions are reviewed in order to clarify the terms used.

6.1.1 Change detection

Given an estimation of a parameter yt = θt + et where θt is deterministic and et

additive noise, the task of change detection here is defined as finding a change
(abrupt or incipient) in θt, occurring at change time k.

Figure 6.1 illustrates the change detection scheme used in this work. The
task of estimating θt from yt is referred as estimation. A residual εt is said as the
difference between θo, considered as the normal value of θ, and its actual value
θt. A distance measure is referred as a metric of the changes in the residual.
Finally, a stopping rule is a filter that takes a distance measure as input and
generates an alarm when θt has exceeded a certain threshold.

Figure 6.1: Change detection scheme

Several distance measures can be used, for example, changes in the mean or
in the variance (see Section 2.3 for more).

There are also several stopping rules available, a classical approach is to
apply a test in the distance measure using a threshold as an estimate of the
standard deviation at each time, such that |st| < 3σt, this is also called as the
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3 sigma test. For more robustness of the test, the variance using the non faulty
data be included as |st| < 3

√
σt

2 + σo,t
2.

For signals with too high variation or for incipient faults, the 3 sigma test
approach can generate too many false and/or missed alarms. The CUSUM,
defined below, is a test used to improve the robustness of the stopping rule.

The CUSUM test

The CUSUM test statistic, see [18], is formulated by the following algorithm:

Algorithm 7 CUSUM test

gt = gt−1 + st − v

gt = 0, and k̂ = t if gt < 0
gt = 0, and ta = t and alarm if gt > thold > 0. (6.1)

The test statistics gt sums up its input st, with the idea to give an alarm when
the sum exceeds a threshold. The drift variable v is set to compensate for the
variation of the parameter caused by noise and errors in the estimation, while
the threshold choice is related to the trade off between false alarms and detection
time. Note that the test as defined in Algorithm 7 is a one-sided test, if st can
be negative another CUSUM must be run in parallel.

6.1.2 Fault isolation - the hypothesis test

Fault isolation is the task of determining the kind, location and occurrence time
of a fault. There are several ways to indicate the kind of fault, a very useful is
the use of hypothesis test and decision structure as described by Nyberg in [20].
In this approach, several test quantities Ti (any quantity sensible to a fault) are
estimated and compared in a hypothesis test to determine which kind of fault
occurred.

A hypothesis test can be defined as the decision between the two states
possible for a fault (present or not). A hypothesis test can be represented as a
matrix where the rows are the hypotheses and the columns the test quantities,
the elements of such matrix are the result of the test quantity for each hypothesis
(each monitored behavioral mode of the system), a 0 value means that the test
quantity does not relate to the hypothesis and an X that it can relate.

T0 T1 T2

F1 X 0 X
F2 X X 0
NF 0 0 0

The illustration presents an example where T0 can affect F1 and F2 and T1

F2 and t2 F1. NF stands for the non-fault hypothesis, where none of the test
quantities affect it.
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6.2 Building the detection scheme

In this Section each block/function in Figure 6.1 is defined for the detection
method used.

6.2.1 Estimation

Four parameters are used to perform the detection.

• fc: estimated Coulomb friction from the method defined in Section 4.4.3.

fc can be considered as a good measure of changes appearing in the
pre-sliding regime of the friction curves.

• fv: estimated Coulomb friction from the method defined in Section 4.4.3.

fv can be considered as a good measure of changes appearing in the
sliding regime of the friction curves.

•
∫

: trapezoidal integral approximation of the friction characteristic curve.∫
can be considered as a good measure for detection of general changes

in the friction curves, it also gives an idea of the amount of energy needed
to overcome friction in the velocities range.

•
∫

low
: trapezoidal integral approximation of the friction characteristic curve

for low velocities (vel < velx).∫
low

complements the fc parameter in the sense that it carries the
behavior of the friction curve for low velocities.

Defining the residual - moving average

A great challenge when defining a detection method is to choose the normal
values of the monitored parameter, θ0, having a good estimation of the real
θ0 usually requires long-term evaluation which is not always feasible. To deal
with this, one could for example suppose that the estimated parameter inside a
window of the whole data is said to be normal, θ̂0(t−k1 : t−k2), while the last
sample could be considered as the actual parameter, θt, this technique is also
called as sliding window and is very important in fault detection.

Another approach, the one used here, is to take the estimates with a moving
average, defined below.

θ = λyt−1 + (1− λ)yt (6.2)

For λ < 0.5, the result of the average gives more relevance for the last samples
(the present estimations are more important). For λ > 0.5, the result of the
average gives more relevance for the past samples (the past estimations are more
important).

Considering that during the first samples the parameter is to be considered
as normal, the fault free parameter, θ̂0 is averaged with λ0 > 0.5. To improve
the noise sensibility, the estimation of the actual parameter, θ̂t, are taken with
λt = 1 − λ0. In this manner, both signals are filtered, attenuating the noise
influence while θ̂0 gives more relevance to past data and θ̂t to the present data.
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Let yt be the estimated parameter, the residual is then taken as:

λ0 > 0.5 λt = 1− λ0

θ̂0 = λ0yt−1 + (1− λ0)yt

θ̂t = λtyt−1 + (1− λt)yt

εt = θ̂t − θ̂0 (6.3)

The distance measure is taken as the residual from Equation (6.3), st = εt.

6.2.2 Stopping rule

The CUSUM test is used as a stopping rule. The drift constant is set as vt = kv θ̂t

(kv > 0), in this manner the test is reduced to:

gt = gt−1 + εt − v

gt = gt−1 + (θ̂t − θ̂0)− kv θ̂0

gt = gt−1 + θ̂0 − (1 + kv)θ̂0 (6.4)

Configuring the test in this manner, kv becomes a measure of the smallest
change to be detected. For example, supposing no error in the estimation of
θ̂0 and θ̂t, the test gt will only increase if θ̂t is at least kv θ̂0 greater than θ̂0, in
other words, the parameter has to deviate kv from normality.

However, since there are errors in the estimation of θ̂0 and θ̂t, it can also be
included the normal variation of the parameters in the drift as v = kv θ̂0 + α.
A good choice for α is to take a scaled value of the standard deviation of the
residual, αt = kασ(ε1:t).

The threshold can now be defined as tholdt = 3vt.

6.2.3 Choosing the hypothesis

There are three behavioral modes suitable to be separated using friction esti-
mated parameters:

NF - no fault : normal situation.

H0 - increased friction : the friction increase as an indication of a possible
near breakdown.

H1 - high increased friction : the friction increase when the gearbox is close
to a breakdown. This situation can be considered as an urgent case and
maintenance should be proceeded immediately.

The most important to detect is H1, which can compromise the whole system
where the robot is operating. H0 can be seem as a pre-alarm for H1.

The test quantities used to relate these behavioral modes are:

T1 - increase of friction : the parameter
∫

low
is used to give an indication of

an increased friction, the indication is true if the last two samples exceeded
the threshold.∫

low
(t− 1 : t) > thold
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T2 - high increase of friction : the parameter
∫

has to exceed the threshold
for at least the three last samples. Since the main observed changes occur
in the low velocities range it also checks

∫
low

and fc.∫
(t− 2 : t) AND

∫
low

(t) AND fc(t) > thold

T0 - no alarm : all other cases.

The matrix representing the hypothesis test becomes:

T0 T1 T2
H0 0 X 0
H1 0 0 X
NF X 0 0

6.3 Case studies

In this section the detection is evaluated within some case studies. The cases
are generated with real data and/or simulations using real data. The same
detection algorithm was used for all cases with λ = 0.8, kv = 0.01 and kα = 0.4.

6.3.1 Case 1: Normal operation

Objective

Check the behavior of the detection method in the case where there is no fault
in the system.

Experiment

The friction experiment was realized several times in an industrial robot which
was considered to be operating normally. The conditions of temperature and
motions (trajectories for the identification) were kept constant during the ex-
periments. Figure 6.2 shows the results of the detection for the case.

Conclusions

It can be seem that even though fc and fv exceeded the threshold, the use
of the hypothesis test assited to consider the data as normal. To improve the
performance of these parameters, v should be increased tuning kv andor kα.

6.3.2 Case 2: Gearbox breakdown

Objective

Check the behavior of the detection method in a case with a real breakdown
process in the gearbox.
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(a) Friction curves

(b) fc (c) fv

(d)
∫

(e)
∫

low

(f) Hypothesis test

Figure 6.2: Case 1: normal variation.
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Experiment

The data used in the detection is the same as the one used to generate Figure
5.9 in which a gearbox has been ran continuously to force a wear down process
while the friction estimation experiment was realized, temperature and motions
were kept constant during the experiments. The results are shown in Figure
6.3.

Conclusions

In this case, both hypothesis H0 (increase of friction) and H1 (high increase of
friction) are excited. H0 is excited one sample before H1, giving an indication
of a possible breakdown, while H1 is excited when the gearbox is close collapse
(the gearbox broke after the last sample used in this data set).

6.4 Concluding remarks

In this chapter a fault detection scheme has been presented and evaluated within
some scenarios. The detection algorithm proposed uses several tools to improve
the robustness of the test and reduce the number of parameters to be tuned to
three:

• λ: compromise between fault size, detection time and filter attenuation.

• kα: compromise between robustness of the test and detection time.

• kv: percentage of the size of the fault to be detected.

The tuning of these parameters are quite straightforward and does not re-
quire too many attempts. The use of the hypothesis test is also very important,
improving the robustness of the test and providing fault isolation.

Finally, the scenarios tried to approach reality as possible to validate the
approach, two cases were presented here, but the method was tested in several
others and the detection performed well in all of them.
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(a) Friction curves

(b) fc (c) fv

(d)
∫

(e)
∫

low

(f) Hypothesis test

Figure 6.3: Case 2: gearbox breakdown.



Chapter 7

Conclusions

This Chapter summarizes the thesis report and leave comments on future work.

7.1 Summary

A review on fault detection was first presented introducing the field to the reader
and discussing the unavoidable trade offs present in any detection scheme. It
also pointed out the advantages and disadvantages between the several methods
available for the application sought, friction change detection. It has been shown
that for detection of multiplicative faults (as in the case of friction), the detection
using parameter estimation is more convenient than state estimation.

Chapter 3 introduced the Robotics field, discussing the main phenomena and
restrictions. It presented some robot and friction models suitable for a parame-
ter based detection. Chapter 4 complemented it with identification methods and
experiments of an industrial robot arm. The characteristics of the model and
identification methods were also considered for the application sought, assisting
the choice of the estimation method.

One of the most important contributions of the thesis was presented in Chap-
ter 5, the analysis of friction behavior under several variables. It has been shown
that the most important disturbance on the friction is caused by the viscosity of
the oil used inside the gearbox, which varies significantly with the operational
temperature. The experiments realized with faulty robots revealed the behavior
of the friction phenomena under a wear down process which is an important phe-
nomena to the operation of a joint. The knowledge gathered from this chapter
is not only vital for the diagnosis scheme proposed but also relevant for other
tasks such as control, modeling and simulations.

With the knowledge basis built with the other chapters, Chapter 6 finally
presented and defined a fault detection method based on estimated friction
parameters. The test robustness was achieved with the use of several tools such
as the moving average in the estimation and the set of the drift variable in the
CUSUM test. Also, fault isolation was achieved with the use of a hypothesis
test. The method was evaluated in several scenarios (two were presented here)
generated from real data, showing its validity.

Finally, Appendix A, presented a more detailed analysis of the friction be-
havior under the disturbance of temperature, providing insights for improving
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the robustness of the experimentation.

7.2 Future work

There are several possible improvements on the work presented, some of them
are listed below:

• Define the requirements of the method: even though the detection per-
formed well in the scenarios presented, some further investigation on the
experimentation rate and conditions (temperature and oil for instance)
should be considered to provide a robust tool suitable to be used in any
case (different robot models with different operational conditions).

• Extensive evaluation of the method: it would be interesting to check the
performance of the method in many cases as possible, specially in field ap-
plications, to testify its validity as a tool suitable for condition monitoring
and maintenance assistance.

• Automated detection tuning: the detection method presented in Chapter
6 needs at least three parameters to be tuned, and even though tuning
them is not a complex task, it is more suitable for the user if no tuning
is needed. This could be achieved, for example, by checking the variance
of the parameters for normal robots and building a database with tuning
parameters for every robot type.

• Estimate the detection time: not covered in the work is the task of es-
timation the time that a fault appeared in the system. This feature is
important to keep track of the changes and therefore assist maintenance.
There are several methods used to estimate the change time, found for
example in [18].

• Estimation of the remaining life time of a robot: an interesting application
of the detection is to try to estimate the remaining life time of a robot.
This could be achieved for example by checking the size of the faults and
relating them to a life time model.

• On-line parameter estimation: the method proposed here to estimate the
friction parameters requires a dedicated experiment, which means that
in the field, the robot needs to be stopped to run the test cycles. This
situation is not desirable since the robots usually play an important role in
their application. In this sense, it would be interesting to define a friction
estimation method using data from a normal cycle of the robot (logged
from a usual workcyle). However, this is a very challenging task since the
parameters can only be identified if their frequency range is excited, which
could not be the case with a general input.
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Appendix A

More on temperature
influence

As seem in Chapter 5, the temperature affects considerably the friction phe-
nomena in the sliding regime. A measure of how the friction is affected by the
temperature is the integral of the friction curve, since the increase of temper-
ature reduces the friction torques in the sliding regime, the integral will also
decrease.

Figure A.1 shows the integral of the friction curves (computed using a trape-
zoidal approximation) for each oil as a function of temperature.

Figure A.1:
∫
τF with temperature.

From Figure A.1 it is easy to see that the changes present a linear behavior
with temperature and with a similar rate. The estimated inclination of each
curve in Figure A.1 are:

• Oil 1: −15.09

• Oil 2: −20.53

• Oil 3: −22.89

This characteristic indicates that the oil properties that affect friction vary
with similar rate and quite linearly with temperature for all oils tested in this
work (which are the ones recommended by the manufacturer).
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A.1 Cooling down curve

If the cooling down curve for each oil is plotted together with the same initial
temperature, as in Figure A.2, it is easy to realize that it is not dependent on
the oil used inside the gearbox (the oils may have same thermal capacity), but
only on the joint properties.

Figure A.2: Cooling time inside the gearbox and environment temperature.

A simple model of the temperature decay inside the gearbox can be derived,
which is also known as the Newton law of cooling, described by Equation (A.1).

ˆT (t) = Tenv + (To − Tenv)e−rt (A.1)

Where ˆT (t) is the estimated temperature inside the gearbox, Tenv is the
environment temperature, To is the initial temperature of the gearbox and r
is a constant characteristic of the system. Equation (A.1) only includes the
conduction heat transfer and relies on the simplification that the body has
relatively high internal conductivity, such that (to good approximation) the
entire body is at same uniform temperature as it is cooled from the outside by
the environment.

The constant r from Equation (A.1) was estimated for each oil as minizing
the prediction error of the model, e = ˆT (t) − T . The estimated constant r for
each oil is:

• Oil 1: 6.3664e− 005

• Oil 2: 5.9361e− 005

• Oil 3: 6.3340e− 005

The similar values of r indicate that the use of a global model of the cooling
down curve is possible; the model approximation taking the mean of r for each
oil (r = 6.2122e − 005) is shown in Figure A.3, where is easy to see that this
can be considered as a good approximation.

The fact that the gearbox temperature does not converges to the environ-
ment temperature indicates that there is a heat source inside the gearbox, in
this case it is caused by an intermittent friction estimation cycle ran each 30
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Figure A.3: Gearbox cooling down measurements and model.

min interval, keeping the gearbox temperature greater than the environment.
Since this heat source is not included in the model, there is an error of ≈ 4◦C
from the model and measurements in steady-state.

A.2 Temperature increase with work cycle

Since the only heat sources in the system are the losses (friction for example)
occurring in the robot, which are directly related to the work cycle f, the differ-
ence of temperature between the gearbox and the environment will be a function
of f and the rate that it is repeated. If the robot is run continuously with the
same work cycle f∗, then the increase of temperature could be considered as:

To = Tenv + T ∗f (A.2)

Where T ∗f is the added temperature to the system due to the losses in the work
cycle f∗. In this manner, the only effect of Tenv is an offset change in the cooling
time curve.

Supposing that the robot always operates with the same work cycle so that
Tf = cte in steady-state and that the experiments are held after the same time
since the robot was stopped, such that Tdecay = cte, the gearbox temperature
will only be function of Tenv:

TGB(Tenv) = To − Tdecay

TGB(Tenv) = Tf − Tdecay + Tenv (A.3)

It is important to note, however, that this conclusion supposes that the
losses in the robot remains constant with temperature, which is not true but
could be used as a fair approximation. It is known for example, that there
is a temperature dependency of the winding resistance for permanent magnet
motors as:

R = R20◦C
235 + T

235 + 20
(A.4)
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A.3 Environment temperature influence

The environment temperature will of course cause differences in the estimation.
The changes in the environment temperature can be caused by several factors,
different stations in a year for example, and adds a need of considering the rate
of the service routines for fault detection.

For example, supposing that the environment temperature vary ±10 ◦C dur-
ing a year, it is expected the friction curve also to vary during the period. There-
fore, depending on the periodicity of the experiments, the changes between the
experiments will vary.

In Figure A.4 the rate of the experiments is simulated by taking different
deltas of temperature for each set of experiments, a higher periodicity is simu-
lated taking a delta of 2 ◦C between two consecutive curves (black curves) and
a lower rate with a 5 ◦C difference (gray curves).

Figure A.4: Experiments rate influence. Note the bigger differences between
two consecutive experiments whether the rate is lower.

The friction curve integral,
∫
τF , is plotted in the same figure and the differ-

ence of the
∫
τF between consecutive experiments. It is easy to realize that the

higher the rate of the experiments is, the lower the changes between the experi-
ments will be, which is an important characteristic when tunning the detection
algorithm.

A.4 Concluding remarks

From the analysis above, the following conclusions can be drawn about the
temperature influence in friction:

• Cooling down model: the observed cooling down curves were practically
the same for all oils tested.

• Work cycle influence: it was presented the suggestion that the increase of
the gearbox temperature in the same environment temperature is due to
the losses occurring in the work cycle, therefore, if the work cycle used
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is the same, the temperature of the robot would only be a function of the
work cycle, the environment temperature and the decay time.

• Experimentation rate: it has been shown that due to fluctuations in the
environment temperature, the rate of the experiments affect the changes
appearing in friction between consecutive experiments.


