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Abstract

Industrial robots are designed to endure several years of uninterrupted operation
and therefore are very reliable. However, no amount of design effort can prevent
deterioration over time, and equipments will eventually fail. Its impacts can,
nevertheless, be considerably reduced if good maintenance/service practices are
performed. The current practice for service of industrial robots is based on pre-
ventive and corrective policies, with little consideration about the actual condi-
tion of the system. In the current scenario, the serviceability of industrial robots
can be greatly improved with the use of condition monitoring/diagnosis methods,
allowing for condition-based maintenance (cbm).

This thesis addresses the design of condition monitoring methods for industrial
robots. The main focus is on the monitoring and diagnosis of excessive degra-
dations caused by wear of the mechanical parts. The wear processes may take
several years to be of significance, but can evolve rapidly once they start to ap-
pear. An early detection of excessive wear levels can therefore allow for cbm,
increasing maintainability and availability. Since wear is related to friction, the
basic idea pursued is to analyze the friction behavior to infer about wear.

To allow this, an extensive study of friction in robot joints is considered in this
work. The effects of joint temperature, load and wear changes to static friction
in robot a joint are modeled based on empirical observations. It is found that
the effects of load and temperature to friction are comparable to those caused by
wear. Joint temperature and load are typically not measured, but will always be
present in applications. Therefore, diagnosis solutions must be able to cope with
them.

Different methods are proposed which allow for robust wear monitoring. First, a
wear estimator is suggested. Wear estimates are made possible with the use of a
test-cycle and a friction model. Second, a method is defined which considers the
repetitive behavior found in many applications of industrial robots. The result
of the execution of the same task in different instances of time are compared to
provide an estimate of how the system changed over the period. Methods are
suggested that consider changes in the distribution of data logged from the robot.
It is shown through simulations and experiments that robust wear monitoring is
made possible with the proposed methods.
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Populärvetenskaplig sammanfattning

Moderna industrirobotar konstrueras för att kunna arbeta oavbrutet under flera
år och är därför väldigt pålitliga. Det är dock omöjligt att förhindra att roboten
slits, att prestanda försämras och att slutligen fel uppstår. Effekterna kan dock
reduceras med hjälp av rutiner för service och underhåll. För närvarande bygger
dessa rutiner oftast på förebyggande underhåll, där relativt liten hänsyn tas till
det faktiska tillståndet hos roboten. Situationen kan dock förbättras genom att
i större utsträckning använda metoder för övervakning och diagnos av systemet
och därmed kan tillämpa en högre grad av tillståndsbaserat underhåll.

Denna avhandling behandlar utformning metoder för tillståndsövervaknings för
industrirobotar. Arbetet behandlar främst övervakning och diagnos av försäm-
rade prestanda på grund av förslitning av mekaniska delar. Förslitningen kan ta
flera år för att börja utvecklas, men därefter kan förloppet gå snabbt. Om förslit-
ningen upptäcks i tid kan tillståndsbaserat underhåll tillämpas, vilket kan förhin-
dra fel och öka tillgängligheten hos roboten. Eftersom förslitning är nära relater-
ad till friktion är därför grundidén att studera friktion för att dra slutsatser om
förslitningen.

För att möjliggöra detta har en omfattande studie av friktion hos industrirobotar
genomförts. Inverkan av temperatur och belastning har studerats och modeller-
ats utgående från omfattande experimentella försök. Dessa har visat att effekter-
na av belastning och temperatur på friktionen är i storlek jämförbara med förslit-
ningens inverkan. Eftersom såväl temperatur som belastning varierar när roboten
arbetar, men ingen av dem normalt brukar mätas måste en diagnosmetod kunna
hantera dessa variationer.

Avhandlingen föreslår två olika metoder för robust övervakning och diagnos av
förslitning, där den första metoden innebär att man skattar förslitningen genom
att använda en så kallad testcykel och en skattad friktionsmodell. Den andra
metoden utnyttjar att en industrirobot ofta arbetar repetitivt där en viss rörelse
upprepas. Beteendena hos roboten då samma rörelse upprepas hos roboten vid
olika tillfällen jämförs och används för att bedöma hur robotens egenskaper förän-
drats. Metoden baseras på förändringar i fördelningen hos uppmätta data, t. ex.
moment, från roboten. Simuleringar och experiment indikerar att det är möjligt
att skapa robusta metoder för övervakning och diagnos av förslitning hos indus-
tribotar.
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1
Introduction

Driven by the severe competition in a global market, stricter legislation and in-
crease of consumer concerns towards environment and health/safety, industrial
systems face nowadays high requirements on safety, reliability, availability, and
maintainability (sram). In the industry, equipment failure is a major factor of
accidents and down time, Khan and Abbasi (1999); Rao (1998). While a cor-
rect specification and design of the equipments are crucial for increased sram
(Thompson (1999)), no amount of design effort can prevent deterioration over
time and equipments will eventually fail. Its impacts can however be consid-
erably reduced if good maintenance practices are performed. In order to sup-
port maintenance actions, the use of methods to determine the condition of the
equipment is desirable. Condition monitoring methods can be used to increase
sram and minimize maintenance costs, allowing for condition-based mainte-
nance (cbm). Preferably, these methods should perform automatically and with
no interruption of the equipment’s operation.

This thesis addresses the design of condition monitoring methods for an equip-
ment which is many times of crucial importance in manufacturing, industrial
robots. The main focus is on the monitoring and diagnosis of excessive degra-
dation caused by wear of the mechanical parts. The wear processes may take
several years to be of significance, but can evolve rapidly once it starts to appear.
An early detection of excessive wear levels can therefore allow for cbm and in-
creased sram. Since wear is related to friction, the basic idea pursued here is to
analyze the friction behavior to infer about wear. To allow this, an extensive study
of friction in robot joints is considered in this work, and different solutions for
wear monitoring are proposed and evaluated. This chapter presents an introduc-
tion and motivation to the problem, followed by the outline and main research
contributions of the thesis.

1



2 1 Introduction

(a) Pick and place. (b) Spot welding.

Figure 1.1: Examples of applications of industrial robots where high avail-
ability is critical. The economical damages of an unpredicted robot stop in a
production line are counted by the second.

1.1 Motivation

Industrial robots are used as a key factor to improve productivity, quality and
safety in automated manufacturing. Robot installations are many times of cru-
cial importance in the processes where they are used. As illustrated by the ap-
plications found in Figure 1.1, an unexpected robot stop or malfunction has the
potential to cause downtimes of entire production lines, with consequent produc-
tion losses and economical damages. Increased availability and maintainability
are therefore critical for industrial robots. In practice, robot supervision is still
mostly related to protection and safety. Functionalities such as collision detection
and brake monitoring are already available in some commercial platforms. How-
ever, there are currently little commercial solutions for automated monitoring of
the mechanical parts of the robot.

For industrial robots, the requirements on high availability are most of the times
achieved based on preventive and corrective maintenance policies. Service rou-
tines are typically performed on-site, with a service engineer. Service actions are
based on specific on-site tests or simply from a pre-determined schedule. Such
pre-determined scheduled maintenance is based on the estimated components’
lifespan, with considerable margins. These maintenance solutions can deliver
high availability, reducing downtimes. The drawbacks are however the high costs
due to on-site inspections by an expert and/or due to unnecessary maintenance
actions that might take place.

In the current scenario, the serviceability of industrial robots can be greatly im-
proved with the use of condition monitoring methods, allowing for cbm. There
are however requirements from both the robot user and the service contractor.
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The robot user seeks for improved sram. Therefore, the monitoring solution
should be reliable and accurate, with minimal, preferably none, interven-
tion with the robot’s operation.

The service contractor seeks for reduced costs for the service operation. There-
fore, the monitoring solution should be performed remotely, it should be as
automated as possible and use no extra sensors than what are available in a
typical robot setup.

Achieving these compromises is however a very challenging task. This is partly
because some faults are difficult to predict, or affect the operation of the system
abruptly, e.g. a wire cut or a power supply drop. These type of faults, even when
detected, might still cause damages. Therefore, with focus on service, the inter-
est is limited to the monitoring of faults that can be diagnosed before a critical
degradation takes place, so that appropriate maintenance actions can take place.

An important type of such fault is related to the wear processes in a robot joint.
Wear develops with time/usage and might be detected at an early stage, allowing
for cbm. The wear processes inside a robot joint cause an eventual increase of
wear debris in the lubricant. A possible solution is therefore to monitor the iron
content in the lubricant. For a typical robot setup, this type of approach will
however contradict most of the user’s and service contractor’s requirements.

An important characteristic of wear is that affects friction in the robot joint. An
alternative solution, explored in this work, is thus to monitor friction changes
to infer about wear. Since the friction torques must be overcome by the motor
torques during its operation, it is possible to extract information about friction
from available signals. Friction is however dependent on other factors than wear.
In fact, the changes caused, e.g., by temperature are typically at least as signifi-
cant as those caused by wear.

1.2 Problem Formulation and Approach

The main objective of this work is to develop methods for friction (wear) monitor-
ing in industrial robot joints. This work is in the overlap of three main research
areas, namely: industrial robotics, tribology and diagnosis. To consider a prob-
lem in their intersection will require understanding of the available techniques
from each of these fields. Therefore, much of this thesis is dedicated to provide
an overview of these research areas. This will help to motivate the research pre-
sented and to identify needs for innovative solutions.

The outline of the thesis and the main contributions are described next. The
presentation is, of course, focused on aspects that are relevant to the problems
addressed in the thesis.
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1.3 Thesis Outline

The thesis is divided into two parts. Part I gives an overview of the related re-
search areas and provides a background to the research contributions. The main
research contributions are presented in Part II, which contains edited versions of
published papers.

The outline for Part I is summarized below,

Chapter 2 provides an introduction to industrial robotics. The purpose is to pro-
vide an overview of important aspects to consider when working with in-
dustrial robots, the main limitations and challenges.

Chapter 3 focuses on describing the friction and wear phenomena in industrial
robot joints. It provides an overview of the challenges and motivations be-
hind this work.

Chapter 4 provides an overview of the diagnosis process. It includes a descrip-
tion of the tasks and challenges involved. Attention is given to provide an
overview of different methods for wear monitoring in a robot joint.

Chapter 5 presents a summary of the work and a discussion of next steps to
come.

Each chapter in Part I is concluded by presenting connections to the research
papers of Part II. A summary of the main research contributions of Part II is
given below.

Extensive studies of friction in a robot joint are presented in Papers A and B.
The effects of joint angle, load torques, temperature and wear are analyzed
through detailed empirical studies.

Friction modeling, the effects of load torques and temperature to friction in a
robot joint are modeled and identified in Paper A.

Wear modeling, the effects of wear to friction in a robot joint are also modeled
and identified in Paper B. Based on Blau (2009) and the observed wear be-
havior in accelerated wear tests, a model for the evolution of wear with time
is also suggested in Paper C.

Wear identification is proposed as a method for wear monitoring in Paper B
based on a test-cycle.

Monitoring of repetitive systems is considered in Paper C. Methods tailored for
systems that operate in a repetitive manner are presented with applications
to robust wear monitoring in a robot joint. The methods are suitable for use
with no interruption of the system operation.

Studies of limitations imposed by disturbances, specially those caused by tem-
perature, are presented for the wear monitoring methods of Papers B and C.
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1.3.1 Publications

Edited versions of the following papers are included in Part II of this thesis.
The background between the research contributions for each paper are discussed
next.

Paper A: Static Friction in a Robot Joint - Modeling and Identification of Load
and Temperature Effects

A. C. Bittencourt and S. Gunnarsson. Static friction in a robot joint
- modeling and identification of load and temperature effects. ASME
Journal of Dynamic Systems, Measurement, and Control. Accepted
for publication.

Background. Several reports can be found in the literature regarding the depen-
dency of friction in a robot joint to others factors than speed. However, to the
best of the authors knowledge, no detailed empirical studies of these effects had
been previously performed in a robot joint.

This work provides a deeper understanding of these phenomena based on exper-
iments that were carried out during the summer of 2009 at abb. The main mo-
tivation for the studies was to gather understanding of these phenomena. This
would serve as a pre-requisite to the development of wear monitoring methods
based on studies of friction. As a result, a model that can explain the relevant ef-
fects of temperature and load to static friction was developed and validated. The
developed model is important not only for the design and validation of diagnosis
methods but also for control and simulation.

Paper B: Modeling and Identification of Wear in a Robot Joint under
Temperature Disturbances

A. C. Bittencourt, P. Axelsson, Y. Jung, and T. Brogårdh. Modeling and
identification of wear in a robot joint under temperature disturbances.
In Proc. of the 18th IFAC World Congress, Aug. 2011a.

Background. Different approaches had been previously proposed for diagnosis
of friction changes in a robot joint. However, no report could be found that con-
siders the effects of wear changes explicitly. Moreover, no detailed studies of the
undesired disturbances caused by temperature and load to friction were found.
This is partly because there were no available models to explain these phenomena.
Another important aspect is that performing experiments for wear monitoring is
a very time consuming and expensive task.

Based on accelerated wear experiments performed in abb, the effects of wear to
friction were studied and a wear model was developed. This wear model, com-
bined with the model of Paper A, is very important for the design and evaluation
of wear diagnosis solutions. They are used extensively through Part II of this
thesis.

The wear identification method developed was carried out as a project for the
System Identification course given by Prof. Lennart Ljung during the spring of
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2010. The developed wear estimator is based on friction observations achieved
from a test-cycle. A framework favourable to identification methods was adopted,
with a known friction model, to reveal the challenges and restrictions of such
methods for wear diagnosis. As it is shown, a careful experiment design can lead
to a robust wear monitoring solution.

Paper C: A Data-driven Method for Monitoring Systems that Operate
Repetitively - Applications to Robust Wear Monitoring in an Industrial Robot
Joint

A. C. Bittencourt, K. Saarinen, and S. Sander-Tavallaey. A data-driven
method for monitoring systems that operate repetitively - applica-
tions to robust wear monitoring in an industrial robot joint. In Proc.
of the 8th IFAC SAFEPROCESS, 2012. Under review.

Background. Surprisingly, no references were found in the literature that con-
sidered the diagnosis of systems that operate in a repetitive manner. This type
of system is however quite common, e.g. in automation, or for any system from
which a test-cycle can be repeated periodically. The repetitive execution of a sys-
tem provides redundancies about the system’s behavior which are directly found
in the data. For example, it is possible to compare the result of the execution of
a test-cycle performed today to how it is performed in a year. This comparison
would allow to infer the system’s deterioration over the period.

The methods were developed with the interest focused on diagnosis of industrial
robots, where a repetitive operation is almost a requirement in most of its appli-
cations. The ideas behind the methods emerged via a combination of develop-
ment and testing of methods in collaboration with abb and new knowledge and
insights from the Machine Learning area.

1.3.2 Relevant and Additional Publications

The author was introduced to the wear monitoring problem already in 2007 dur-
ing a Master Thesis project taken at abb:

A. C. Bittencourt. Friction change detection in industrial robot arms.
Msc. thesis, The Royal Institute of Technology, 2007.

In the contribution, a method for friction change detection was developed. The
basic idea was to monitor the changes directly on the friction curves. A test-cycle
was required in order to estimate the friction curve, in a similar way as in Paper
B. The effects of load, lubricant and temperature were briefly investigated during
the work and motivated the more thorough experiments of Paper A.

An early version of Paper A was presented in:

A. C. Bittencourt, E. Wernholt, S. Sander-Tavallaey, and T. Brogårdh.
An extended friction model to capture load and temperature effects in
robot joints. In Proc. of the 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Oct. 2010.
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The version added in this thesis includes a more detailed analysis of the modeling
assumptions, together with a more general framework for identification of static
friction models.

A preliminary version of Paper C was presented in:

A. C. Bittencourt, K. Saarinen, S. Sander-Tavallaey, and H. A. Anders-
son. A method for monitoring of systems that operate in a repetitive
manner - application to wear monitoring of an industrial robot joint.
In Proc. of the 2011 PAPYRUS Workshop, Corsica, France, Oct 2011b.

The version added in this thesis includes methods to reduce sensitivity to distur-
bances as well as validation with real data. Paper C also includes analyses of the
achievable performance of the methods under temperature disturbances.





Part I

Background





2
Basics of Industrial Robotics

The International Organization for Standardization, iso, proposes the following
definitions in ISO 8373 (1994).

Definition 2.1 (iso 8373:1994 No. 2.15 – Robotics). Robotics is the
Robotics is the practice of designing, building and applying robots.

Definition 2.2 (iso 8373:1994 No. 2.6 – Manipulating industrial robot).
A manipulating industrial robot is an automatically controlled, re-
programmable, multipurpose, manipulator programmable in three
or more axes, which may be either fixed in place or mobile for use
in industrial automation applications. Note: The robot includes the
manipulator (including actuators) and the control system (hardware
and software).

The above definitions make a clear distinction of industrial robots in the man-
ner that they are used for, “industrial automation applications”. The first indus-
trial robot was operating in 1961 in a General Motors automobile factory in New
Jersey. It was Devol and Engelberger’s unimate. It performed spot welding
and extracted die castings, Wallén (2008). Since then, many new applications of
industrial robots have been introduced, e.g. welding, cutting, forging, painting,
assembly, etc. Industrial robots penetrated quite rapidly in manufacturing and
specially in the automotive industry, which is still the largest robot user. In 2007,
there were more than 1.000.000 industrial robots in operation worldwide. This
number is expected to double only in electronics manufacturing in less than a
decade, Yee and Jim (2011).

11
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(a) An abb irb 6 from 1973. (b) A modern abb irb 6640.

Figure 2.1: The 5 axes robot irb 6 was the first robot controlled by a mi-
crocomputer. The 6 axes robot irb 6640 is a high payload general purpose
manipulator.

Industrial robots are a key factor to improve productivity, flexibility, quality
and safety of technical systems. The history of industrial robotics development
is filled with technological milestones. In 1971, the first all-electrically actu-
ated robot was introduced by Cincinnati Millacron, whose robotics development
team was later acquired by abb in 1990. In 1973, abb released irb 6, the first
microcomputer-controlled robot, which was also all-electrically actuated. Re-
markably, this setting is still dominant in modern industrial robots, see Figure2.1.

The mechanical structure of a standard industrial robot is composed by links and
joints. Links are the main bodies that make up the mechanism and the links are
connected by joints to each other. A joint adds constraints to the relative motion
of the connecting links and are categorized accordingly. The configuration of
links and joints defines the kinematic chain of the robot. The number of joints
defines the number of manipulated degrees of freedom, dof, of a robot. The most
common configuration of industrial robots is the 6 dof with serial kinematics,
meaning that links and joints are mounted serially. This type of robots is also
known as “elbow” manipulators for its resemblance with the upper arm of a
human. For elbow manipulators, the first three axes, also called main axes, are
used to achieve a desired position of the end-effector. The links of the main axes
are bigger since they drive more load compared to the last three, wrist axes, which
are used to manipulate the orientation of the end-effector.

The main developments in industrial robotics have been directly connected to
its main user, the automotive industry. This resulted in products with high cost
efficiency, reliability and performance (Brogårdh (2007)). A cost-driven develop-



2.1 Actuators and Sensors 13

ment means the need of cost reduction of the components used. This leads to a
more difficult control design to handle the larger variations in kinematic and dy-
namic parameters, lower mechanical resonance frequencies and larger nonlinear-
ities. In order to meet the performance required from industrial robots, a broad
understanding of the system is needed. In this chapter, the basics of industrial
robotics is reviewed.

2.1 Actuators and Sensors

An industrial robot is a complete system that interacts with its surroundings. Its
degree of autonomy is directly related to the sensory information available, the
knowledge built in the system (e.g. models/learning), and the possibilities to per-
form actions. Following demands on cost efficiency and reliability, the amount
and variety of sensors are remarkably small in typical applications of industrial
robots. With the development of new applications and higher demands on auton-
omy, alternative sensors are becoming more common (Brogårdh (2009)).

2.1.1 Basic Setup

As mentioned in the beginning of this section, modern industrial robots are most
commonly actuated with electrical motors. The permanent magnet synchronous
motor, pmsm, is a popular choice due to its high power density, easy operation
and performance. The output torque of such motor can be divided into two parts:

• an ideal mutual torque, the dominant part, arising from the interaction of
the stator and rotor, and

• torque ripple, an angular dependent component arising from geometry im-
perfections which can be amplified by feedback.

The torque ripple leads to challenges in control of machines actuated with pmsm,
see, e.g., Proca et al. (2003); Mohamed and El-Saadany (2008). Furthermore, the
relation between applied current and output torque varies with temperature due
to a reversible demagnetization of the magnets (Sebastian (1995)). A power am-
plifier is used to modulate the power used as input to the motors. In order to
provide high torques and low speeds, a gearbox transmission is used at the mo-
tor output. The rotary vector (rv) type is a popular choice of compact gearboxes
due to their low backlash, high gear ratio (in the order of 100−300) and size. This
type of transmissions is commonly found in the main axes of a manipulator. In
the wrist axes, also harmonic drive gears are used as well as special gear solutions.
See Figure 2.2 for examples of motor and gear units used in industrial robots.

Typically, only the rotation angle of the motor shaft, electrical quantities (voltage
and current), and winding temperature are measured. Optical encoders and re-
solvers are the most commonly used sensors for the angular measurements. With
these types of sensors, it is possible to compute the motion and its direction in
relation to a reference position with high accuracy. The high accuracy allows
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Figure 2.2: An abb motor (left) and a Nabtesco rv gear unit scheme (right,
picture courtesy of Nabtesco.)

for differentiation of the measured positions to provide estimates of speed and
acceleration.

2.1.2 Application Dependent Sensors

With the basic sensors and refined models of the system, it is possible to achieve
high path and positioning performances. This allows robots to be used in appli-
cations with a controlled/predictable environment. In more demanding applica-
tions, where the workpiece and environment are changing or where the robot is
used in contact applications, the use of alternative sensors is required.

Six dof force/torque sensors can be used in applications such as high precision
assembly of drive trains. This type of sensor is also important in machining ap-
plications, such as grinding and polishing. The use of high speed cameras com-
bined with image processing algorithms is also important in pick and place ap-
plications. Applications demanding very high accuracy might require the use of
additional sensors on the arm side of the robot. Measurements of the arm vari-
ables help to reduce the influence of backlash and compliance of the gears on the
accuracy of the robot. This can be achieved, e.g., with the use of encoders, torque
sensors and inertial measurement units, imu’s, in the actuator transmissions and
the arm system. For a review, see Brogårdh (2009); for an example on the use of
imu’s to improve accuracy, see Axelsson et al. (2011).

Remark 2.1. While the use of additional sensors can increase the robot autonomy, perfor-
mance and safety, it also means higher cost and increased complexity of the system.

2.2 Modeling

Given the limited sensory information from the measurements of the angles of
the motor shafts, the high demands on accuracy and performance expected from
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Figure 2.3: Joint positions, ϕi , and coordinate frames, pi−1, for an elbow
manipulator with i=[1, 2, 3] joints. The end-effector is fixed at frame p3.

industrial robots are only possible with the use of reliable models and model-
based control (Brogårdh (2009)). Models are also important for design, simula-
tion, diagnosis, etc. They play a significant role in all industrial robotics.

In this section, modeling of industrial manipulators is reviewed. The presen-
tation follows standard textbooks, see, e.g., Spong et al. (2006); Sciavicco and
Siciliano (2000).

2.2.1 Kinematics

The kinematics describes the motion without considering the forces and torques
causing it. A kinematic model only depends on the geometric description of
the robot. Let ϕi be the ith joint position at the arm side, and let us define by
convention a frame pi−1 at each joint. For a configuration with n joints, there are
n + 1 frames and the end-effector is considered fixed at frame pn. See Figure 2.3
for an illustration.

By using a coordinate transformation, it is possible to describe a point attached
to coordinate frame i in the coordinate frame i−1 by

pi−1 = Ri−1
i pi + d i−1

i (2.1)

where Ri−1
i and d i−1

i are a rotation and a translation from frame i to frame i−1
respectively. The above transformation can be written as a homogeneous trans-
formation

P i−1 ,

[
pi−1

1

]
=

[
Ri−1
i d i−1

i

0 1

]
︸             ︷︷             ︸

,H i−1
i

P i , (2.2)

which facilitates calculations since consecutive frame transformations simplify to
multiplications of matrices. Notice that the homogeneous transformation H i−1

i is
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a function of ϕi and the links’ geometry.

Forward Kinematics

The forward kinematics is the problem of finding the end-effector pose X (posi-
tion and orientation) relative to the base frame given the joint variables ϕ. This
can be achieved with the use of a homogeneous transformation from the tool
pose to the base frame. For a configuration with n joints, the transformation is
described as

P 0 = H0
n (ϕ)P n, (2.3)

from which it is possible to extract the pose, X, of the end-effector. The Denavit-
Hartenberg convention provides a manner to choose the reference frames that
allows for a systematic analysis. For a serial robot, the direct kinematics always
has a unique solution.

Taking the time derivative of the end effector pose, gives a relation between the
joint velocities ϕ̇ and the linear and angular velocities of the end-effector as

Ẋ = J (ϕ)ϕ̇, (2.4)

where J (ϕ) is known as the analytical Jacobian matrix. The accelerations can be
found by taking the time derivative again, yielding

Ẍ = J (ϕ)ϕ̈ +
(

d
dt
J (ϕ)

)
ϕ̇. (2.5)

The Jacobian matrix is a very important tool in robotics and it can be used to find
singular configurations, transformation of tool forces to joint torques, etc.

Inverse Kinematics

The reverse problem, finding the joint positions ϕ given the end-effector pose X
is known as the inverse kinematics. The inverse kinematics problem is important
for trajectory generation, when a desired tool path needs to be transformed to
joint positions. For the serial robot, it can be expressed as solving the nonlinear
equations

H0
1 (ϕ1)H1

2 (ϕ2) · · ·Hn−1
n (ϕn) = H(X) (2.6)

for a given right-hand side, where ϕi is ith joint position and H i−1
i is given by

(2.2). An analytical solution is not always possible, in which case a numerical
solver must be used, and even if a solution exists it is typically not unique.

2.2.2 Dynamics

A dynamic model describes the relation between the robot motion and the forces
and torques that cause it. Dynamic models are important for simulation, trajec-
tory generation and control. In feed-forward control, the motor torques required
to achieve a certain path are computed from the inverse dynamics.

The simplest modeling approach is to consider all links as rigid bodies. From this
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simplification, there are different possible methods to derive rigid-body models.
The Euler-Lagrange formulation considers the Lagragian equation

L(ϕ, ϕ̇) = K(ϕ, ϕ̇) − P (ϕ), (2.7)

where the Lagragian L(ϕ, ϕ̇) is defined as the difference between kinetic, K(ϕ, ϕ̇),
and potential energies, P (ϕ). By writing the kinetic energy as a quadratic func-
tion K(ϕ, ϕ̇) = 1

2 ϕ̇
TM(ϕ)ϕ̇, where M(ϕ) is the total inertia matrix, the equations

of motion are given from the Euler-Lagrange equations

d
dt

∂

∂ϕ̇i
L(ϕ, ϕ̇) − ∂

∂ϕi
L(ϕ, ϕ̇) = τ i , for i = 1, . . . , n (2.8)

where τ i is the applied torque at joint i. By gathering gravitational terms of the
form τ ig (ϕ) = ∂

∂ϕi
P (ϕ) into the vector τg (ϕ) = [τ1

g , · · · , τng ]T and terms involving

(ϕ̇i)2 and cross-products of ϕ̇i ϕ̇j in C(ϕ, ϕ̇), the resulting multi-body rigid model
is of the form

M(ϕ)ϕ̈ + C(ϕ, ϕ̇) + τg (ϕ) = τ (2.9)

where τ is the vector of applied torques. This model can be extended by including
a dissipative friction term, τf , which is typically modeled as a nonlinear function
of ϕ̇, see Chapter 3 for more on friction.

Including Flexibilities

In most cases when modeling robots, a rigid-body model is not sufficient to
describe the system in a realistic manner. The approximation of a rigid gear-
box is specially unrealistic for compact gearboxes. Also, with a trend of lighter
robots, the flexibilities of bearings- and links are also becoming significant. The
model for a flexible robot structure can, as a first approximation, be described by
lumped masses connected by springs and dampers.

For instance, including one flexibility for each joint gives a 2-masses system con-
nected by a torsional spring-damper for each joint as shown in Figure 2.4. Ne-
glecting possible inertial couplings between motor and armi, the resulting model
can be described as

Ma(ϕa)ϕ̈a + C(ϕa, ϕ̇a) + τg (ϕa) + τf ,a(ϕ̇a) = τa (2.10)

τa = K(ηϕm − ϕa) + D(ηϕ̇m − ϕ̇a) (2.11)

τm − ητa = Mmϕ̈m + τf ,m(ϕ̇m) (2.12)

where the subscripts a and m, relate to variables at the arm motor sides respec-
tively, η is the inverse gear ratio matrix, K( · ) and D( · ) are the stiffness and damp-
ing matrices. The friction torque is here divided between the motor and arm side,
τf ,m(ϕ̇m) and τf ,a(ϕ̇a) respectively. The friction occurs at different components
in the gearbox, at different gear ratios, meaning different reductions when seen
at the motor side. See, e.g. Moberg (2010), for a detailed treatment on modeling
of flexible robots.

iAccording to Spong (1987) this is a reasonable approximation if the transmission ratio is large.
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Figure 2.4: Illustration of a flexible robot structure, where the flexibilities
are modeled as lumped masses connected by springs and dampers.

2.3 Identification

The described models depend on a number of parameters that are most often
unknown or partly known. In order to make use of models, e.g. for control
and simulation, the modeling process must be complemented with identification
procedures. Identification is used to find and verify the parametric description of
the models from experiments. As introduced in the previous section, the different
models can relate to: kinematics, dynamics and joint-related phenomena. A
summary of these identification problems is given below.

Kinematic models. An accurate dynamic models is important for positioning of
the end-effector. The parameters in the model relate to the geometric descrip-
tion of the kinematic chain. These parameters can be partly obtained during the
design process, e.g. available from cad models. There are however errors that
could relate, amongst other sources, to tolerances during production and assem-
bly of the robot. An identification procedure can be used to correct for these
errors, considerably improving the volumetric accuracy of the robot. The process
of identifying these parameters is also known as kinematic calibration or robot
calibration, and requires measurements of the end-effector position. For a survey
on the topic, see Hollerbach (1989).

Dynamic models are important for simulation and feed-forward motion control
of robots. The identification of dynamic models of robots is a much studied prob-
lem and several approaches can be found, see Wu et al. (2010) for an overview.
An important consideration is the type of dynamic model considered. Rigid-body
models are typically parametrized as a function which is linear in the parameters.
For example, the model in (2.9) can be rewritten as a linear regression

u(k) = φT (k, ϕ, ϕ̇, ϕ̈)θ, (2.13)
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where k is the sample index, u(k) are the applied torques, φ( · ) is a regressor
vector function, dependent on ϕ and its derivatives, and θ are the rigid-body
parameters. Based on data from an identification experiment, the parameters θ
can be found, e.g., based on a weighted least squares minimization

θ̂ = argmin
θ

(
u − ΦT θ

)T
W

(
u − ΦT θ

)
=

(
ΦTWΦ

)−1
ΦTWu, (2.14)

where u and ΦT are the stacked input and regressors data achieved from the
identification experiment. The choice of weight matrix W will affect the solution
and different criteria are possible, see, e.g., Gautier and Poignet (2001); Swevers
et al. (1997). Finally, the trajectory must be chosen carefully to avoid excitation of
flexible modes and improve the estimation performance, see, e.g., Wernholt and
Moberg (2011); Gautier and Poignet (2001); Swevers et al. (1997). Identification
of parameters describing the flexibilities is a more involving problem since only
a subset of the states can be measured and a linear regression cannot be formed.
These models are however important for improved performance of robot control.
For a detailed treatment on identification of dynamic models and flexibilities, see
Wernholt (2007); Moberg (2010); Wernholt and Moberg (2011).

Joint models. Due to the complex construction of a robot joint, its characteristics
are often uncertain and introduces diverse nonlinearities to the system. Nonlin-
earities that can be of significant influence in a robot joint are related to friction,
backlash and nonlinear stiffness. Available parametric models are often achieved
from empirical observations on a specific platform since it is difficult to predict
the characteristics of these nonlinearities. For example, the amount of backlash
and friction will depend on how the joints are assembled. Therefore, these mod-
els must be found invariably from an identification procedure. It is important
to notice that identification of, e.g., a dynamic model is facilitated if an accurate
joint model is available. For example, in Wernholt (2007) it is reported that the
friction at low speeds makes it difficult to identify the resonances related to a
flexibility. This is because friction adds damping to the system. With a known
friction model, its effects can be analytically removed from the data, making the
identification of dynamic parameters more reliable. See, e.g., Wernholt and Gun-
narsson (2006) where a three step identification procedure is suggested.

2.4 Reference Generation and Control

From the perspective of a robot user, it is convenient to be able to program the
robot in a high level of abstraction. Typically, objectives can be defined in the task
space, and the user does not need to worry about how each joint is controlled.
A robot manufacturer dependent programming language is used where instruc-
tions to the robot can be given in task (or joint) space. This can be done manually
by typing the code or in some cases by demonstration. This process can also be
partly automated with the use of cad/cam softwares allowing greater flexibility.
An example of a robot task program is given in Algorithm 1. In order to perform
a task, different problems must be solved.
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Algorithm 1 My spot-welding task.

Move to point A0 as fast as possible.
Approach point A1 slowly.
Perform spot weld.
Move to point B0 as fast as possible.
. . .

Motion planing. First, given a task, e.g. the one defined in Algorithm 1, a path
to be executed by the robot must be generated. This is made by a motion plan-
ner, which calculates the movements that the robot must make. At first, the
programmed movements are interpreted with respect to what geometry that the
path will have (line, circle, spline etc.) and then the path is interpolated to consist
of discrete steps, which are transformed from task space to joint space using the
inverse kinematic model.

Trajectory generation. The time dependence of the robot movements, i.e. a tra-
jectory, can be calculated either in the task space or in the joint space. Finding
a trajectory involves optimization of the use of the dynamic capabilities of the
robot with respect to speed- and acceleration performance. Let f denote a trajec-
tory, the trajectory generation is basically an optimization problem including,

fr = argmin
f

Objective(f)

subject to Kinematics(f)

Dynamics(f)

Mechanical stress limitations(f)

where the solution, fr , is used in the next stage as a reference for the motion
control. The objective can be, e.g., minimal cycle-time or minimal energy. The
constraints involve, of course, the kinematics and dynamics of the manipulator
as well as knowledge of the mechanical limitations such as joint ranges, motor
speeds, maximum allowed forces in the joints, etc. Notice that the solution for
this optimization problem can considerably affect the time and performance of
the task execution and is highly dependent on the models used. For example, in
Ardeshiri et al. (2011) the inclusion of speed dependent constraints in a convex
formulation of the problem allowed for reductions of the path tracking time by
5−20%. Speed-dependent constraints are motivated from physical modeling of
the motors and the drive system, they can, e.g., relate to viscous friction.

Motion Control. Finally, when the reference trajectory is generated, it is possi-
ble to execute the task with the help of the servo control. Important features of
the servo are trajectory tracking, robustness and disturbance rejection. Different
control strategies and structures are possible depending on the sensors available,
controlled variables, etc., see Moberg (2010); Brogårdh (2009) and available text-
books for details. Here, a common control approach is discussed for the typical
setup, with measurements only at the motor side.
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Figure 2.5: A model-based control scheme for trajectory tracking. A feed-
forward action τffw

m and motor references ϕrm, ϕ̇
r
m for the outer feedback loop

are computed based on the reference trajectory fr using an inverse model.
An inner control loop is used to control the motor current according to irm
which is achieved from a desired torque u using a motor model.

2.4.1 Model-based Control for Trajectory Tracking

An overview of one possible robot control scheme can be seen in Figure 2.5. The
desired trajectory fr contains the joint information through time at the arm side,
that is, ϕra and its derivatives. With measurements only available at the motor
side, ϕm, ϕ̇m, the arm side references are transformed to the motor side, yielding
ϕrm, ϕ̇

r
m. For a rigid joint, this will depend only on the gearboxes ratios.

To improve performance, an inverse dynamic model is used to generate feed-
forward motor torques, τffw

m . The input u is the total torque the motor should
generate to drive the robot in the desired manner and is composed of both feed-
forward and feedback actions. Since the motor torque is not measured, a motor
model is used to transform u to the current reference, irm, for the inner current
control loop. The motor variables ϕm, ϕ̇m are fed back to the outer control loop.
At the output is the end-effector pose X.

The inner current control loop has much faster dynamics than the outer loop. It
is therefore common to accept a constant relation between the measured motor
currents and the motor torques, that is u = τm = Kim. As pointed out in Sec-
tion 2.1.1, this static relation actually depends on temperature since the nominal
performance of the motors degrades with increased temperature.

2.5 Summary and Connections

This chapter provided an overview of important aspects to consider when work-
ing with industrial robots. The purpose was to provide an introduction to the
technologies and their limitations. Two aspects are particular about the develop-
ment of industrial robots, the limited sensory information available and conse-
quently the importance of using different types of robot models.

The purpose of this introduction has also been to provide a background to the
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research described in this thesis. In Paper C, the 2 axes flexible model described
in Moberg et al. (2008) and Axelsson et al. (2011) was used to simulate friction
faults in a robot joint with the friction models proposed in Papers A and B. Such
simulation studies allowed for detailed analysis of the proposed methods which
otherwise would have been too expensive and time consuming to perform. The
assumption of an ideal current loop, giving τm = Kim, is also important for the
identification of friction levels in Paper A and in any diagnosis methods that rely
on torque estimates. However, since the identification experiments for friction
estimation were made at constant speeds it would have been possible to perform
most of the experiments even if the current control had not been much faster than
the speed control. It is nevertheless important that K is not speed dependent (or
that the speed dependence is known) and that the temperature dependence of K
will not considerably disturb the friction identification and modeling.



3
Joint Friction and Wear

Friction exists in all mechanisms to some extent. It can be defined as the tangen-
tial reaction force between two surfaces in contact. There are different types of
friction, e.g. dry friction, viscous friction, lubricated friction, skin friction, inter-
nal friction. Friction is not a fundamental force but the result of complex interac-
tions between contacting surfaces in down to a nanoscale perspective. Due to its
complex nature, it is difficult to described it from physical principles. Tribology,
the science of interacting surfaces in relative motion, is therefore mostly based
on empirical studies.

One reason for the interest in friction in manipulator joints is the need to model
friction for control purposes. A precise friction model can considerably improve
the overall performance of a manipulator with respect to accuracy and control
stability, see, e.g., Kim et al. (2009); Guo et al. (2008); Olsson et al. (1998); Bona
and Indri (2005); Susanto et al. (2008). Since friction can relate to the wear down
process of mechanical systems (Blau (2009)), including robot joints, there is also
interest in friction modeling for robot condition monitoring and fault detection,
see, e.g., Caccavale et al. (2009); Namvar and Aghili (2009); McIntyre et al. (2005);
Vemuri and Polycarpou (2004); Brambilla et al. (2008); Mattone and Luca (2009);
Freyermuth (1991).

In a robot joint, with several components interacting such as gears, bearings, and
shafts, which are rotating/sliding at different velocities and under different lubri-
cation levels, it is difficult to separate and model friction at a component level.
A typical approach is to consider these effects collectively, as a “lumped” joint
friction. For examples of friction models at a component level, see SKF (2011).

Friction always opposes motion, converting kinetic energy into heat. Another
outcome of friction is wear. Wear is defined as “the progressive loss of material

23
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Figure 3.1: Friction curve for constant speed movements and the lubrication
regimes illustrated at contact level.

from the operating surface of a body occurring as a result of relative motion at its
surface” (Lansdown et al. (1987)). The need for relative motion between surfaces
implies that the wear mechanisms are related to mechanical action between sur-
faces. This is an important distinction to other processes with a similar outcome
and very different nature, e.g. corrosion.

3.1 Basics of Tribology

The most important friction characteristics for control applications are usually
described by a so-called friction curve, which is a plot of friction levels as func-
tion of speedi. An example of such plot achieved from experiments in a robot
joint can be seen in Figure 3.1ii,iii. The nonlinear behavior from low to high
speeds is typical in lubricated friction and is known as the Stribeck effect. This
phenomenon is considered to have been first observed by Stribeck in 1902 (Jacob-
son (2003); Woydt and Wäsche (2010)). This behavior is present in a robot joint
due to the presence of lubricant in the gearboxes and motor shaft. Notice that
the friction in the motor is dry. The use of lubricant is essential to decrease the
wear processes. It acts as a separation layer between the surfaces. With the use
of additives, it can even create a chemical barrier between the contact surfaces
under high contact pressure, reducing low speed friction and wear.

The friction curve is divided in three regions according to the lubrication regime:
boundary lubrication (bl), mixed lubrication (ml) and elasto-hydrodynamic lu-
brication (ehl). The phenomenon present at very low speeds (bl) is mostly re-
lated to interactions between the asperities of the surfaces in contact. With the
increase of velocity, there is a consequent increase of the lubricant layer between

iIn fact, as presented originally in Stribeck (1902), a friction curve is plotted as a function of speed
normalized by the ratio of load pressure and lubricant viscosity. For simplicity however, it is many
times shown only as a function of speed.

iiIn the figure, the friction torques are normalized to the maximum allowed torque to the joint and
are displayed as a dimensionless quantity, this convention is followed in the whole thesis.

iiiThis type of curve is obtained when the speed levels are stable and include no transient phenom-
ena. There are also dynamic effects related to friction, see Section 3.3.
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the surfaces with a decrease of contact friction (ml). The decrease of contact
friction continues until it reaches a full lubrication profile (ehl), with a total
separation of the surfaces by the lubricant. In ehl, friction is proportional to
the force needed to shear the lubrication layer, and it is thus dependent on the
lubricant properties (e.g. viscosity).

The wear processes are most significant in bl and ml, where contact friction is
significant. In a full-film lubrication, there is theoretically no wear taking place,
but it still happens because of eventual breakdown of this layer. It is important
to notice that due to the high gear ratio of the gearboxes used in industrial robots,
the components closer to the output will be moving slower in comparison to the
ones closer to the input. Therefore, at a component level, wear might occur even
in the ehl region of the joint friction curve.

3.2 Friction Dependencies in Robot joints

At a contact level, friction is dependent on the contact geometry, topology, prop-
erties of the materials, relative velocity, lubricant, etc. (Al-Bender and Swevers
(2008)). Depending on the setup, each of these factors will be more or less sig-
nificant to the total friction. In a robot joint, it is known that friction can relate
to

• temperature,
• force/torque levels,
• position,

• velocity,
• acceleration,
• lubricant properties.

These dependencies will significantly differ depending on the size and type of
joint considered. Since the main axes undertake significant load levels, the wear
processes in these axes are usually more significant than in the wrist axes. There-
fore, the focus in this thesis is on the study of friction in the main axes. Bigger
robot types, as the ones studied in this thesis, are today typically equipped with
rv gearboxes, recall Section 2.1.1. Figure 3.2 presents a summary of the effects
of relevant variables to the friction curves of robot joints. It should be noted that,
except for Figures 3.2a and 3.2b, the curves are obtained for different robots. The
effects are summarized below.

Load. The effects of load follow from the consequent increase of contact pressure
between the surfaces in contact, leading to a generalized increase of the friction
curve, with a more significant increase at very low speeds, i.e. in the bl regime.

Lubricant. In lubricated mechanisms, both the thickness of the lubricant layer
and its viscosity play an important role in the resulting friction properties. The
oil lubricants 1 to 3 for the curves shown in Figure3.2c have an increasing viscos-
ity. The higher viscosity leads to higher shear forces and therefore higher friction
levels in the ehl regime.

Temperature. The viscosity is also dependent on the temperature of the lubricant
(Seeton (2006)), the higher the temperature, the lower the viscosity. This can be
observed in Figure 3.2b with a decrease of friction in the ehl regime at higher
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backlash are shown for different robot individuals of the same family. The
wear effects are achieved from accelerated wear tests.
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temperatures. The effects of temperature are however more complex, changing
also the bl and ml regimes. A possible explanation is that temperature also
considerably affects the interaction forces of the surfaces in contact. This could
be caused, e.g., by assymetric dilations of the gearbox components.

Wear. The increase of friction with wear as seen in Figure 3.2e is related to the
accumulation of wear debris in the circulant lubricant, which increases friction
specially in the ml regime.

Backlash. The decrease of friction with backlash seen in Figure 3.2d can possi-
bly be explained by a consequent loosening of the gearbox components, yielding
lower contact pressures. Notice that backlash might follow from a degenerate
wear process, where the amount of material removed by wear starts to be signifi-
cant enough to create undesired clearances between the surfaces.

3.3 Modeling

Due to the complex nature of friction in a robot joint, it is common to accept
models based on empirical observations of the phenomena. The history of the
development of empirical friction models is extensive, see Dowson (1998) for a
historical perspective. At a contact level, the surfaces’ asperities can be compared
to bristles on a brush. Each of these (stiff) bristles can be seen as a body with its
own dynamics which are connected by a similar bulk. Different models have
been proposed to model this dynamic behavior of friction, and some examples
are presented in Olsson et al. (1998); Al-Bender and Swevers (2008); Harnoy et al.
(2008); Åström and Canudas-de Wit (2008). A typical approach is to consider all
the dynamics into a single state (Dupont et al. (2002)).

A dynamic friction model commonly found in robotics is the LuGre model (Åström
and Canudas-de Wit (2008)). For a revolute joint, the friction torque is given by
the LuGre model as

τf = σ0z + σ1 ż + h(ϕ̇) (3.1a)

ż = ϕ̇ − σ0
|ϕ̇|
g(ϕ̇)

z, (3.1b)

where the state z captures the average dynamic behavior of the asperities. It can
be interpreted as their average deflection, with stiffness σ0 and damping σ1.

Since z is not measurable, it is difficult to estimate the parameters describing the
dynamic behavior of friction, i.e. [σ0, σ1]. In practice, it is common to accept
only a static description of (3.1). For constant velocities, (3.1) is equivalent to the
static model:

τf (ϕ̇) = g(ϕ̇)sign(ϕ̇) + h(ϕ̇) (3.2)

which is fully described by the g- and h functions. In fact, (3.1) simply adds
dynamics to (3.2).

The function h(ϕ̇) represents friction in the ehl regime, where friction has a
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Figure 3.3: Simulation of a LuGre model under different acceleration levels
A and the related static friction model. The parameters are chosen for illus-
tration purposes with static parameters [Fc, Fs, Fv , ϕ̇s, α]=[2, 5, 8 102, 1 10−3, 2]
and dynamic parameters [σ0, σ1]=[1.4 106, 2.42 103].

velocity strengthening behavior. For Newtonian fluids this behavior is directly
proportional to speed, yielding the relationship

h(ϕ̇) = Fv ϕ̇ (3.3)

for the viscous behavior of friction. The function g(ϕ̇) captures the bl and ml
regimes, where friction has a velocity weakening behavior. Motivated by the
observations mainly attributed to Stribeck (Jacobson (2003); Woydt and Wäsche
(2010); Bo and Pavelescu (1982)), g(ϕ̇) is usually modeled as

g(ϕ̇) = Fc + Fse
−
∣∣∣∣ ϕ̇ϕ̇s ∣∣∣∣α , (3.4)

where Fc is the Coulomb friction, Fs is defined as the standstill friction parame-
teriv, ϕ̇s is the Stribeck velocity, and α is the exponent of the Stribeck nonlinearity.
The resulting static fricion model is given by

τf (ϕ̇) =
[
Fc + Fse

−
∣∣∣∣ ϕ̇ϕ̇s ∣∣∣∣α ] sign(ϕ̇) + Fv ϕ̇. (3.5)

which can describe many of the friction characteristics with speed. Notice that
the g− and h functions can be chosen differently.

Figure 3.3 shows the response of the LuGre model and the corresponding static
model with g− and h chosen according to (3.4) and (3.3). The simulation was
performed with ϕ̇ as half a period of a triangular wave with different slopes A.
When accelerating, the transition from bl to ehl gives less friction torques than
in deacceleration. The higher A, the more pronounced are the dynamic effects.

ivFs is commonly called static friction parameter. An alternative nomenclature was adopted to
make a distinction between the dynamic/static friction phenomena.
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3.4 Summary and Connections

This chapter presented an overview of friction and wear from both empirical and
phenomenological perspectives. The summary of the effects of different factors to
the friction curves in Figure 3.2 gives a good idea behind the motivation and chal-
lenges of this work. The effects of temperature, load and wear in the figure are
in comparable scales. Therefore, monitoring friction to perform wear diagnosis
is a challenging problem. Load and temperature changes will always be present
in applications and the diagnosis solutions must be able to cope with them.

The models presented in this chapter are only dependent on speed (and z). In
Papers A and B, static friction models are proposed to describe the effects of load,
temperature and wear. These models are found to be of utmost importance in
the design of wear diagnosis solutions, where it is costly and time consuming
to perform experiments. They are also used to design and validate solutions for
wear diagnosis in industrial robot joints in Papers B and C.





4
Basics of Diagnosis

Diagnosis is a multidisciplinary science. Due to its relevance in different fields
of applications, much can be found in the literature that relates to the diagnosis
of systems, some examples are Reiter (1987); Rao (1998); Gertler (1998); de Kleer
and Williams (1992); Basseville and Nikiforov (1993); Gustafsson (2000); Mobley
(2002); Isermann (2006); Bishop (2007); Ding (2008). The notation and terminol-
ogy can differ considerably across the different fields. Therefore, it is difficult
to find a common framework for the presentation and categorization of the dif-
ferent methods and solutions. An important contribution towards a common
framework is presented in an special issue of the ieee Transactions on Systems,
Man and Cybernetics in 2004 (Biswas et al. (2004)). In the issue, two research
communities are identified that relate to diagnosis of systems:

The Fault Detection and Isolation (fdi) community, with origins closer to control
theory and statistical decision making, and

The Diagnosis (dx) community, with origins in computer science and artificial
intelligence.

However, these are not the only communities interested in diagnosis. Another
community has origins in Mechanical Engineering, where the topic is known as
condition monitoring. Also, in the Machine Learning community, diagnosis re-
lates to classification problems.

It is outside of the scope of this thesis to provide an active discussion of the dif-
ferent diagnosis solutions and terminology; for a detailed review, see Venkata-
subramanian et al. (2003c,a,b). Instead, the presentation here aims to familiarize
the reader with the problems and contextualize the methods developed in this
work. The presentation is mainly based on Nyberg (1999); Gustafsson (2000);
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Figure 4.1: Overview of the diagnosis process. Each diagnostic procedure
produces one or more diagnosis based on the observations and available
knowledge. The behavior isolation outputs a diagnosis statement, which is
consistent to all knowledge and observations available.

Van Trees (2001); Isermann (2006). Because it is difficult to contextualize the pro-
posed methods in an available framework, the terminology and notation used are
defined throughout the text.

4.1 Overview

The following terminology is defined for the diagnosis process.

Definition 4.1 (Diagnostic Procedure). An inference from observa
An inference from observations and knowledge to a diagnosis.

NOTE A diagnostic test is a diagnostic procedure that can be per-
formed automatically, with no human involvement.

Definition 4.2 (Diagnosis). Is a statement about the possible behav
A statement about the possible behavioral modes present given all or
parts of the available knowledge and observations.

Definition 4.3 (Behavioral Mode). A state that represents the behav
A state representing a possible behavior of an object being diagnosed.

NOTE A behavioral mode might be, e.g., healthy, faulty, broken, un-
known. A behavioral mode related to a fault is a fault mode.

Definition 4.4 (Behavior Isolation). Determination of which behav
Determination of which behavioral modes are plausible given the ob-
servations and knowledge. Generates a diagnosis statement.
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Definition 4.5 (Diagnosis statement). The result of the diagnosis
The result of the diagnosis process.

NOTE This is a statement regarding the behavioral modes which are
consistent to all knowledge and observations available.

An overview of the diagnosis process can be seen in Figure 4.1. The objective is to
decide the plausible behavioral mode(s) of the object(s) being diagnosed by con-
sidering the available knowledge and observations. The object under diagnosis
can be, e.g., a component or a system, although this work is only interested in
diagnosis of systems.

The diagnosis process makes extensive use of knowledge about the system under
diagnosis. This knowledge might come from models, assumptions, data, an op-
erator, an expert, etc. The available knowledge is used to provide means to infer
the behavioral modes which are consistent to the observations, that can explain
the observations. Each inference mechanism is called a diagnostic procedure and
is based on parts (or the whole) of the available knowledge and observations.

The design and choice of diagnostic procedures are critical for the diagnosis pro-
cess. For instance, they must be chosen as to allow certain isolation and robust-
ness requirements. Diagnosis of complex systems will typically be composed
of several diagnostic procedures, each of which generates at least one diagnosis.
Based on all diagnoses, a diagnosis statement is provided which is consistent to
all knowledge and observations available.

When a diagnosis solution is performed with no perturbation of the system’s
functions, during its normal operation, it is called an on-line diagnosis solution.
If the diagnosis method requires the system to operate outside the scope of its
functions, reducing its availability, the diagnosis is called off-line, as "off-the-line".
When the diagnosis is performed by actively exciting the system, it is called ac-
tive. If it is performed by passively studying the system, it is called passive. A
diagnosis which is performed at each new observation (e.g. at each data sample)
is a real-time diagnosis solution, otherwise it is a batch solution.

Example 4.1: An off-line passive method for wear monitoring
The wear processes inside a robot joint cause an eventual increase of wear debris
in the lubricant. Monitoring the iron content of lubricant samples taken from the
robot joint can thus be used as an indication of the joint condition. The study
of wear debris particles is known as ferrography and was first introduced by
Seifert and Westcott (1972). Since then, the science has evolved and helped to
understand wear related phenomena, Roylance (2005). In Figure 4.2, different
types of wear particles are shown from ferrography studies.

In most applications however, the collection of lubricant samples can only be
performed when the system is turned off, in an off-line manner, followed by lab-
oratory analyzes. Notice that no dedicated excitation of the system is needed, so
this is also a passive method.
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(a) Spherical. (b) Laminar. (c) Cutting.

Figure 4.2: Images of different types of wear particles from ferrography
studies. The condition of the mechanical system may be determined from
analyses of the characteristics of the wear particles, e.g. the type, shape,
frequency, etc. (Pictures extracted from Machalíková et al. (2010)).

The main interest in this work is on diagnosis solutions to support for mainte-
nance actions and that can be performed automatically, i.e. based on diagnostic
tests. It is considered that no detailed information about the fault type is neces-
sary, only whether there is a fault present or not. This is motivated since in order
to support maintenance of an industrial robot joint based on wear diagnosis, it is
only necessary to determine the severity of the wear levels. A precise determina-
tion of which component in the joint is undergoing wear, e.g. whether a bearing
or shaft, is not needed. It is important, though, that a faulty state is detected in
an early stage, so that appropriate maintenance actions can take place before a
critical degradation. In such cases, there are only few different behavioral modes
and the isolation task is simple. Therefore, the discussion for the remaining part
of this chapter is focused on the design and evaluation of diagnostic tests. For de-
tails on fault isolation, see, e.g., Nyberg (1999, 2011); Krysander and Frisk (2008);
Basseville (2001).

4.2 Diagnostic Tests

To automate a diagnostic procedure, the available knowledge must be transformed
into quantities that can be interpreted by a computer. Consequently, the observa-
tions are represented as data. A diagnosis algorithm, i.e. a diagnostic test, must
be designed such that it processes the data and provides a diagnosis which is
consistent with the available knowledge. This knowledge will therefore be built
in the diagnostic test and can take different forms, e.g., models, assumptions or
even as data sequences whose behavioral modes are known.

Three functions are identified for a diagnostic test and are defined below, see also
Figure 4.3. Notice that observations are now written as data.
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Figure 4.3: Overview of a diagnostic test, i.e. a diagnostic procedure which
can be performed automatically (recall Figure 4.1). For a diagnostic test,
observations are denoted data. Based on the data, a fault indicator, i.e. a
quantity sensitive to a fault, is generated. The behavior of the fault indicator
is compared to (known) reference behaviors. The result of the comparison
provides one or more test quantities from which a decision about the behav-
iors present is made, i.e. diagnoses are generated.

Definition 4.6 (Fault Indicator Generation). Given data, provides a
Given data, provides a quantity which can be affected by a fault mode.
Generates a fault indicator.

Definition 4.7 (Behavior Comparison). Compares the current behav
Compares the current behavior of the fault indicator with reference
behaviors. Generates test quantities.

Definition 4.8 (Decision Rule). Makes a decision about the behav
Makes a decision about the reference behavioral modes present. Gen-
erates a diagnosis.

The fault indicator is essentially an algorithm designed to provide a quantity
sensitive to a fault mode, a fault indicator. The behavior of this indicator will
vary according to the behavioral mode present in the system. With knowledge
of the behavior of the fault indicator under certain reference modes, a behavior
comparison can be made to provide test quantities. A decision rule is applied
to each test quantity to provide a diagnosis. The combined tasks of behavior
comparison and decision rule are called behavior testing. This is because they
are often designed jointly. In fact, many times there is only a subtle distinction
between the different tasks of a diagnostic test. For example, a classifier makes a
direct map from data to a diagnosis, Bishop (2007).

The next section presents an important type of knowledge representation, mod-
els of systems and faults. In general, the extent to which a system model is known
can considerably affect the type of diagnosis solutions and the amount of extra
knowledge required for the diagnostic test, see e.g. Svärd and Nyberg (2011)
where an automated diagnosis design is presented. The discussion follows with
a more detailed presentation of each function in a diagnostic test and its evalua-
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System
z

v
y

Figure 4.4: A system is treated as a general mechanism generating data un-
der the effects of deterministic and random inputs, z and v respectively. The
data are the measured output y and the known components of the inputs z.

tion.

4.3 Models of Systems and Faults

In order to choose the diagnosis algorithm, it is important to understand the
behavior of the system and its dependencies on the faults. This can be achieved
with the use of models. In this work, the approach is to consider a system as a
mechanism that generates data from which a diagnosis can be performed.

Consider the representation in Figure 4.4, where the system represents the mech-
anism generating measured output data y, which is the result of deterministic
inputs z, and random inputs v (e.g. noise). The inputs v are assumed unknown,
while z could have known and unknown components. The set of deterministic in-
puts z, is further categorized in three distinct groups, u, d and f . The sequence u
is known (e.g. control inputs), d is unknown and uninteresting (e.g. disturbances),
and f is unknown and of interest (e.g. faults). The known signals y and u are of
course important for the design of diagnosis solutions. It is also important to
know the effects of v, d and f to the observed data y and u, so that the different
effects can be identified correctly.

In general terms, a system model is a map from z and v to y,

y = g(z, v). (4.1)

When this map is parametrized with parameters θ, this map is called a model
structure,M,

M : y = g(z, v, θ). (4.2)

A particular parameter choice, θ̄, leads to a model instance,M(θ̄), of the model
structureM.

A system model structure can be achieved in different manners. It can be the
result of careful modeling based on physical principles and well-established re-
lations. The parameters in such models will be related to some physical meaning.
If all parameters are known, the model is called a white box and if some param-
eters are unknown, it is called gray box. In the case of gray box models, the
unknown parameters must be determined, e.g. from an identification procedure.

An alternative to modeling from physical principles is to determine the model
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structure directly from available data. The resulting model is called black box
and its parameters have no obvious physical interpretation.

Remark 4.1. An important characteristic of a system model is its generalization capacity,
i.e. the scope to which a model behavior is consistent to that of the actual system. Typically,
models derived from physical principles will have larger generalization capacities than
black box models.

4.3.1 Fault Models

Of special importance is the modeling of faults. The fault model chosen must
reflect the physical effects of the fault and how they appear in the available data.
Faults can be categorized by its time behavior and by the manner they affect the
system. With respect to the time behavior, a fault might be:

Abrupt, faults that affect the system abruptly, stepwise.

Incipient, faults that develop gradually with time.

Intermittent, faults that affect the system with interruptions.

Corresponding to the manner a fault affects the system, a fault might be:

Additive, faults that are effectively added to the system’s inputs or outputs.

Multiplicative, faults acting on a parameter of the system. For example, chang-
ing a parameter θ of the model structureM.

Structural, faults introducing new governing terms to the describing equations
of the system. For example, changing the model structureM.

Additive faults are typically used to model sensor faults, while multiplicative
faults are mostly used to model a system fault.

Example 4.2: Linear discrete time-invariant dynamic state space models
The class of linear discrete time-invariant dynamic state-space models can be
described by

x(k+1) = A(θ)x(k) + B(θ)u(k) + Bd̄(θ)d̄(k) + Bf (θ)f (k) (4.3a)

y(k) = C(θ)x(k) + D(θ)u(k) + Dd̄(θ)d̄(k) + Df (θ)f (k), (4.3b)

where x(k) are states and the matrices A(θ), B(θ), C(θ), D(θ) describe the re-
lation between u and y. The augmented disturbance and noise vector is d̄(k) =
[dT (k), vT (k)]T with effects described by the matrices Bd̄ and Dd̄ . The faults
f (k) affect the inputs and outputs additively through Bf (θ) and Df (θ). The
matrices describe the model structure M. A particular choice of parameters θ̄
gives a model instance M(θ̄). Multiplicative faults are also possible by letting
θ = θ0 +Ξf (k), with faults affecting the nominal parameters θ0 through the ma-
trix Ξ.
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Example 4.3: An industrial robot under wear and temperature effects
With references to Section 2.2 and Chapter 3, a manipulator can be described in
a simplified manner by a multi-body rigid model

M(ϕ)ϕ̈ + C(ϕ, ϕ̇) + τg (ϕ) + τf (ϕ̇, τl , T ,w) = τ, (4.4)

where the parametric dependencies are not shown for simplicity. The friction
torques are described as function of angular speed ϕ̇, manipulation load torques
τl , the temperatures of the joints T , and the wear levels w. The fault f relates to
the wear levels w. Wear changes the behavior of friction in a gradual manner, and
is therefore an incipient multiplicative fault. The measured (known) outputs y
are the angular positions ϕ, from which is also possible to achieve speed ϕ̇, and
acceleration ϕ̈. The known inputs u are the applied torques τ i. The measured
quantities are corrupted by noise v (not shown in (4.4)). The loads, τl , and tem-
peratures, T , are unknown and considered as disturbances d.

4.4 Fault Indicator Generation

The objective of this task can be formulated as “given data (u, y), design an algo-
rithm that generates a fault indicator, i.e. a quantity which is affected by a fault
f ”. In case knowledge related to the unknowns (v, d, f ) is available, it can be
used for the design.

An important tool for the design of fault indicators is a system model structureM.
The model structure contains very important information regarding the system
behavior. Its availability can substantially support the design of fault indicators.
Considering that the actual model instance generating the data is given byM(θ0),
two methods are presented here:

Output observer: The model instance,M(θ0), is assumed known. M(θ0) is used
to reconstruct the output from the data (u, y), creating an analytical re-
dundancy ŷ(θ0) which provides a fault indicator that is given by ε(θ0) =
y − ŷ(θ0), also known as residual.

Notice that in this case the residual indicates a deviation of the observa-
tions from a reference behavioral mode related to θ0. That is, the residual
ε(θ0) can already be seen as a test quantity. For example, when θ0 are the
nominal parameters, the residual indicates deviations from a no-fault ref-
erence behavioral mode. In case knowledge about other reference modes is
available, further processing of ε(θ0) can provide additional test quantities.

Parameter estimation: Only the model structure,M, is assumed known. Using
the measured data (u, y), it generates an estimate θ̂ of the parameter θ0.
This is a natural choice for multiplicative faults. In case external knowledge

iBased on the simplification that the relation between current and applied torque is given by a
constant. See Section 2.4.1 for details.
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about θ0 is available, a test quantity can be defined as θ̂−θ0 to indicate
deviations from the reference behavior related to θ0.

Notice that given an estimate θ̂, it may also be possible to provide an out-
put estimate ŷ(θ̂) and the residual ε(θ̂) = y− ŷ(θ̂). The residual ε(θ̂) is a
test quantity suitable for diagnosis of structural faults. As in the output
observer case, if other reference behavioral modes are know, additional test
quantities can be defined.

Remark 4.2. Parameter estimation techniques are a natural choice for multiplicative and
structural faults, while the typical formulation for output observers considers additive
faults. Nevertheless, these methods can be used interchangeably, Isermann (2006).

When a model structure is not available, alternative solutions are possible. These
solutions will typically require expert knowledge about the data or extra (redun-
dant) sensory information. An example of such expert knowledge is found in the
analysis of the characteristics of measured signals, e.g. its frequency response.
Another common approach is the use of labeled data, i.e. data sets under which
the behavioral modes are known. Essentially however, any fault indicator genera-
tion method attempts to provide a quantity sensitive to faults given the available
knowledge and observations. Some approaches to the generation of fault indica-
tors are described next.

4.4.1 Output Observer

Different approaches are possible depending for instance on the model structure,
Frank and Ding (1997). The trade-offs of the design are illustrated here for the
case of a linear discrete model as described in (4.3). The presentation is based
on Liu and Zhou (2008), where the residual is achieved from a filter. This filter
is sometimes known as fault detection filter, but is directly related to an output
observer, as will be illustrated.

By taking the Z-transform, (4.3) can be rewritten as

y(z) = Guu(z) + Gd̄ d̄(z) + Gf f (z), where (4.5)[
Gu Gd̄ Gf

]
=

[
A B Bd̄ Bf
C D Dd̄ Df

]
, (4.6)

and the dependencies on θ were dropped for simplicity. The state-space real-
ization (4.6) can be rewritten using left coprime factorization as (Liu and Zhou
(2008)),[

Gu Gd̄ Gf
]

= M−1
[
Nu Nd̄ Nf

]
, where (4.7)[

M Nu Nd̄ Nf
]

=
[
A + LC L B + LD Bd̄ + LDd̄ Bf + LDf
C I D Dd̄ Df

]
, (4.8)

and L is such that the realization is stable, i.e. A+LC is stable. In Frank and Ding
(1997), it has been shown that a residual generation filter (fault detection filter)
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can be written, without loss of generality, as,

ε(z) = Q (My(z) − Nuu(z)) , (4.9)

where the free matrix Q (to be designed) is a square stable transfer matrix with
same dimension as y(z). In Ding et al. (1994) it was shown that

My(z) − Nuu(z) = y(z) − ŷ(z), (4.10)

where the output estimate ŷ(z) is given by the observer

˙̂x(k) = Ax̂(k) + Bu(k) − L (y(k) − ŷ(k)) (4.11)

ŷ(k) = Cx̂(k) + Du(k). (4.12)

This gives that any residual generation filter has the form

ε(z) = Q (y(z) − ŷ(z)) , (4.13)

and is composed of an output observer that is, if needed, filtered by Q (Frank and
Ding (1997)).

By substituting y(z) in (4.9) using (4.5) and (4.7), it can also be shown that

ε(z) = QNd̄ d̄(z) + QNf f (z), (4.14)

and the residual depends on the unknown disturbance d̄ and unknown fault f . In
case no disturbance is present, the residual is only dependent on the fault. In prac-
tice, disturbances are always present and the choice of Q can be seen as a multi
objective optimization problem. The objectives are to choose Q that maximizes
sensitivity to faults while achieving good robustness to disturbances, formulated
for example as

max
Q

∥∥∥QNf ∥∥∥ϑ (4.15)

subject to
∥∥∥QNd̄∥∥∥δ < υ, (4.16)

for a constant υ. The choice of norms represents different compromises of the
design. For example, ϑ = 2 and δ =∞ provides a maximization of the average
fault sensitivity with respect to a worst case disturbance. In Liu and Zhou (2008),
solutions are found for different choices of ϑ and δ. In Li and Zhou (2009) the
results are extended to the time-varying case. See also Liu (2008); Li (2009).

4.4.2 Parameter Estimation

The objective is to identify the unknown parameters of a known model structure
from the data. Algorithmically, the solutions will depend on the model structure
and whether a real-time method is sought or not, Gustafsson (2000). To illus-
trate this class of methods, the prediction error method is described next. The
presentation is based on Ljung (1998); Peretzki et al. (2011).

Given data up to time index k−1, a (one-step ahead) predictor is a function that



4.4 Fault Indicator Generation 41

generates estimates of the output at time k,

ŷ(k, θ) = g(k, uk−1, yk−1, θ), (4.17)

where uk−1 = [u(k−1), u(k−2), · · · , u(1)] and similarly for yk−1, g( · ) is a predictor
function and defines the model structure M. A prediction error is thus defined
as ε(k, θ)=y(k) − ŷ(k, θ). For a data sequence of size N , the objective is to choose
θ that best describes the data in a prediction error sense,

θ̂N = argmin
θ

∥∥∥y − ŷ(k, θ)
∥∥∥
δ

(4.18)

where the choice of norm is a design choice. The least squares problem is written
with the square of the Euclidian norm, i.e. ‖ · ‖22. Since the least squares objective
is differentiable, gradient methods can be used to solve the minimization.

In case the predictor is a linear (or affine) function of the parameters, a linear
regression is achieved,

ŷ(k, θ) = φT (k)θ, (4.19)

where φ(k) = φ(k, uk−1, yk−1) is a vector function with same dimension as θ and
defines the model structure M. In this case, the solution to the least squares
problem is given in closed-form by

θ̂N =
[ 1
N

N∑
k=1

φ(k)φT (k)

︸                ︷︷                ︸
R̂N

]−1 1
N

N∑
k=1

φ(k)y(k), (4.20)

where the feasibility of this solution depends on whether the information matrix
R̂N is invertible. Notice that this algorithm can also be defined in a recursive form,
providing an estimate θ̂(k) at each sample time, allowing for real-time methods,
see e.g. Ljung (1998); Gustafsson (2000).

Assuming that the true system generating the data is described by a linear regres-
sion with same model structure as the predictor, with true parameters θ0, and
with additive white noise with variance γ0. Then, as N→∞, the estimate θ̂N will
be asymptotically normally distributed, Ljung (1998). More precisely

√
N (θ̂N − θ0) ∈ AsN (0, P ) , P , γ0

[
lim
N→∞

R̂N

]−1
. (4.21)

For a finite number of data, N , an estimate of the covariance matrix P̂N is

P̂N =
1
N
γ̂N [R̂N ]−1, γ̂N =

1
N

N∑
k=1

ε2(k, θ̂N ). (4.22)

The matrix R̂N therefore determines the quality of the estimate θ̂N . Notice that
R̂N is a function of the data and the model structure M. In order to make the
covariance small, R̂N should be made large in some sense. This idea is explored,
for instance, in experiment design (choosing u) for system identification. For
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on-line solutions, this restriction might be complicating since u can not be set
freely.

4.4.3 Signal-driven Methods

In many applications, the available data are in fact measured signals. It is possi-
ble to extract information about the fault by only considering the characteristics
of these signals.

With the objective of making it easier to reveal relevant characteristics of the
signals, transforms are widely used in signal-driven methods. A transform is
used to “map” a signal from its original domain to an alternative domain. The
alternative domain is hopefully more suitable for the indication of faults.

An integral transform is any transform T of the form

y(ν) = T{y(t)} =

t1∫
t0

k(t, ν)y(t) dt. (4.23)

where y(t) is a signal with domain on t, y(ν) = T{y(t)} is the transformed signal
with domain on ν and k(t, ν) is a kernel function. Several types of integral trans-
forms and discrete transforms can be defined, e.g. Fourier transform, Wavelet
transform, Karhunen-Loève transform, Radon transform, etc. Each transform
will provide different properties in the transformed domain. For example, the
Fourier transform F{y(t)} is a transform with

k(t, ν)= e−itν , t0 = −∞, t1 = ∞. (4.24)

When t is time, ν is frequency and y(ν) relates to the coefficients of the Fourier
series of y(t). The transformed signal y(ν) = F{y(t)}, is thus said to be the fre-
quency representation of y(t). The analysis of data in the frequency-domain has
found particular success in the monitoring of rotating machines, Taylor (1994);
de Silva (2007). Example 4.4 illustrates the use of frequency domain analysis for
diagnosis of rotating machines.

Remark 4.3. A disadvantage with signal-driven methods is that the characteristics of the
signal will typically depend on the system operational points, restricting the scope to
which the method can be applied. This is specially difficult if on-line solutions are sought.

Example 4.4: An off-line active method for backlash monitoring
This example is based on Sander-Tavallaey and Saarinen (2009). In the work,
the diagnosis of increased backlash is studied in drives equipped with compact
gearboxes. An increase of backlash will introduce additional resonance peaks to
the frequency content of the drive response. The analysis of the signals’ spectra
can therefore be used to indicate backlash changes.

A dedicated test-cycle, displayed in Figure 4.5a, is used to excite the drive unit.
In Figure 4.5b, spectra estimates for the torque signals are shown for a healthy
unit and for a unit with increased backlash levels. As it can be seen, there is an
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Figure 4.5: Backlash monitoring through signal analysis. The drive is excited
with a test-cycle in an off-line manner as displayed in (a). The torque signals’
spectra are shown in (b). Notice the increased resonance peak around 47 Hz
for the unit with increased backlash compared to the healthy unit.

increase of the frequency response around 47 Hz. In the paper, this deviation
is used to generate a backlash indicator which is used for backlash monitoring.
The proposed method takes only a few seconds to execute and does not consider
additional vibration measurements, which are common for this type of method.
Notice that this is an off-line active solution since it is based on a test-cycle.

4.4.4 Data-driven Methods

The methods developed in this work only consider data with domain on R, the
real numbers. Data can however occur in a variety of forms, e.g. characters, im-
ages, etc. Data-driven methods are therefore rather general. Perhaps the simplest
illustrative example is to check for domain consistency. For example, consider
that the domain of the data is “strings containing names of countries”, a datum
containing a number or the string “Linköping” can be interpreted as a fault.

Probability and statistics provide useful tools that can, at least in principle, be
used for a large variety of data types. A possible alternative to generate a fault
indicator is to consider analysis of the data probability density function. An es-
timate of the data density function can be found, e.g., using histograms. In the
following, a density estimator relevant to this work is introduced.

Kernel density estimator

For a scalar random variable Y with probability density function p(y), the char-
acteristic function ΦY : R→C is defined as

ΦY (ν) = E
[
eiνY

]
=

∞∫
−∞

eiνyp(y) dy = F−1{p(y)}2π, (4.25)

where F−1{ · } is the inverse Fourier transform. So the density function can be
found from the characteristic function through its Fourier transform. Given the
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sample y = [y1, · · · , yN ], the empirical estimate of ΦY (ν) is given by

Φ̂Y (ν) =
1
N

N∑
i=1

eiνyi , (4.26)

the objective is then to estimate the density function from Φ̂Y (ν). This is essen-
tially a spectrum estimation problem. A direct estimation of the density function
from the Fourier transform of Φ̂Y (ν) will however lead to an estimate with in-
creased variance for large values of ν, Ljung (1998).

To avoid this problem, the empirical estimate of the characteristic function is
multiplied with a weighting function Kh(ν) = K(hν). The weighting function is
typically symmetric, satisfying K(0)=1 and tends to zero when ν tends to infinity.
The density estimate is then given by

p̂(y) =
1

2π
F
{
Φ̂Y (ν)K(hν)

}
=

1
2π

∞∫
−∞

e−iνy Φ̂Y (ν)K(hν) dν

=
1

2π

∞∫
−∞

1
N

N∑
i=1

eiν(yi−y)K(hν) dν =
1
Nh

N∑
i=1

1
2π

∞∫
−∞

eiν( yi−yh )K(hν) d(hν)

=
1
Nh

N∑
i=1

k
(yi − y

h

)
=

1
N

N∑
i=1

kh(y − yi), (4.27)

where kh(y)h = F−1{Kh(ν)}. The function kh(y) is a kernel function, satisfying
kh( · ) ≥ 0 and that integrates to 1. The resulting estimator is known as a kernel
density estimator. It is typical to choose kernel functions with a low pass be-
havior, where the bandwidth parameter h controls its cutoff frequency. Common
kernel functions and their Fourier transforms are shown in Figure 4.6. See Parzen
(1962); Bowman and Azzalini (1997); Jones and Henderson (2009) for a detailed
treatment of kernel density estimators and criteria/methods for choosing h.

The Karhunen-Loève transform - PCA

Another important type of transform is the Karhunen-Loève transform, which
leads to a representation of a stochastic process in an orthonormal basis provid-
ing the minimal mean squared error, Hotelling (1933); Karhunen (1947); Loève.
(1948). If Yt is a zero mean stochastic process with covariance function KY (t, u),
the Karhunen-Loève theorem states that Yt can be represented by the infinite
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Figure 4.6: Kernel functions (top) and their respective Fourier transforms
(bottom).

series,

Yt =
∞∑
n=1

Znfn(t) dt, with Zn =

t1∫
t0

Ytfn(t) dt, (4.28)

where fn(t) in (4.28) is given by

ν1∫
ν0

KY (t, ν)fn(ν) dν = λnfn(t), (4.29)

and Zn are independent random variables. The fn(t) are eigenfunctions with
eigenvalues λn which are found by solving the homogeneous Fredholm integral
equation of second kind in (4.29). Solving (4.29) is a difficult problem, but in the
discrete case, the integral equation is simplified to an eigenvalue decomposition
of the empirical covariance matrix. This discrete counterpart leads to what is
known as principal component analysis (pca), which finds broad use in diagno-
sis applications, Yoon and MacGregor (2004); Gertler and Cao (2004); Yin et al.
(2010).

4.5 Behavior Testing

Given a fault indicator, a decision should be made regarding the behavioral modes
that might be currently present, i.e. a diagnosis should be generated. In order to
proceed, knowledge must be available about the reference behaviors which are
compared to the observed behavior of the fault indicator.
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Remark 4.4. In practice, it is difficult to know a priori how every fault mode affects the
fault indicator. What is usually known is how the fault indicator behaves under no fault.
So the reference behavior is usually related to the no-fault mode.

Once the reference behaviors have been decided, the next step is to define an algo-
rithm to compare the current behavior with the reference behaviors, generating
test quantities. This is typically, but not necessarily, done with a distance mea-
sure. A distance measure d(x, y) between x and y is a function, d : X × X → R,
satisfying

d(x, y) ≥ 0 (non-negativity) (4.30)

d(x, y) = d(y, x) (symmetry) (4.31)

d(x, x) = 0 (reflexivity). (4.32)

A metric is a distance satisfying the extra requirements

d(x, y) = 0 if and only if x = y (identity of indiscernibles) (4.33)

d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality). (4.34)

Independent of how the behavior comparison is done, a test quantity is a scalar
that measures deviations from one or more reference behaviorsii. Each test quan-
tity is input to a decision rule that will accept or reject the reference behaviors
related to the test quantity, i.e. a diagnosis is generated.

In practice, because of noise and disturbances, a test quantity will typically pre-
sent a random behavior, which may complicate the decision. It is therefore impor-
tant to evaluate the achievable performance of a test quantity. If the performance
is not satisfactory, a filtering step can be added to the decision rule to improve ro-
bustness. The introduction of a filter will however add a delay to the decision, i.e.
more evidences need to be collected before a satisfactory decision can be made.

In the following, a brief discussion on distance measures, evaluation of test quan-
tities and decision rules is considered.

Remark 4.5. Behavior testing can be formulated as a statistical hypothesis testing, where
a statistical model is known for the behavior of the fault indicator under different modes,
see e.g. Nyberg (1999); Gustafsson (2000); Basseville and Nikiforov (1993). It can also
be seen as a classification problem, where labeled data are used, see e.g. Mackay (2003);
Bishop (2007).

4.5.1 Behavior Comparison

The choice of algorithm to generate a test quantity will depend on the type of
fault indicator and on the reference behaviors. Here, some relevant cases for
the discussion are illustrated, for a detailed presentation see Basseville (1989);
Gustafsson (2000); Deza and Deza (2009).

iiNotice that several test quantities can be produced from the same fault indicator, e.g. when
several reference behaviors are considered.
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Comparing residuals

There are several ways to achieve a residual. For example, it can be found for a
known model instance as ε(k) = y(k) − ŷ(k, θ0), using an estimate of θ according
to ε(k) = y(k) − ŷ(k, θ̂), or as the result of estimates from different models ε(k) =
ŷ(k, θ1)− ŷ(k, θ2). In any case, a reference behavior must be assigned, and is either
known or estimated from the data.

It is common to consider that a residual ε(k) resembles white noise before any
change has occurred. The assumption is well based from estimation theory, e.g.
when the residuals are taken as the innovations of a Kalman filter when the model
used is correct. In such case, a test quantity s(k) can take different forms, some
examples are

s(k) = ε(k), for changes in the mean, (4.35)

s(k) = ε2(k) − γ, for changes in the variance, (4.36)

s(k) = ε(k)ε(k − 1), for changes in correlation sign, (4.37)

where γ is a known residual variance in the no-fault mode. The different test
quantities will be more or less suitable depending on the actual fault mode. For
instance, if the fault is known to affect the mean of the residual, then (4.35)
should be used.

Distances for parameter estimates

According to (4.21), after enough data was collected, the test quantity

s(k) =
(
θ̂(k) − θ0

)T
P̂ (k)−1

(
θ̂(k) − θ0

)
(4.38)

is chi-square distributed with degrees of freedom equal to the number of parame-
ters. In case θ0 is unknown, a filtering scheme can be used to provide an estimate
θ̂0(k), for example using a moving average. This measure is used for example in
Peretzki et al. (2011) as an estimate of the data quality.

Distances for spectra

Several distances can be defined to compare differences between the spectra of
signals, Gray and Markel (1976); Basseville (1989). Let y0(ν) and y1(ν) be spectra
estimates, the log-spectral distance is written as∥∥∥∥∥∥log

y0(ν)
y1(ν)

∥∥∥∥∥∥
δ

. (4.39)

The choice of norm will provide different characteristics, e.g. δ=2 leads to mean
quadratic distance and δ=∞ to maximum deviation.

Distances for densities

In statistics and information theory, the Kullback-Leibler divergence (kld) is
used as a measure of difference between two probability distributions. For two
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continuous distributions on y, p(y) and q(y), it is defined as

DKL (p||q) = −
∞∫
−∞

p(y) log
q(y)
p(y)

dy. (4.40)

The kld satisfies DKL (p||q) ≥ 0 (Gibbs inequality), with equality if and only if
p(y) = q(y). The kld is not a distance, since it is not symmetric in general. The
quantity

KL (p||q) , DKL (p||q) + DKL (q||p) , (4.41)

known as the Kullback-Leibler distance (kl), is however symmetric and also a
metric, satisfying the triangle inequality.

The kld is in fact a specialization of an f-divergence, a family of functions that
can be used as measures of the differences between densities. Other examples of
divergences and distances based on f-divergences are the Hellinger distance, the
total variation distance and the α-divergence, see Reid and Williamson (2011);
Basseville (1989) for more.

4.5.2 Evaluation of Test Quantities

A test quantity contains important information about how far the current behav-
ior of the system is from one or more reference behavioral modes. In case they
agree, the test quantity s(k) should be small (the evidence found in the test quan-
tity accepts the reference behaviors), otherwise, it will deviate. Each of these
conjectures can be seen as a hypothesis. The null hypothesis H0 corresponds to
the case that they agree and the alternative hypothesis is H1. The problem of
deciding which behavioral mode is present can thus be seen as a hypothesis test.

A decision regarding which hypothesis is present can be made with the use of a
threshold ~,

s(k)
H1
≷
H0

~, (4.42)

and reads, if s(k) ≥ ~ choose H1, otherwise choose H0.

Due to noise and disturbances, s(k) will typically have a random behavior, which
will differ according to the hypothesis present. The probability densities of s(k)
for each hypothesis is written as p(s|H0) and p(s|H1). For the test in (4.42), the
following probabilities are of interest,

Pf =

∞∫
~

p(s|H0) ds, assigns H1 when H0 is present. (4.43)

Pd =

∞∫
~

p(s|H1) ds, assigns H1 when H1 is present. (4.44)
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With interest on the transition from H0 to H1, the probability Pf corresponds to
a false detection, and Pd corresponds to a correct detection. The ideal test would
always provide Pf =0 and Pd =1. This is however usually not possible because of
overlaps between p(s|H0) and p(s|H1).

By varying the threshold ~ from −∞ to ∞ and plotting Pd against Pf a receiver
operating characteristic (roc) curve is achieved. The roc curve presents the
performance limitations of the test quantity with respect to Pf and Pd . From
a specified Pf , it is also possible to find the threshold providing the largest Pd
(Neyman-Pearson criterion, see Van Trees (2001)).

Example 4.5: Evaluation of a test quantity for wear diagnosis in a robot
In Paper C, a test quantity is achieved which is sensitive to wear in a robot joint.
The developed test quantity considers a distance between two sequences of ap-
plied torques, τm and τn, and is written s(τm, τn). The distance is also a metric
and therefore s(τm, τn)= s(τn, τm).

As presented in Example 4.3, the applied torque is affect by the wear levels w,
but also by the joint temperature T , i.e. τ(w, T ). Temperature is considered as
a disturbance since it is not measured. The objective is to decide whether τm

and τn were generated under the same wear levels or if there was a critical wear
change of size wc between them. The corresponding hypotheses are

H0 : τm(w=0, T ) and τn(w=0, T ) or (4.45)

τm(w=wc, T ) and τn(w=wc, T )

H1 : τm(w=wc, T ) and τn(w=0, T ) or (4.46)

τm(w=0, T ) and τn(w=wc, T ).

For analyses of the disturbance effects, temperature is considered random with a
uniform distribution

T ∼ U (T , T + ∆T ), (4.47)

where T = 30◦C and the value of ∆T relates to the size of the disturbance. The
resulting distributions for each hypothesis, p(s|H0) and p(s|H1), are estimated us-
ing a kernel density estimator. They are shown for different levels of temperature
disturbances ∆T in Figure 4.7, together with their roc curves. For low values of
∆T , it is easy to distinguish between the hypotheses. The achievable performance
of the fault indicator is however considerably affected by the size of ∆T .

4.5.3 Decision Rules

A decision rule is a test used to accept or reject the reference behaviors that the
test quantity can explain, that is, it generates a diagnosis. The simplest decision
rule is to directly use a threshold as in (4.42). The choice of threshold might be
motivated, e.g., from the Neyman-Pearson critetion but it can also be simpler, as
illustrated in the example below.
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Figure 4.7: Kernel density estimates for the hypotheses’ densities under dif-
ferent levels of temperature disturbance ∆T (top row), the same x-axis is
used. The corresponding roc curves (bottom).

Example 4.6: Limit checking
One of the simplest diagnostic tests is to verify whether a variable exceeds certain
limits. Let y(k) be the variable of interest, consider that exceeding an upper or
lower level corresponds to different fault modes F1 and F2 respectively, and that
otherwise a no-fault mode NF is present. Two test quantities are then of interest

s1(k) = y(k), s2(k) = −y(k), (4.48)

and the diagnostic tests are

s1(k)
{F1}
≷

{NF,F2}
y, s2(k)

{F2}
≷

{NF,F1}
y (4.49)

where y and y are the upper and lower limits. Notice that the acceptance of the
null hypothesis in either of the tests does not nullify the other.

Unfortunately, the direct use of a threshold might not be enough to meet the
performance requirements for the diagnosis. For example, the susceptibility of
a test to generate incorrect diagnoses can be measured by Pf in (4.43). Incorrect
diagnoses are undesirable, and therefore an upper limit for Pf might be required.
In such case, the detection performance, measured e.g. by Pd in (4.44), will be
restricted by the achievable performance of the test quantity. This was illustrated
in Example 4.5 where the temperature disturbances were a limiting factor.
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In order to circumvent this problem, a filter can be applied to the test quantity
before thresholding. Different filtering approaches are possible, but they will
introduce delay on the detection, Adnan et al. (2011). That is, a correct decision
is compromised with the detection time. Some common filtering approaches are
discussed next.

Remark 4.6. The choice of decision rule is sometimes recognized as alarm design, and is
related to alarm management. The topic has recently drawn attention due to new regula-
tions in the process industry, see e.g. ANSI/ISA 18.2 (2009).

Low-pass filtering

A low-pass filter can be applied to s(k) before thresholding. This will reduce the
variability of s(k) and can therefore improve performance but introduces a delay
since more samples are needed. For instance, a geometric moving average filter,

g(k) = λs(k) + (1 − λ)g(k − 1), (4.50)

can be used. Where 0 ≤ λ ≤ 1 is a tuning parameter controlling the effective
averaging window. The threshold is then applied to the test statistic g(k).

CUSUM filter

An alternative filtering approach is the cumulative sum (cusum) filter.

Algorithm 2 cusum

g(k) = g(k − 1) + s(k) − ν (4.51)

g(k) = 0 if g(k) < 0. (4.52)

The test statistic g(k) adds up the test quantity s(k). To avoid positive drifts, the
drift parameter ν is subtracted from the update rule (4.51). If, on the other hand,
g(k) becomes negative, g(k) is reset, avoiding negative drifts. In case s(k) is a
non-negative quantity (e.g. a distance), it is natural to include an estimate of the
mean of s(k) in ν. To achieve robustness to noise, a quantity proportional to an
estimate of its standard deviation can also be added, yielding

ν = µ + κσ (4.53)

where µ and σ are estimates of the mean and standard deviation of s(k) before
the change and κ is a positive constant. Notice that the cusum is a nonlinear
filter. For more filtering approaches, see Gustafsson (2000); Cheng et al. (2011).

Delay-timer

Robustness can also be achieved by postponing the decision with a delay-timer.
With a delay-timer, a detection is only triggered in case the test quantity exceeds
the threshold for a consecutive number of times.
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4.6 Summary and Connections

This chapter presented an overview of the diagnosis process. The presentation
focused on describing different methods, with special attention to methods that
are suitable for the application sought, condition monitoring of industrial robots.
A number of examples was presented to illustrate the common trade-offs and
limitations.

Gathering knowledge about the disturbances and faults is an important aspect
for the design and verification of diagnosis solutions. The achieved friction mod-
els from Papers A and B allow for a more realistic design and evaluation of so-
lutions to wear diagnosis in industrial robot joints. These models were used in
Example 4.5.

An off-line active method for wear monitoring is proposed in Paper B. The method
is based on parameter estimation and makes use of the developed friction mod-
els and a dedicated test-cycle. The performance properties of the method are also
verified through simulations using these models.

In Paper C, on-line passive methods are proposed for the wear monitoring prob-
lem. The repetitive behavior typically found in applications of industrial robots
is explored to generate fault indicators. Data-driven methods are suggested that
consider changes in the data distribution achieved from the execution of the same
trajectory. It is made use of kernel density estimators, presented in Section 4.4.4,
the Kullback-Leibler distance, presented in Section 4.5.1, and the cusum filter.
The achievable performance of a suggested fault indicator was analyzed using a
similar approach as presented in Section 4.5.2.



5
Concluding Remarks

The first part of this thesis provided an introduction to the research fields that are
relevant for this thesis: industrial robotics, tribology and diagnosis. This served
as a preparation to Part II, motivating the research contributions and contextual-
izing them into the different fields.

The conclusions for the thesis are given in Section 5.1. Suggestions of future
research topics are presented in Section 5.2. See also the included papers for
details.

5.1 Conclusions

The main objective of this work was to provide methods for wear diagnosis in
a robot joint. Since wear can affect the friction in the joint, the basic idea was
to monitor friction to infer about wear. Because the friction torques must be
overcome by the motors during the robot operation, it is possible to extract in-
formation about friction from available measurements. As presented in Chapter
2, there are different aspects of industrial robotics that make this a challenging
problem:

Complex dynamics. Industrial robots are nonlinear, multi-variable, uncertain
systems operating in closed-loop.

Limited sensory information. In a typical setup, only motor angular position
ϕm, and applied motor current im are measured. From these measurements
estimates of angular speed ϕ̇m and the applied motor torques τm = Kim is
possible.

Application-related limitations. Industrial robots are used in a wide range of
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applications. Depending on the installation, there will be, e.g., restrictions
on the available workspace and on how the robot is used (excited).

For various reasons, the use of models is important in industrial robotics. Due
to the complexity of a robot joint, models describing, e.g., backlash and friction
are difficult and are often motivated from empirical observations. With interest
in the monitoring of friction for diagnosis, Chapter 3 presented an overview of
friction in a robot joint.

Chapter 4 gave an overview of the diagnosis process. It described the different
tasks present and the challenges involved. It mainly focused on describing dif-
ferent approaches for the design of diagnostic tests. A diagnostic test makes a
comparison between observations and available knowledge of the system to infer
about the state present in the system. The representation of this knowledge may
appear in different forms, depending, e.g., on the method used to provide fault
indicators. In Paper B, this knowledge appears as an accurate friction model. In
Paper C, this knowledge is contained in data achieved from executions of the
same trajectory.

5.1.1 Summary of Part II

In Paper A, a detailed empirical study of friction in a robot joint is presented.
The study was motivated by the significant complexity of friction in a robot (re-
call Figure 3.2). In the paper, the typical friction related phenomena and models
used in robotics are reviewed. The effects of angular position, speed, load torques
and temperature to static friction in a robot joint are considered. Due to their rele-
vance, the effects of load and temperature are modeled, identified and validated.
The proposed model considerably outperforms standard friction models and is
important for design and evaluation of control and diagnosis methods.

In Paper B, the effects of wear to static friction are modeled and identified. The
model is based on empirical studies from accelerated wear tests performed in a
robot joint. The wear model is combined with the friction model presented in
Paper A. Using the resulting model, an off-line active method is proposed for
wear diagnosis. A test-cycle is used to provide an estimate of static friction. A
known model structure is considered with only temperature and wear considered
as unknowns and a wear estimator is proposed. Special attention is given to
the performance limitations imposed by the unknown temperature. With the
use of a known model and friction observations, the framework is favourable for
identification methods and can be seen as a proof of concept for identification
based methods. As it is shown, a careful experiment design can lead to a robust
wear estimation.

The main limitations are however the use of a known friction model and the need
for estimates of the static friction torques. The friction estimates are achieved off-
line, through a test-cycle. Off-line methods decrease the robot availability and
are therefore undesirable from the perspective of the robot user. The use of on-
line passive identification-based methods for diagnosis is challenging since its
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performance will depend on how the robot is excited. Furthermore, additional
uncertainties might also appear, e.g. related to unmodeled dynamics of the robot.

In Paper C, on-line passive wear monitoring methods are proposed where the
repetitive behavior found in most applications of industrial robots is explored.
The basic idea is that the repetitive execution of a system provides redundancies
about the system’s behavior which are directly found in the data. The result of the
execution of the same trajectory in different instances of time can be compared
to provide an estimate of how the system changed over the period.

A data-driven method is suggested that considers changes in the distribution of
torque data logged from the robot. A kernel density estimator is used, in com-
bination with the Kullback-Leibler distance. Since a robot may execute several
repetitive trajectories, ideas are presented to combine measurements from differ-
ent trajectories. An approach is also given to improve the robustness to distur-
bances with the use of a weighting function. A data-driven method is suggested
for the choice of weighting function, it requires availability of labeled data.

The methods are evaluated in simulations and experiments. It is shown that ro-
bust wear monitoring is made possible with the proposed methods. The effects
of unknown temperature are investigated in detail through a simulation study.
It is shown that the use of the weighting function can significantly improve the
robustness to temperature disturbances.

Although the methods were developed with interest in industrial robots, they
can be applied for any system that operate in a repetitive manner. This repetitive
behavior is commonly found in automation or can be forced with the periodic
execution of a test-cycle. An important advantage of the approach is its simplicity
(no models are required), and it is also easy to implement.

5.2 Future Research

Several further developments are suggested in the end of each paper in Part II.
Besides those, the following aspects are emphasized for the development of solu-
tions for wear diagnosis in robot joints.

Friction modeling. A more detailed friction model will support the design and
evaluation of any wear diagnosis solution. Possible extensions are:

• Modeling of dynamic friction. Only static friction models were developed
in this work. One possibility is to verify whether the static friction models
developed can be extended to a dynamic description, e.g. using the LuGre
model.

• Validation over a larger temperature range. The temperature effects were
modeled using measurements in a temperature range of 35−80◦C. Robots
may operate outside this range. It is therefore important to understand how
friction would be affected.
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• Verification of the models developed in other mechanical devices. Realistic
friction models are important in many applications. The effects of load and
temperature are often neglected, despite their importance. In principle,
the developed models can be extended to other types of mechanical devices
under lubricated friction. The use of the model structure proposed would
simplify the time consuming task of developing new friction models.

For instance, while the study of friction considered here focused on the
main axes of the robot, it would be interesting to study friction also in the
wrist axes.

Wear modeling. Since it is costly and time consuming to perform wear experi-
ments, wear models are very important for the design and verification of diag-
nosis solutions. The further study of wear and wear modeling in a robot joint is
motivated by the following,

• Unpredictability of the wear processes. It is not possible to assure that a
wear model developed based on an observed fault is representative of fu-
ture faults. The wear processes in a joint are the results of complex phe-
nomena that cannot be predicted. With more knowledge gathered about
the faults, it is possible to describe them in a more detailed manner. Per-
haps different wear models can be developed to describe the most common
faulty behaviors.

• Development of lifetime models. Understanding how the wear evolves with
time and usage is important for the design and verification of diagnosis
solutions. For example, it supports the decision for the experimentation
time and design of the decision rules for alarm generation.

A lifetime model also allows for prognosis, which is very important for the
scheduling of maintenance actions.

Evaluation of the methods. Independent of which diagnosis methods are used,
it is important to thoroughly evaluate the approaches before use in real world
applications. This will help to identify weaknesses of the methods and will pro-
vide leads to improvements in their design. Three approaches are listed, with an
increasing level of “certification”,

• Simulation studies. With the use of the developed friction models, it is
possible to setup a realistic simulation model. In such simulation model,
it is important to consider the different sources of uncertainties present in
practice, e.g., flexibilities, torque ripple, temperature and load variations,
closed-loop effects, etc. For on-line methods, cycles that are used in real
world applications must be considered.

To allow for a comparison of different methods, a benchmark problem for
robust wear diagnosis in a robot joint could be defined using such a model.

• Accelerated wear tests. Even though a realistic simulation model is impor-
tant, it cannot substitute the validation through experiments. Since the
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wear effects may take several years to occur, accelerated wear tests, per-
formed in a lab, can be used as a first verification. It is however difficult
to reproduce scenarios that are representative of what happens in the field.
For example, it is difficult to control temperature in the joints.

• Field tests. These are irreplaceable for the evaluation of diagnosis solutions.
In order to be of significance, they must be verified with several robots and
in different applications. This is however only possible in cooperation with
robot users and can take considerable time.
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Abstract

Friction is the result of complex interactions between contacting surfaces
in down to a nanoscale perspective. Depending on the application, the dif-
ferent models available are more or less suitable. Static friction models are
typically considered to be dependent only on relative speed of interacting
surfaces. However, it is known that friction can be affected by other factors
than speed.

In this paper, the typical friction phenomena and models used in robotics
are reviewed. It is shown how such models can be represented as a sum of
functions of relevant states which are linear and nonlinear in the param-
eters, and how the identification method described in Golub and Pereyra
(1973) can be used to identify them when all states are measured. The
discussion follows with a detailed experimental study of friction in a robot
joint under changes of joint angle, load torque and temperature. Justified
by their significance, load torque and temperature are included in an ex-
tended static friction model. The proposed model is validated in a wide
operating range, considerably improving the prediction performance com-
pared to a standard model.

1 Introduction

Friction exists in all mechanisms to some extent. It can be defined as the tangen-
tial reaction force between two surfaces in contact. It is a nonlinear phenomenon
which is physically dependent on contact geometry, topology, properties of the
materials, relative velocity, lubricant, etc. (Al-Bender and Swevers (2008)). Fric-
tion has been constantly investigated by researchers due to its importance in sev-
eral fields, Dowson (1998). In this paper, friction has been studied based on
experiments on an industrial robot.

71
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One reason for the interest in friction of manipulator joints is the need to model
friction for control purposes (Kim et al. (2009); Guo et al. (2008); Olsson et al.
(1998); Bona and Indri (2005); Susanto et al. (2008)), where a precise friction
model can considerably improve the overall performance of a manipulator with
respect to accuracy and control stability. Since friction can relate to the wear
down process of mechanical systems (Blau (2009)), including robot joints (Bitten-
court et al. (2011)), there is also interest in friction modeling for robot condition
monitoring and fault detection, Bittencourt et al. (2011); Caccavale et al. (2009);
Namvar and Aghili (2009); McIntyre et al. (2005); Vemuri and Polycarpou (2004);
Brambilla et al. (2008); Mattone and Luca (2009); Freyermuth (1991).

A friction model consistent with real experiments is necessary for successful sim-
ulation, design and evaluation. Due to the complexity of friction, it is however of-
ten difficult to obtain models that can describe all the empirical observations (see
Al-Bender and Swevers (2008) for a comprehensive discussion on friction physics
and first principle friction modeling). In a robot joint, the complex interaction of
components such as gears, bearings and shafts which are rotating/sliding at differ-
ent velocities, makes physical modeling difficult. An example of an approach to
model friction of complex transmissions can be found in Waiboer (2007), where
the author designs joint friction models based on physical models of elementary
joint components as helical gear pairs and pre-stressed roller bearings.

Empirically motivated friction models have been successfully used in many ap-
plications, including robotics, see e.g. Armstrong-Hélouvry (1991); Olsson et al.
(1998); Åström and Canudas-de Wit (2008); Harnoy et al. (2008). This category
of models was developed through time according to empirical observations of the
phenomenon, Dowson (1998). Considering a set of states X , and parameters θ,
these model structures M, can be described as the sum of M functions φj that
describe the behavior of friction F ,

F (X , θ) =
M∑
j=1

φj (X , θ). (M)

The choice X = [z, q̇, q], where z is an internal state related to the dynamic be-
havior of friction, q is a generalized coordinate and q̇= d

dt q, gives the set of Gen-
eralized Empirical Friction Model structures (gefm), see Al-Bender and Swevers
(2008).

Among thegefmmodel structures, the LuGre model (Olsson et al. (1998); Åström
and Canudas-de Wit (2008)) is a common choice in the robotics community. For
a revolute joint, the LuGre model structureML, can be described as

τf = σ0z + σ1 ż + h(ϕ̇) (ML)

ż = ϕ̇ − σ0
|ϕ̇|
g(ϕ̇)

z,

where τf is the friction torque, ϕ is the joint motor angle and ϕ̇= d
dtϕ. The state

z is related to the dynamic behavior of asperities in the interacting surfaces and
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can be interpreted as their average deflection, with stiffness σ0 and damping σ1.

The function h(ϕ̇) represents the velocity strengthening (viscous) friction and is
dependent on the stress versus strain rate relationship. For Newtonian fluids, the
shear stress follows a linear dependency to the shear rate τ = µ d

dy u, where τ is

the shear stress, µ is the viscosity and du
dy is the velocity gradient perpendicular

to the direction of shear. It is typical to consider a Newtonian behavior, yielding
the relationship

h(ϕ̇) = Fv ϕ̇

for the viscous behavior of friction.

The function g(ϕ̇) captures the velocity weakening of friction. Motivated by the
observations mainly attributed to Stribeck (Jacobson (2003); Woydt and Wäsche
(2010); Bo and Pavelescu (1982)), g(ϕ̇) is usually modeled as

g(ϕ̇) = Fc + Fse
−
∣∣∣∣ ϕ̇ϕ̇s ∣∣∣∣α ,

where Fc is the Coulomb friction, Fs is called the standstill friction parameteri ,
ϕ̇s is the Stribeck velocity and α is the exponent of the Stribeck nonlinearity. The
model structureML is a gefm with X =[z, ϕ̇] and θ = [σ0, σ1, Fc, Fs, Fv , ϕ̇s, α].
According to Åström and Canudas-de Wit (2008) it can successfully describe
many of the friction characteristics.

Since z is not measurable, a difficulty withML is the estimation of the dynamic
parameters [σ0, σ1]. In Olsson et al. (1998), these parameters are estimated in
a robot joint by means of open loop experiments and by use of high resolution
encoders. Open-loop experiments are not always possible, and it is common to
accept only a static description ofML. For constant velocities,ML is equivalent
to the static modelMS :

τf (ϕ̇) = g(ϕ̇)sign(ϕ̇) + h(ϕ̇) (MS )

which is fully described by the g- and h functions. In fact, ML simply adds dy-
namics to MS . The typical choice for g− and h, as defined previously for ML,
yields the static model structureM0:

τf (ϕ̇) =
[
Fc + Fse

−
∣∣∣∣ ϕ̇ϕ̇s ∣∣∣∣α ] sign(ϕ̇) + Fv ϕ̇. (M0)

M0 requires a total of four parameters to describe the velocity weakening regime
g(ϕ̇) and one parameter to capture viscous friction h(ϕ̇). See Fig. 3 for an inter-
pretation of the parameters.

From empirical observations, it is known that friction can be affected by several
factors, e.g.:

iFs is commonly called static friction. An alternative nomenclature was adopted to make a dis-
tinction between the dynamic/static friction phenomena.
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(a) abb irb 6620 robot with
150 kg payload and 2.2 m reach.

�� ��

��

�

(b) Schematics of the 3 first joints
including the torque definitions
for joint 2.

Figure 1: The experiments were made on joint 2 of the abb robot irb 6620.
ϕa is the joint angle, T the joint temperature, τl the manipulation load torque
and τp the perpendicular load torque.

• temperature,
• force/torque levels,
• position,

• velocity,
• acceleration,
• lubricant properties.

A shortcoming of the LuGre model structure, as with any gefm, is the depen-
dence only of the states X =[z, q̇, q]. In more demanding applications, the effects
of the remaining variables can not be neglected. In Waiboer et al. (2005), the
author observes a strong temperature dependence, while in Olsson et al. (1998),
joint load torque and temperature are considered as disturbances and estimated
in an adaptive framework. In Gogoussis and Donath (1988); Dohring et al. (1993),
the effects of load are modeled as a linear effect on Fc in a model structure similar
toM0. In the recent contribution of Hamon et al. (2010) the load effects are revis-
ited to include also a linear dependency on Fs. However, more work is needed in
order to understand the influence of different factors on the friction properties. A
more comprehensive friction model is needed to improve tasks related to design,
simulation and evaluation for machines with friction.

The objective of this paper is to analyze and model the effects in static friction
related to joint angle, load torques and temperature. The phenomena are ob-
served in joint 2 of an abb irb 6620 industrial robot, see Figure 1a. Two load
torque components are examined, the torque aligned to the joint dof (degree of
freedom) and the torque perpendicular to the joint dof. These torques are in the
paper named manipulation load torque τl and perpendicular load torque τp, see
Figure 1b.

By means of experiments, these variables are analyzed and modeled based on the
empirical observations. The task of modeling is to find a suitable model structure
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according to:

τf (X ∗, θ) =
M∑
j=1

φj (X ∗, θ) (M∗)

X ∗ =
[
ϕ̇, ϕa, τp, τl , T

]
,

where T is the joint (more precisely, lubricant) temperature and ϕa the joint angle
at the arm side.

Ideally, the chosen model should be coherent with the empirical observations and,
simultaneously, with the lowest dimension of θ, the parameter vector, and with
the lowest number of describing functions (minimum M). For practical purposes,
the choice of φi should also be suitable for a useful identification procedure.

The work presented here is based on Bittencourt et al. (2010), where a friction
model was proposed to describe the effects of load and temperature in a robot
joint. More detailed analysis of the modeling assumptions are presented, together
with a more general framework for identification of friction models. The paper
is organized as follows. Section 2 presents the method used to estimate static
friction levels in a robot joint and consequently its friction curve, an identifica-
tion procedure is also described for general parametric description of friction
curves and some model simplifications are justified. Section 3 contains the major
contribution of this paper, with the empirical analysis, modeling and validation.
Conclusions and future work are presented in Section 4.

2 Static Friction Curve

Static friction is typically presented in a friction curve, a plot of static friction
levels against speed. It is related to the Stribeck curve under the simplification
that viscosity and contact pressure are constant. An example of a friction curve
estimated from a robot joint can be seen in Figure 3.

From a phenomenological perspective, a friction curve can be divided into three
regimes, according to the lubrication characteristics: boundary (bl), mixed (ml)
and elasto-hydrodynamic lubrication (ehl). The phenomena present in very low
velocities (bl) is mostly related to interactions between the asperities of the sur-
faces in contact. With the increase of velocity, there is a consequent increase of
the lubrication film between the surfaces and a decrease of friction (ml) until it
reaches a full lubrication profile (ehl) with a total separation of the surfaces by
the lubricant. In ehl, friction is proportional to the force needed to shear the
lubricant layer, thus dependent on the lubricant properties, specially viscosity.
Recalling the static friction model MS , the bl and ml regimes are described by
the velocity weakening function g− and the ehl regime is described by h.

In this section, an experimental procedure is suggested to estimate static fric-
tion levels at constant speeds in a robot joint and consequently its friction curve.
Given static friction estimates, it is shown how the general friction modelM can
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be identified with the method described in Golub and Pereyra (1973), when the
states X are available. Finally, the model structureM0 is simplified to achieve a
minimal description of static friction.

2.1 Estimation Procedure

A manipulator is a multivariable, nonlinear system that can be described in a
general manner through the rigid multi-body dynamic model

M(ϕ)ϕ̈ + C(ϕ, ϕ̇) + τg (ϕ) + τf (ϕ̇) = u, (1)

where M(ϕ) is the inertia matrix, C(ϕ, ϕ̇) relates to speed dependent terms (Cori-
olis and centrifugal), τg (ϕ) are the gravity-induced torques at the joints and τf
contains the friction torques at joints. The system is controlled by the input
torque, u, applied by the joint motor (in the experiments the torque reference
from the servo was measuredi ).

For single joint movements (C(ϕ, ϕ̇) = 0) under constant speed (ϕ̈≈0), Equa-
tion (1) simplifies to

τg (ϕ) + τf = u. (2)

The resulting applied torque u drives only friction and gravity-induced torques.
The required torques to drive a joint in forward, u+, and reverse, u−, directions
at the constant speed level ¯̇ϕ, and at a joint angle value ϕ̄ (so that τg (ϕ̄) is equal
in both directions), are

τf ( ¯̇ϕ) + τg (ϕ̄) = u+ τf (− ¯̇ϕ) + τg (ϕ̄) = u−. (3)

In the case an estimate of τg (ϕ̄) is available, it is possible to isolate the friction
component in each directions using Equation (3). If such estimate is not possible
(e.g. not all masses are completely known), τf can still be achieved in the case
that τf is independent of the rotation direction. Subtracting the equations yields

τf ( ¯̇ϕ) − τf (− ¯̇ϕ) = u+ − u−

and if τf (− ¯̇ϕ)=−τf ( ¯̇ϕ), the resulting direction independent friction is:

τf ( ¯̇ϕ) =
u+ − u−

2
. (4)

In the experiments, each joint is moved separately with the desired speed in both
directions around a given joint angle ϕ̄. Figure 2 shows the measured joint angle-,
speed- and torqueii signals sampled at 2 kHziii for ¯̇ϕ=42 rad/s around ϕ̄=0. The
constant speed data is segmented around ϕ̄ and the static friction levels can be
achieved using Equation (3) or (4).

iIt is known that using the torque reference from the servo as a measure of the joint torque might
not always hold because of the temperature dependence of the torque constant of the motors. The
deviations are however considered to be small and are neglected during the experiments.

iiThroughout the paper all torques are normalized to the maximum manipulation torque at low
speed.

iiiSimilar results have been experienced with sampling rates down to 220 Hz.
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Figure 2: Excitation signals used for the static friction estimation
at ϕ̇=42 rad/s.
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Figure 3: Static friction curve with lubrication regimes and model-based
predictions. Circles indicate friction levels achieved using Equation (4).

The procedure can be repeated for several different speeds and a friction curve
can be drawn. As shown in Bittencourt et al. (2010), there is only a small direction
dependency of friction for the investigated joint. Therefore, in this paper, friction
levels are achieved using Equation (4), which is not influenced by deviations in
the gravity model of the robot.

2.2 General Parametric Description and Identification

The general friction models described byM can be written as

τ̂f (Xk , θ) =

Nη∑
j=1

φj (Xk , ρ)ηj . (5)

where the index k relates to the k-th measurement in the data set. The parameters’

vector θ =
[
ηT , ρT

]T
has dimension (Nη +Nρ) and is divided according to the

manner they appear in the model, respectively linearly/nonlinearly. Notice that
if there are no linear dependency in the parameters, i.e. η is empty, (5) reads
directly as M by taking θ = ρ. As it will be shown, the structure of (5), can be
exploited when defining an identification method.
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Considering a total of N measurements, the residuals (innovations) between pre-
dictions and measurements are written as ε(k, θ) = τf (k) − τ̂f (Xk , θ). For the fol-
lowing discussion, it is assumed that Xk is available so that it is possible to con-
struct φj (Xk , ρ).

The identification objective can be formulated as a prediction error minimization

θ̂ = arg min
θ
V (ε(k, θ)) (6)

where θ̂ is the value that minimizes the cost function V ( · ). The least squares
problem considers the minimization of

θ̂ = arg min
θ
V (ε(k, θ)) = arg min

θ

N∑
k=1

ε2(k, θ). (7)

The minimum of (7) occurs where the gradient of the innovations, ψ(k, θ) =
∂
∂θ ε(k, θ), is zero. For the model in (5), this gradient takes the form

ψ(k, θ) =
[
φ1(Xk , ρ), · · · , φNη (Xk , ρ),

∂
∂ρ1

τ̂f (Xk , θ), · · · , ∂
∂ρNρ

τ̂f (Xk , θ)
]T
, (8)

where it is easy to realize the separable nature of the model. The solution for ρ
can not be found explicitly, but can be solved numerically using an optimization
routine. For instance, if η is empty, gradient based methods can be used to find
an estimate of ρ (Ljung (1998)).

As presented in Golub and Pereyra (1973), the separable structure of the model
can be explored. Defining the matrix {Φ(ρ)}k,j =φj (Xk , ρ)ηj , for any given ρ, the
solution for η, is given by the least squares solution

η̂ = Φ†(ρ)τf , Φ†(ρ) =
[
ΦT (ρ)Φ(ρ)

]−1
ΦT (ρ) (9)

where τf denotes here the vector of measurements {τf (k)}N1 and Φ†(ρ) is the
Moore-Penrose pseudoinverse, Golub and Pereyra (1973). Substituting this back
in (7), the problem can be rewritten as a function only of ρ

ρ̂ = arg min
ρ
||τf − Φ(ρ)η̂||2 = arg min

ρ
||P ⊥

Φ(ρ)τf ||
2, (10)

where P ⊥
Φ(ρ) = I −Φ(ρ)Φ†(ρ) is the projector on the orthogonal complement of the

column space of Φ(ρ). The idea is then to first find ρ̂, and then plug it back in (9)
to find η̂. This illustrates the algorithm proposed in Golub and Pereyra (1973),
where it is also shown that the resulting point θ̂ = [η̂T , ρ̂T ]T is a minimum of (7).

There is, however, no closed form solution to (10). An approach is to consider gra-
dient based methods where information of the gradient of P ⊥

Φ(ρ)τf is relevant. In

Golub and Pereyra (1973), it is shown that the gradient of P ⊥
Φ(ρ)τf requires only

computation of derivatives of Φ(ρ), as in (8) (see Golub and Pereyra (1973) for a
detailed treatment). In this work, a 2-step identification procedure is used, in a
initial step, a coarse grid search is used to find initial estimates of ρ. The problem
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Table 1: IdentifiedM0 parameters for the data shown in Figure 3.
Fc [ 10−2] Fs [ 10−2] Fv [ 10−4] ϕ̇ α

3.4 ± 0.176 4.6 ± 0.48 3.68 ± 0.12 10.68 ± 1.08 1.93 ± 0.60

(10) is then solved given the initial estimates using a trust-region reflective algo-
rithm available in the Matlab’s Optmization Toolbox. The resulting ρ̂ estimate is
finally used to find η̂ as is in (9).

To assess the resulting performance of the identification procedure, it is possible
to provide an estimate of the identified parameters uncertainties. For any un-
biased estimator, the following relationship for its covariance PθN holds, Ljung
(1998),

PθN ≥ κ0

 N∑
k=1

E
[
ψ(k, θ)ψT (k, θ)

]
−1

= P ∗θN (11)

where for Gaussian innovations with variance γ0, κ0 = γ0 (Ljung (1998)). Under
this assumption, given an estimate θ̂N of θ after N observations, P ∗θN can be
estimated from the data as

P̂ ∗θN = γ̂N

 1
N

N∑
k=1

ψ(k, θ̂N )ψT (k, θ̂N )


−1

(12)

γ̂N =
1
N

N∑
k=1

ε2(k, θ̂N ). (13)

The quantity in (12) is used throughout this work as a covariance estimate for θ̂.

For the model structureM0 in the first quadrant, Equation (5) can be written as

X = ϕ̇, Φ(ϕ̇, ρ) =
[
1, e

−
∣∣∣∣ ϕ̇ϕ̇s ∣∣∣∣α , ϕ̇]

η = [Fc, Fs, Fv] , ρ = [ϕ̇s, α] .

The model parameters are identified using the direction independent data (cir-
cles) in Figure 3. The resulting identified parameters values are shown in Table 1
with one standard deviation. The dashed line in Figure 3 is obtained by model-
based predictions of the resulting model, with sum of absolute prediction errors
smaller than 3.0 10−2.

A closer investigation of the friction curve in Figure 3 reveals that the behavior of
friction at high speeds is slightly nonlinear with speed. This feature is related to
the non-Newtonian behavior of the lubricant at high speeds, see e.g. Waiboer et al.
(2005). In this case, the fluid presents a pseudoplastic behavior, with a decrease
of the apparent viscosity (increase of friction) with share rate (joint speed). The
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behavior motivates the suggestion of an alternative model structure

τf (ϕ̇) = Fc + Fse
−
∣∣∣∣ ϕ̇ϕ̇s ∣∣∣∣α + Fv ϕ̇ + Fµϕ̇

β , (M+
0 )

where Fµ and β relates to the non-Newtonian part of the viscous friction behav-
ior and capture the deviation from a Newtonian behavior. The parameters are
identified for the friction curve in Figure 3. The resulting predictions are shown
by the solid line in Figure 3, with sum of absolute prediction error as 5.5 10−3.

This example illustrates that it might be worth to consider the non-Newtonian
behavior of the lubricant in applications where high accuracy is needed at high
speeds. However, for simplicity, this behavior is not considered further in this
paper.

2.3 Fixing α

Despite the non-Newtonian behavior of the lubricant, the modelM0 represents
well the behavior of static friction with speed. From a practical perspective, it is
desirable to achieve a minimal number of parameters and avoid nonlinear terms
which are costly to identify.

Following the general static friction description MS , the model M0 represents
the decrease of friction in the velocity weakening regime, g( · ), through the term

e
−
∣∣∣∣ ϕ̇ϕ̇s ∣∣∣∣α . The term takes two nonlinear parameters, α and ϕ̇s. It is common to

accept α as a constant between 0.5 and 2 (Åström and Canudas-de Wit (2008);
Olsson et al. (1998); Susanto et al. (2008)). As seen in Figure 4, ϕ̇s changes the con-
stant of the decay while α changes its curvature. Notice from Figure 4a and Fig-
ure 4b that small choices of α can considerably affect friction at high speeds. This
is not desirable since these effects should be described by the velocity strengthen-
ing function h. For these reasons, α is fixed as presented next.

Considering all static friction data presented in this work, in a total of 488 fric-
tion curves with more than 5800 samples, α is chosen as the value minimizing
Equation (7) for the model structure M0 when all other parameters are free at
each friction curve. Figure 5 presents the resulting relative increase in the cost
for different values of α. The value with minimal cost is α∗=1.36 ± 0.011.

3 Empirically Motivated Modeling

Using the described static friction curve estimation method, it is possible to de-
sign a set of experiments to analyze how the states X ∗ affect static friction. As
shown in Section 2.2, the model structureM0 can represent static friction depen-
dence on ϕ̇ fairly well. M0 is therefore taken as a primary choice, with α fixed at
α∗ = 1.36. Whenever a single instance of M0 can not describe the observed fric-
tion behavior, extra terms φj (X ∗, θ) are proposed and included inM0 to achieve
a satisfactory model structureM∗.
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Figure 4: Illustration of effects in the velocity weakening regime caused by
ϕ̇s and α. Figures (a) and (b) with ϕ̇s = [1, 50] rad/s. Figures (c) and (d) with
α = [0.02, 3.00].
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Figure 5: Relative cost increase as a function of α for the model structure
M0.
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(a) Simulated τl . (b) Simulated τp.

Figure 6: Simulated load torques at joint 2 caused by angle variations of
joints 2 and 4, ϕ2

a and ϕ4
a respectively. Notice the larger absolute values for

τl when compared with τp.

3.1 Guidelines for the Experiments

In order to be able to build a friction model including more variables than ve-
locity, it is important to separate their influences. The situation is particularly
critical regarding temperature as it is difficult to control it inside a joint. More-
over, due to the complex structure of an industrial robot, changes in joint angle
might move the mass center of the robot arm system, causing variations of joint
load torques. To avoid undesired effects, the guidelines below were followed dur-
ing the experiments.

Isolating Joint Load Torque Dependency from Joint Angle Dependency

Using an accurate robot modeli , it is possible to predict the load torques at the
joints for a given robot configuration (a set of all joints’ angles). For example,
Figure 6 shows the resulting τl and τp at joint 2 for configurations depending on
the achievable angles for joints 2 and 4 (ϕ2

a and ϕ4
a ). Using this information, a

set of configurations can be selected a priori in which it is possible to estimate
parameters in an efficient way.

Isolating Temperature Effects

Some of the experiments require that the temperature in the joint is under con-
trol. Using joint lubricant temperature measurementsii , the joint thermal decay
constant κ was estimated to 3.04 h. By executing the static friction curve identi-
fication experiment periodically, for longer time than 2κ (i.e. > 6.08 h), the joint
temperature is expected to have reached an equilibrium. Only data related to the
expected thermal equilibrium was considered for the analysis.

iAn abb internal tool was used for simulation purposes.
iiIn the studies, the robot gearbox was lubricated with oil, not grease, which gave an opportu-

nity to obtain well defined temperature readings by having a temperature sensor in the circulating
lubricant oil.
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(a) Effects of ϕa at τl =−0.39, T =34◦ C.
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(b) Effects of τp at τl =−0.39, T =36◦ C.

Figure 7: Static friction curves for experiments related to ϕa and τp.

3.2 Effects of Joint Angles

Due to asymmetries in the contact surfaces, it has been observed that the friction
of rotating machines depends on the angular position, Al-Bender and Swevers
(2008). It is therefore expected that this dependency occurs also in a robot joint.
Following the experiment guidelines from the previous section, a total of 50 static
friction curves were estimated in the joint angle range ϕa= [8.40, 59.00] deg. As
seen in Figure 7a, only small effects can be observed. The subtle deviations are
comparable to the errors of the friction curve identified under constant values of[
ϕa, τp, τl , T

]
. In fact, even a constant instance of M0 can describe the friction

curves satisfactorily, no extra terms are thus required.

3.3 Effects of Load Torques

Since friction is related to the interaction between contacting surfaces, one of the
first phenomenon observed was that friction varies according to the applied nor-
mal force. This can be explained by the increase of the true contact area between
the surfaces under large normal forces. A similar reasoning can be extended to
joint torques in a revolute robot joint. Due to the elaborated gear- and bearing
design of the joint, it is also expected that torques in different directions will have
different effects to the static friction curvei .

Only small variations of τp, the perpendicular load torque, are achievable be-
cause of the mechanical construction of the robot, see Figure 6b. A total of 20
experiments at constant temperature were performed for joint 2, in the range
τp=[0.04, 0.10]. As Figure 7b shows, the influences of τp for the achievable range
did not play a significant role for the static friction curve. The modelM0 is thus
considered valid over the achieved range of τp for this joint.

Large variations of τl , the manipulation load torque, are possible by simply vary-

iIn fact, a full joint load description would require 3 torque and 3 force components.
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(a) Estimated friction curves for different values of τl .
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Figure 8: The dependence of the static friction curves on the manipulation
torque, τl , at T =34◦ C.

ing the arm configuration, as seen in Figure 6a. A total of 50 static friction curves
were estimated over the range τl =[−0.73, 0.44]. As seen in Figure 8, the effects
appear clearly.

Obviously, a single M0 instance can not describe the observed phenomena. A
careful analysis of the effects reveals that the main changes occur in the velocity
weakening part of the curve. From Figure 8c, it is possible to observe a (linear)
bias-like (Fc) increase and a (linear) increase of the standstill friction (Fs) with |τl |.
Furthermore, as seen in Figure 8b, the Stribeck velocity ϕ̇s is maintained fairly
constant. The observations support an extension ofM0 to

τf (ϕ̇, τl) = {Fc,0 + Fc,τl |τl |} + {Fs,0 + Fs,τl |τl |}e
−
∣∣∣∣∣ ϕ̇
ϕ̇s,τl

∣∣∣∣∣α∗ + Fv ϕ̇. (M1)
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Table 2: Identified τl-dependent model parameters.
Fc,τl [ 10−2] Fs,τl [ 10−1] ϕ̇s,τl

2.34 ± 0.071 1.26 ± 0.025 9.22 ± 0.12

In the above equation, the parameters are written with subscript _0 or _τl in order
to clarify its origin related toM0 or to the effects of τl . The model structureM1
is similar to the one presented in Hamon et al. (2010), where the changes in Fc
and Fs appear as linear functions of |τl |.

Assuming that any phenomenon not related to τl is constant and such that the _0
terms can capture them, good estimates of the τl-dependent parameters can be
achieved. The model M1 is identified with the data set from Figure 8 using the
procedure described in Section 2.2. The resulting model parameters describing
the dependency on τl are shown in Table 2.

3.4 Effects of Temperature

The friction temperature dependence is related to changes of both lubricant and
contacting surfaces. In lubricated mechanisms, both the thickness of the lubri-
cant layer and its viscosity play an important role for the resulting friction prop-
erties. In Newtonian fluids, the shear forces are directly proportional to the vis-
cosity which, in turn, varies with temperature (Seeton (2006)). Dedicated exper-
iments were made to analyze the effects of temperature. The joint was at first
warmed up to 81.2◦C by running the joint continuously back and forth. Then,
while the robot cooled, 50 static friction curves were estimated over the range
T = [38.00, 81.20] ◦C. In order to resolve combined effects of T and τl , two ma-
nipulation torque levels were used, τl =−0.02, and τl =−0.72. As it can be seen in
Figure 9, the effects of T are significant.

Temperature has an influence on both velocity regions of the static friction curves.
In the velocity-weakening region, a (linear) increase of the standstill friction (Fs)
with temperature can be observed according to Figure 9b. In Figure 9c it can
be seen that the Stribeck velocity (ϕ̇s) increases (linearly) with temperature. The
effects in the velocity-strengthening region appear as a (nonlinear, exponential-
like) decrease of the velocity-dependent slope, as seen in Figures 9b and 9c.

Combined effects of τl and T are also interesting to study. To better see these
effects, the friction surfaces in Figure 9a are subtracted from each other, yielding
τ̃f . As it can be seen in Figure 10a, the result is fairly temperature independent.
This is an indication of independence between effects caused by T and τl .

Given that the effects of T and τl are independent, it is possible to subtract the
τl-effects from the surfaces in Figure 9a and solely obtain temperature related
phenomena. The previously proposed terms to describe the τl-effects inM1 were:

τ̂f (τl) = Fc,τl |τl | + Fs,τl |τl |e
−
∣∣∣∣∣ ϕ̇mϕ̇s,τl

∣∣∣∣∣α∗ . (14)
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(a) Estimated friction curves for different values of T .
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Figure 9: The temperature dependence of the static friction curve.
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(a) Difference τ̃f between the two
static friction surfaces in Figure 9a.

(b) Static friction surfaces in Figure 9a
after subtraction of the τl-dependent
terms.

Figure 10: Indication of independence between effects caused by T and τl .

With the values given from Table 2, the effects of the manipulation torque were
subtracted from the friction curves of the two surfaces in Figure 9a, that is, the
quantities τf − τ̂f (τl) were computed. The resulting surfaces are shown in Fig-
ure 10b. As expected, the surfaces become quite similar. The result can also be
interpreted as an evidence that the model structure used for the τl-dependent
terms and the identified values for the parameters are correct. Obviously, the
original model structureM0 can not characterize all observed phenomena, even
after discounting the τl-dependent terms.

3.5 A proposal forM∗

From the characteristics of the T -related effects and the already discussed τl-
effects,M1 is extended to:

τf (ϕ̇, τl , T ) ={Fc,0 + Fc,τl |τl |} + Fs,τl |τl |e
−
∣∣∣∣∣ ϕ̇mϕ̇s,τl

∣∣∣∣∣α∗+ (M∗g,τl )

+ {Fs,0 + Fs,T T }e
−
∣∣∣∣ ϕ̇m
{ϕ̇s,0+ϕ̇s,T T }

∣∣∣∣α∗+ (M∗g,T )

+ {Fv,0 + Fv,T e
−T
TVo }ϕ̇. (M∗h,T )

The model describes the effects of τl and T for the investigated robot joint. The
firstM∗g expressions relate to the velocity-weakening friction whileM∗h relates to
the velocity-strengthening regime. τl only affects the velocity-weakening regime
and requires a total of 3 parameters, [Fc,τl , Fs,τl , ϕ̇s,τl ]. T affects both regimes
and requires 4 parameters, [Fs,T , ϕ̇s,T , Fv,T , TVo]. The 4 remaining parameters,
[Fc,0, Fs,0, ϕ̇s,0, Fv,0] , relate to the original friction model structure M0. Notice
that under the assumption that τl- and T effects are independent, their respective
expressions appear as separated sums inM∗.

The term Fv,T e
−T /TVo in M∗h,T is motivated by the exponential-like behavior of

viscous friction (recall Figure 9c). In fact, the parameter TVo is a reference to
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Table 3: Identified T -dependent andM0-related model parameters.
Fc,0 [ 10−2] Fs,0 [ 10−2] Fs,T [ 10−3] Fv,0 [ 10−4]

3.11 ± 0.028 −2.50 ± 0.12 1.60 ± 0.022 1.30 ± 0.056

Fv,T [ 10−3] ϕ̇s,0 ϕ̇s,T TVo
1.32 ± 0.076 −24.81 ± 0.87 0.98 ± 0.018 20.71 ± 0.91

the Vogel-Fulcher-Tamman exponential description of viscosity and temperature,
Seeton (2006). This description is valid for the temperature range considered
here, more complex expressions may be needed for larger temperature variations.
See Seeton (2006) for other possible structures.

Given the already identified τl-dependent parameters in Table 2, the remaining
parameters ofM∗ are identified from the measurement results presented in Fig-
ure 10b, after the subtraction of the τl-terms. The values are shown in Table 3.

3.6 Validation

A separate data set is used for the validation of the proposed model structureM∗.
It consists of several static friction curves measured at different τl- and T values,
as seen in Figure 11.

With an instance of M∗ given by the parameter values from Tables 2 and 3, the
distribution of the prediction errors, p(ε), achieved with the validation data set
is shown in Figure 12. For a comparison, the distribution of errors related to
a single instance of M0, with parameters given in Table 1, is also shown in the
figure. As it can be seen,M∗ is able to capture considerably more of the friction
behavior than M0, with only speed dependence. The mean, standard deviation
and largest absolute error forM∗ are [−9.24 10−4, 4.23 10−3, 1.88 10−2], compared to
[1.09 10−2, 1.34 10−2, 7.58 10−2] forM0.

The proposed model structure has also been successfully validated in other joints
with similar gearboxes, but it might be interesting to validate it in other robot
types and even other types of rotating mechanisms.

4 Conclusions and Further Research

The main contribution of this paper is the empirically motivated modeling of
static friction as a function of the variables X ∗=[ϕ̇, ϕa, τp, τl , T ]. While no sig-
nificant influences of joint angle and perpendicular torque could be found by the
experiments, the effects of manipulation load torque τl , and temperature T , were
significant and included in the proposed model structure M∗. As shown in Fig-
ure 12, the model is needed in applications where the manipulation load torque
and the temperature play significant roles.

In the studies, the friction phenomena was fairly direction independent. If this



4 Conclusions and Further Research 89

(a) Static friction curves.
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Figure 11: Validation data set. Notice the large variations of T - and τl values
in Figure (b) when registering the static friction curves in (a).
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was not the case, two instances ofM∗ could be used to describe the whole speed
range, but requiring two times more parameters. The model M∗ has a total of
7 terms and 4 parameters which enter the model in a nonlinear fashion. The
identification of such a model is computationally costly and requires data from
several different operating conditions. Studies on defining sound identification
excitation routines are therefore important.

Only static friction (measured when transients caused by velocity changes have
disappeared) was considered in the studies. It would be interesting to investi-
gate if a dynamic model, for instance given by the LuGre model structure ML,
could be used to describe dynamic friction with extensions from the proposed
M∗. However, to make experiments on a robot joint in order to obtain a dynamic
friction model is a big challenge. Probably, such experiments must be made on a
robot joint mounted in a test bench instead of on a robot arm system, which has
very complex dynamics.

A practical limitation of M∗ is the requirement on availability of τl and T . Up
to date, torque- and joint temperature sensors are not available in standard in-
dustrial robots. As mentioned in Section 3.1, the joint torque components can be
estimated from the torque reference to the drive system by means of an accurate
robot model. In this situation, it is important to have correct load parameters in
the model to calculate the components of the load torques.

Regardless these experimental challenges, there is a great potential for the use
ofM∗ for simulation-, design- and evaluation purposes. The designer of control
algorithms, the diagnosis engineer, the gearbox manufacturer, etc. would benefit
by using a more realistic friction model.
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Abstract

This paper considers the problem of wear estimation in a standard
industrial robot joint. The effects of wear to the static friction of a
robot joint are analyzed from experiments. An extended static fric-
tion model is proposed that explains changes related to joint speed,
load, temperature and wear. Based on this model and static friction
observations, a model-based wear estimator is proposed. The perfor-
mance of the estimator under temperature uncertainties is found both
by means of simulations and experiments in an industrial robot. Spe-
cial attention is given to the analyses of the best speed region for wear
estimation. As it is shown, the method can distinguish the effects of
wear even under large temperature variations, opening up for the use
of robust joint diagnosis for industrial robots.

1 Introduction

In the manufacturing industry, preventive scheduled maintenance is a common
approach used to guarantee the reliability of a robot system, avoiding unpre-
dicted stops. Such scheduling is in general based on the estimated robot’s compo-
nents lifespan and not on its actual conditions. With the development of model-
based diagnosis methods, more sophisticated approaches have been proposed for
manipulator diagnosis (Caccavale and Villani (2003)). These methods are based
on the principle of analytical redundancy, where residuals (deviations between
the system outputs and model-based predictions) are monitored to perform fault
detection, see Isermann (2005) for an overview on model-based diagnosis meth-
ods. A typical approach for residual generation in robotics is the use of nonlinear
observers, as presented in McIntyre et al. (2005). Since observers are sensitive to
model uncertainties and disturbances, some methods attempt to diminish these
effects. In Brambilla et al. (2008) and De Luca and Mattone (2004), nonlinear ob-
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servers are used together with adaptive schemes while in Caccavale et al. (2009),
the authors mix the use of nonlinear observers with support vector machines. The
problem has also been approached by the use of neural networks as presented in
Vemuri and Polycarpou (2004) and in Eski et al. (2010), where vibration data are
used for diagnosis. Parameter estimation is a natural approach because it can use
the physical interpretation of the system, see for example Freyermuth (1991).

The diagnosis of actuators is a relevant research topic for industrial robots. In
the literature, actuator failures are typically considered as abrupt changes in the
output torque signals. These fault models can relate to several types of failures
such as a motor malfunction, power supply drop or a wire cut. Such failures
are however difficult to predict and therefore, even if detected, might still cause
damages. An important type of failure is the one related to wear in robot joints.
This type of fault develops with time/usage and might be detected at an early
stage, allowing for condition-based maintenance.

The wear processes inside a robot joint cause an eventual increase of wear debris
in the lubricant. Monitoring the iron content of lubricant samples taken from the
robot joint can thus be used as an indication of the joint condition. The study of
wear debris particles is known as ferrography and was first introduced by Seifert
and Westcott (1972). Since then, the science has evolved and helped to under-
stand wear related phenomena (Roylance (2005)). These techniques are however
intrusive and costly, requiring laboratory analyses.

It is well known that friction changes can follow as a result of wear processes
in mechanical systems, see for example Kato (2000). In this paper, the effects
of wear to static friction in a robot joint are analyzed and modeled based on
empirical observations. As the study shows, the effects are sensible and a possible
diagnostic solution is thus to monitor the joint friction.

The friction in a robot joint is the result of complex interactions between contact-
ing surfaces and can be affected by other factors than wear, such as,

• temperature,
• force/torque levels,
• joint angle,

• velocity,
• acceleration,
• lubricant/grease properties.

When designing a diagnostic method, it is necessary to understand the effects of
the different variables to be able to distinguish them from those related to wear.
The static friction model presented in Bittencourt et al. (2010) is extended in this
paper to achieve a model that can represent the effects of speed, temperature,
load and wear in a robot joint. With the proposed model, it is possible to predict
the behavior of friction over wide operating conditions, opening up for robust
diagnosis.

In this paper, a wear estimator is defined given static friction observations, τf ,
and predictions from the developed model, τ̂f ( · ). The estimator is defined in a
prediction error sense, that is

ŵ = arg min
w
V
(
τf − τ̂f (ϕ̇, τl , T ,w)

)
, (1)
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where V ( · ) is a cost function, w is the wear level, ϕ is the vector of joint an-
gles, ϕ̇ = d

dtϕ, τl is the load component that is manipulated by the joint and T
is the joint temperature, see also Figure 1b. Since joint temperature is seldom
measured in industrial applications, its effects are considered assuming T as a
random variable with an unknown distribution function but known lower and
upper limits. The estimator characteristics under temperature uncertainties are
analyzed in detail.

Static friction observations are made possible through a dedicated test cycle, which
outputs τf at a set of pre-defined speed levels. When designing test cycles, it is
important to distinguish between cycles used for the development of diagnosis
methods and cycles used for diagnosis of a robot in an industrial installation. In
the later case, the cycle must take only a short time to perform. This means that
the cycle must be customly designed for the estimation of the desired quantity.
In the following, it is shown that it is possible to obtain an efficient test cycle if
correct speed levels are used, even under large temperature variations.

The wear estimator and its properties are studied based on observed static fric-
tion in joint 2 of an ABB IRB 6620 industrial robot, see Figure 1a. Joint 2 is chosen
for the study as it endures great load variations for the type of robot considered.
The paper is organized as follows. Section 2 presents a method to observe static
friction in a robot joint that can be used to define a test cycle. Section 3 discusses
the static friction model presented in Bittencourt et al. (2010). The main contri-
butions are contained in Sections 4 to 6, where

• the empirical wear model is developed,
• the model-based wear estimator is defined,
• the best speed region for wear estimation under temperature uncertainties

is discussed and
• the approach is validated through simulations and a case study based on

real data.

The conclusions and proposals for further research are presented in Section 7.

2 Static Friction Observations through Experiments

A manipulator is a multivariable, nonlinear system that can be described in a
general manner through the rigid multi-body dynamic model

M(ϕ)ϕ̈ + C(ϕ, ϕ̇) + τg (ϕ) + τf = u (2)

where M(ϕ) is the inertia matrix, C(ϕ, ϕ̇) relates to speed dependent terms (Cori-
olis and centrifugal), τg (ϕ) are the gravity-induced torques at the joints and τf
contains the joint friction components. The system is controlled by the input
torque u, applied by the joint motor (in the experiments the torque reference
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(a) ABB IRB 6620 robot with
150 kg payload and 2.2 m reach.

�� �

�

(b) Schematics of the first 3 joints
including the variable definitions
for joint 2.

Figure 1: The study is based on joint 2 of the ABB robot IRB 6620. ϕ̇ is the
joint angular speed, T the joint temperature, the manipulated load torque τl
is the load torque component aligned to the joint degree of freedom.

from the servo was measuredi ).

When only one joint is moved (C(ϕ, ϕ̇) = 0 at that joint) under constant speed
(ϕ̈ ≈ 0), Equation (2) simplifies to

τg (ϕ) + τf = u. (3)

The resulting applied torque u drives only friction and gravity-induced torques.
The required torques to drive a joint in forward, u+, and reverse, u−, directions
at the constant speed level ¯̇ϕ and at a joint angle value ϕ̄ (so that τg (ϕ̄) is equal
in both directions), are

τf ( ¯̇ϕ) + τg (ϕ̄) = u+ (4a)

τf (− ¯̇ϕ) + τg (ϕ̄) = u−. (4b)

In case an estimate of τg (ϕ̄) is available, it is possible to isolate the friction compo-
nent in each direction using Equation (4). If such estimate is not possible (e.g. not
all masses are completely known), τf can still be achieved in the case that τf is
independent of the rotation direction. Subtracting the equations yields

τf ( ¯̇ϕ) − τf (− ¯̇ϕ) = u+ − u−

and if τf ( ¯̇ϕ) =−τf (− ¯̇ϕ), the resulting direction independent friction evaluated at

iIt is known that using the torque reference from the servo as a measure of the joint torque might
not always hold because of the temperature dependence of the torque constant of the motors. The
deviations are however considered to be small and are neglected in this paper.



2 Static Friction Observations through Experiments 101

0 1 2 3 4 5 6 7 8 9
−100

−50

0

50

100

t(s)

ϕ
(r
a
d
),

ϕ̇
(r
a
d
/s
)

 

 

−1

−0.5

0

0.5

1

u

 

 

uϕ

ϕ̇
ϕ̄

Figure 2: Excitation signals used for the static friction estimation
at ϕ̇=42 rad/s.

the constant speed ¯̇ϕ is:

τf ( ¯̇ϕ) =
u+ − u−

2
. (5)

In the experiments, each joint is moved with the desired speed in both direc-
tions around a given joint angle ϕ̄. Figure 2 shows the measured joint angle-,
speed- and torquei signals sampled at 2 kHzii for ¯̇ϕ=42 rad/s around ϕ̄=0. The
constant speed data is segmented around ϕ̄ and the static friction levels can be
achieved using Equation (4) or (5). With the experimental setup used, the time
needed for measurements and computations of the friction level for one joint at
one speed was in average 14s.

The friction values achieved over the whole joint speed range can be presented
in a static friction curve, sometimes referred to as a Stribeck curve, see Figure 3.
As seen in the figure, there is only a small direction dependecy of friction for
the investigated joint. Therefore, in this paper, friction levels are achieved using
Equation (5), which is not influenced by deviations in the gravity model of the
robot.

Remark 1. Throughout the paper, friction values obtained using the method presented
above are named friction observations.

A test cycle can be achieved by simply taking friction observations at a set of
different speed levels. The choice of speed set is a design criteria, representing a
compromise between the test-cycle time and amount of friction observations.

iThroughout the paper all torques are normalized to the maximum manipulation torque at low
speed and are therefore displayed as dimensionless quantities.

iiSimilar results have been experienced with sampling rates down to 220 Hz.
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Figure 3: Static friction curve. Crosses indicate friction levels achieved us-
ing Equation (5), with the assumption that friction is direction independent.
Dotted/dashed lines indicate friction levels achieved using Equation (4a)
and Equation (4b) respectively.

Table 1: Identified parameters for the model (6).
Fc,0 Fc,τl Fs,0 Fs,τl Fs,T Fv,0

3.04 10−2 2.32 10−2 −2.44 10−2 1.28 10−1 1.69 10−3 1.29 10−4

Fv,T ϕ̇s,0 ϕ̇s,τl ϕ̇s,T TVo α
1.31 10−3 −25.00 9.07 1.00 21.00 1.3

3 Static Friction Model

In Bittencourt et al. (2010), a static friction model that can explain the effects
of temperature and load torque levels is presented. As shown, this model can
be used to predict the normal behavior of static friction under broad operation
conditions. The model is developed from a standard description of the static
friction and empirical observations, taking the form:

τf (ϕ̇, τl , T ) = {Fc,0 + Fc,τl |τl |} + Fs,τl |τl |e
−
∣∣∣∣∣ ϕ̇
ϕ̇s,τl

∣∣∣∣∣α+ (6a)

+ {Fs,0 + Fs,T T }e
−
∣∣∣∣ ϕ̇
{ϕ̇s,0+ϕ̇s,T T }

∣∣∣∣α+ (6b)

+ {Fv,0 + Fv,T e
−T
TVo }ϕ̇, (6c)

where τl is the manipulated load torque and T is the joint temperature, see Fig-
ure 1b. The remaining variables are parameters used to model the friction behav-
ior. The terms in (6a) describe the effects of τl , which are more significant at low
speeds; the terms in (6b) and (6c) describe the effects of T at low, respectively
high, speed ranges (see Bittencourt et al. (2010) for a more detailed discussion).
The values for the identified parameters used in this paper are shown in Table 1.
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T =33◦C, τl=−0.70
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Figure 4: Observed static friction curves (circles) and model-based predic-
tions (lines) for low and high values of T and τl .

To illustrate the model behavior, Figure 4 presents observed and model-based
predictions of friction curves for high and low values of τl and T . Notice the
effects of τl , which give an offset increase of the whole curve together with an
exponential-like increase at speeds below 25 rad/s. The effects of T can be seen
as an exponential increase at speeds below 80 rad/s and a decrease of the curve
slope at higher speeds. Notice further that for such temperature changes there is
a speed range where the effects are less pronounced, in this case around 80 rad/s.

4 Wear – Analyses and Modeling

It is difficult to fully comprehend the effects of wear in a robot joint. Monitor-
ing the system until a failure takes place is a costly and time consuming task.
With the objective of understanding these effects, accelerated wear tests were per-
formed with a robot joint while friction curves were observed periodically. Dur-
ing an accelerated test, the robot joint under investigation is continuously run for
several months or years.

The results of such an experiment is shown in Figure 5, with observed friction
curves obtained at the same load- and temperature levels. As can be noticed,
the effects of wear appear first in the low speed region, in this case, up to about
150 rad/s. In Figure 5, the dashed line indicates the samples associated with a
wear level that gear experts find relevant for issuing an alarm. Up to this point,
the changes appear mostly in the low speed range. If the accelerated wear tests
proceed, the friction curve is also affected at higher speed levels. A direct com-
parison with Figure 4 reveals that the friction changes caused by increased wear
are in the same magnitude as the changes caused by load/temperature but with
different speed dependence. Therefore, it might be possible to obtain a selective
identification of wear in a robot joint.
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Figure 5: Effects of wear in friction curves under constant load- and tem-
perature conditions observed at regular intervals during accelerated wear
tests. The dashed line relates to the wear level at which an alarm should be
generated.

4.1 Wear Modeling

Resolving for coupled effects between wear, temperature, load and other param-
eters would require costly long term experiments. In order to make it possible
to examine and model the effects of wear, a simplifying assumption is taken that
considers the effects of load/temperature independent of those caused by wear.

Under this assumption, the effects of wear in the static friction curves of Figure 5
can be isolated since temperature/load conditions are the same for these data.
A wear profile τ̃f is defined by subtracting a friction curve observed before the
accelerated wear tests started from the remaining curves, under wear effects. The
resulting wear profile from the accelerated wear test in Figure 5 can be seen in
Figure 6, where the curves are presented along a time index k, indicating the
length of the accelerated tests. In the figure, the dashed line at time-index k=80
relates to the alarm level, as in Figure 5.

As can be noticed, the effects of wear appear as an increase of the exponential-
like behavior of the friction curves up to 150 rad/s and a small decrease of the
velocity slope dependecy at higher speeds. Introducing w as a wear parameter,
the observations support the choice of a model structure for the wear profile as

τ̃f (w) = Fs,wwe
−
∣∣∣∣ ϕ̇
ϕ̇s,w w

∣∣∣∣1.3 + Fv,w wϕ̇. (7)

The model represents wear effects with an exponential- and a velocity dependent
terms, with 3 parameters. The model parameters cannot be directly identified
since the wear quantity w is not measurable. To overcome this, w is defined with
values between [0, 100], relative to a failure state, the value w= 35 is chosen as a
reference for the wear effects associated with an alarm, at k=80 in Figure 6. With
this convention, the parameters for (7) are identified using the wear profile data
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Figure 6: Friction wear profile τ̃f computed from the data in Figure 5. The
dashed line indicates the experiment where an alarm should be given.
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Figure 7: Measured wear profile (circles) and model-based predictions
(lines).

τ̃f for the curve at k=80. The values achieved are

Fs,w = 9.10 10−3, Fv,w = −5.3 10−7, ϕ̇s,w = 2.20. (8)

With the chosen parameters, an estimate ŵ is obtained at each k using the data
for the wear profile in Figure 6. With the identified wear values, the wear profile
given by model predictions from (7) and observations are presented for the inter-
val k = [78, 81] in Figure 7. As can be noticed, the model can fairly well predict
the behavior of τ̃f .

Under the assumption that the effects of load/temperature are independent of
those caused by wear, it is possible to extend the model given in (6) to include the
effects of wear as

τf (ϕ̇, τl , T ,w) = τf (ϕ̇, τl , T ) + τ̃f (w), (9)
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Figure 8: Increase of wear levels given by the model (9). The dashed line
relates to the wear level at which an alarm should be generated.

where τf (ϕ̇, τl , T ) is given by (6) and τ̃f (w) is described in (7). With parame-
ters given by Table 1 and Equation (8), Figure 8 presents the friction predictions
given by the proposed model at T = 40◦C and τl = 0.10 for wear values in the
range w = [0, 40]. Notice that the effects are concentrated to the speed range
of [0, 150] rad/s. As previously, the dashed line in Figure 8 indicates an alarm
level for the wear, it has a friction increase of 0.017 at 47 rad/s and w=35.

5 A Model-based Wear Estimator

Considering that ϕ̇, τl and T can be measured/estimated, it is possible to define
a wear estimator in a prediction error sense as in Equation (1)

ŵ = arg min
w
V
(
τf − τ̂f (ϕ̇, τl , T ,w)

)
, (10)

where τf is observed through the procedure presented in Section 2 and the pre-
dictions τ̂f are given by the model in (9). Since the model is not invertible with
respect to w, the problem should be solved by nonlinear identification methods.

In industrial applications, joint temperature measurements are seldom available.
In order to solve this problem it is proposed to consider joint temperature to be
a random variable, with a certain probability distribution function p(T ). The
distribution function p(T ) is assumed to be unknown, but with known lower and
upper limits T , T . For a robot operating in a controlled indoor environment, T
would be minimum room temperature while T is given by the maximum room
temperature and self heating of the joint due to actuator losses.

To include the effects of temperature in the estimator, Equation (1) is solved for
N realizations of the considered random T . The estimator assumes that p(T )
is constant in the given temperature range and samples are drawn with equal
probabilities over [T , T ]. The expected value of the resulting N estimates is then
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taken as the wear estimate,

ŵi = arg min
w
V

(
τf − τ̂f (ϕ̇, τl , Ti ,w)

)
(11a)

ŵ = E [{ŵN }] , Ti ∼ U (T , T ), i = 1, . . . , N (11b)

here τ̂f (ϕ̇, τl , Ti ,w) is given by (9) and {ŵN } denotes the sequence {ŵ1, . . . , ŵN }.

To solve the minimization problem in (11a), grid search is used with a square
error cost function V ( · ). To evaluate (11b), a Monte Carlo simulation is carried
out. For a given observation of τf , it takes N samples Ti from U (T , T ), yielding
N estimates {ŵN }. The expected value of the sequence {ŵN } is taken as the wear
estimate ŵ.

5.1 Statistical Properties

To evaluate the behavior of the proposed estimator, the static friction observa-
tions are assumed to follow the model

τf = τf (ϕ̇, τl , T ,w
0) + e, (12a)

e ∼ N (0, σ2
e ), T ∼ p(T ) = N (µT , σ

2
T ) (12b)

where τf ( · ) is generated according to the model (9) with parameters given in Ta-
ble 1 and Equation (8), and where e is additive measurement noise. The stochastic
properties of e are motivated by experimental studies of the estimation method
presented in Section 2. For the considered joint, the estimated standard deviation
is σe=0.0015. The wear level is defined as w0 =35, which means 35% wear in rela-
tion to a failure state, and is related to the alarm level for the wear as discussed in
Section 4. Temperature is considered to follow a normal distribution with mean
and standard deviation [µT , σT ] = [40, 3]◦C. The chosen distribution illustrates
the scenario where friction observations are always taken after the same sequence
of events during the day, for instance between two production shifts in a room
with controlled environment temperature. The large standard deviation is used
to cope with, amongst others, variations of room temperature and variations of
self-heating caused by the loses for the different operations of the robot. The ob-
servations of friction torques τf obtained from the model in (12) are used as input
to the estimator defined in (11), with N =200, [T , T ]=[30, 50]◦C and parameters
to τ̂f (ϕ̇, τl , Ti ,w) given in Table 1 and Equation (8).

To evaluate the performance of the method, 10.000 simulations were made at 56
different speeds in the range ϕ̇=[0, 280] rad/s. The estimation is performed sepa-
rately for each speed point to assess the method performance along the achievable
speed range. Figure 9a presents the estimated probability distribution function
of the estimates ŵ with respect to speed in a contour plot, together with their
expected values. As can be noticed, the variability of the estimates is smaller in
the speed range [30, 55] rad/s. Figure 9b presents the estimated bias over speed.
Notice the small bias at speeds up to 150 rad/s and the monotonic increase at
higher speeds. The results are directly related to the behavior of the modeled
wear and temperature effects for the p(T ) considered (recall Figures 4 and 8).
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Figure 9: Contour plot of the estimated probability distribution function
of ŵ as a function of speed. Notice the sharper densities in the interval
[30, 55] rad/s. The variance in (c) is shown together with its crb in a semi-
log scale.

Variance. From the simulation studies, it is possible to estimate the resulting
variance of the estimator. A lower bound for the achievable variance allows for
an assessment of the method performance. For the observation model defined in
(12), introduce

p̄(τf |w) ,
"

p(τf |w, e, T ) p(e)p(T ) de dT , (13)

where p( · ) denotes a probability distribution function. Equation (13) is the marginal-
ization of the effects of measurement noise and random temperature. Using p̄(τf |w),
the Cramer-Rao bound (crb) for any unbiased estimator can be defined as (Van Trees
(2001))

E
[(
ŵ − w0

)2
]
≥ M−1 (14a)

M =E
( ∂∂w log p̄(τf |w)

)2 (14b)

Since there is no analytical solution for (13), Monte Carlo Integration (MCI) is
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used to compute it numerically. The derivative in (14b) is approximated numeri-
cally with the central difference,

log p̄(τf |w0 + h) − log p̄(τf |w0 − h)

2h
for h=0.1.

The crb is shown together with the variance for the proposed estimator in Fig-
ure 9c. As can be noticed, the variance is high at low and high speeds. The esti-
mator can however approximate the crb at the speed region [30, 55] rad/s. This
illustrates the relevance of a correct choice of speed points to observe friction for
wear identification.

6 Case Study

Gathering enough informative data related to wear from the field is inviable since
robots will rarely have wear related problems. The alternative of running accel-
erated wear tests is also difficult since it might take several months before any
wear effects can be seen and it is difficult to obtain reliable statistics without ex-
tremely high cost of running several robots. Moreover, temperature studies are
also challenging since the thermal time constant of a large robot is several hours.
An alternative is proposed that considers two data sets:

Wear profile The first data set is used to relate to the evolution of the wear effects.
A wear profile τ̃f (k), as defined in Section 4.1 is used with this purpose. In
this study, the data from Figure 6 is considered.

Temperature effects The second data set is used to relate to effects caused by
temperature. Several friction curves are observed on another robot of same
type over broad temperature conditions and no influence of wear. Joint tem-
perature measurements were registered during the experiments and each
friction curve in the set is associated with a joint temperature T . The nota-
tion τ0

f (T ) is then used to denote the friction curve in this data set related
to the temperature T .

Neglecting any possible combined effects of temperature and wear, the static fric-
tion observation model is defined as

τ∗f (k) = τ̃f (k) + τ0
f (T ). (15)

Using this framework, it is possible to generate faulty friction observations un-
der different temperature conditions. Notice that these data are not analytically
generated, but actually based on static friction observations.

To achieve a desired temperature distribution for the observations τ∗f (k), the fric-

tion data τ0
f (T ) are chosen according to the associated T . The reference distri-

bution considered for this case study is the same used in Section 5.1, N (µT , σT ),
with mean and standard deviation [µT , σT ]=[40, 3]◦C.
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Figure 10: Reference (line) and achieved (histogram) temperature distribu-
tions for the data used in the case study.

The achieved and reference temperature distributions for the data used in this
case study can be seen in Figure 10. With the generated data, wear is estimated
separately for each speed, using the method given in Equation (11), with [T , T ]=
[30, 50]◦C, N =200 and parameters given in Table 1 and Equation (8). The result-
ing estimates can be seen in Figure 11 for ϕ̇ = 35.98 and ϕ̇ = 84.23.

An evaluation of the estimates against the actual wear value is not possible since
the quantity w is not measurable. As an alternative, a wear estimate is taken
directly from the fault profile data τ̃f (k). This estimate is found as the value of
w minimizing the prediction error between τ̃f (k) and the fault profile model in
Equation (7),

ŵ∗(k) = arg min
w
V (τ̃f (k) − ˆ̃τf (w)), (16)

with parameters given in Equation (8). The minimization at index k is performed
using data from all speeds. Since ŵ∗(k) is achieved directly from τ̃f (k) (under no
temperature disturbances), using all data available at k, its value is considered as
the best possible wear estimate given the available information. The estimate ŵ∗

is therefore used as a reference for a comparison. The resulting values are shown
as the dashed line in Figure 11, notice that the estimates achieved at ϕ̇ = 35.98
are quite close to ŵ∗.

Using ŵ∗ as a reference, the estimates ŵ can be evaluated through ∆ŵ = ŵ− ŵ∗.
Its mean, µ∆ŵ, standard deviation σ∆ŵ and worst case deviation, |∆ŵ|∞, are com-
puted over the indexes k at each speed. The results, shown in Figure 12, relate
qualitatively to the simulation studies presented in Section 5.1, with larger vari-
ance at low and high speeds and with increasing bias at high speeds.

The estimation performance was found to be good at speeds close to 35 rad/s. In
this speed region, ŵ increases according to ŵ∗ but with slight biases. The best
result was found at ϕ̇ = 35.98 rad/s, with [µ∆ŵ, σ∆ŵ, |∆ŵ|∞] = [−0.18, 4.02, 8.11].
At this speed region, even a simple threshold, set at 35 could be used to detect
the critical wear increase w=35.
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7 Conclusions

In this paper, a model-based wear estimator was proposed that provides a wear
estimate given static friction observations at pre-defined speed levels. A detailed
simulation study of the best speed range for wear estimation under joint temper-
ature was taken. The simulation results were supported by a case study based
on real data. As it was shown, the wear estimates in the optimal speed region
could be used to perform fault detection, allowing for robust condition based
maintenance of industrial robots. This optimal speed region is however narrow,
emphasizing the relevance of a correct choice of speed values.

If the friction observations are made on a robot installed in a manufacturing line,
there is the tradeoff between making the test cycle both accurate and short. In
case more time can be spent for the diagnosis routine, the accuracy of the esti-
mation could be improved by observing friction at various speeds around the
optimal one.

The work will proceed with studies of the method when also variations of the
torque levels and the lubricant properties take place. Later studies will moreover
be made of the accuracy of the developed method for different types of robot
joints. Especially interesting is to find out the friction- and wear behavior of
different gear types. Investigations will also be made to see if it is possible to
perform reliable wear estimations without using custom designed experiments.
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Abstract

This paper presents a method for condition monitoring of systems
that operate in a repetitive manner. A data driven method is proposed
that considers changes in the distribution of data samples obtained
from multiple executions of one or several tasks. This is made possi-
ble with the use of kernel density estimators and the Kullback-Leibler
distance measure between distributions. To increase robustness to
unknown disturbances and sensitivity to faults, the use of a weight-
ing function is suggested which can considerably improve detection
performance. The method is very simple to implement, it does not
require knowledge about the monitored system and can be used with-
out process interruption, in a batch manner. The method is illustrated
with applications to robust wear monitoring in a robot joint. Interest-
ing properties of the application are presented through a real case
study and simulations. The achieved results show that robust wear
monitoring in industrial robot joints is made possible with the pro-
posed method.

1 Introduction

Driven by the severe competition in a global market, stricter legislation and in-
crease of consumer concerns towards environment and health/safety, industrial
systems face nowadays higher requirements on safety, reliability, availability and
maintainability (sram). In the industry, equipment failure is a major factor of
accidents and down time, Khan and Abbasi (1999); Rao (1998). While a correct
specification and design of the equipments are crucial for increased sram, no
amount of design effort can prevent deterioration over time and equipments will

117
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eventually fail. Its impacts can however be considerably reduced if good mainte-
nance practices are performed.

In the manufacturing industry, including industrial robots, preventive scheduled
maintenance is a common approach used to improve equipment sram. This
setup delivers high availability, reducing operational costs (e.g. small downtimes)
with the drawback of high maintenance costs since unnecessary maintenance ac-
tions might take place. Condition based maintenance (cbm), “maintenance when
required”, can deliver a good compromise between maintenance and operational
costs, reducing the overall cost of maintenance. The extra challenge of cbm is
to define methods to determine the condition of the equipment, preferably, this
should be done automatically.

This work discusses the use of a data driven method for condition monitoring of
machines that operate in a repetitive manner, e.g. commonly found in the man-
ufacturing industry and in automation. The method was developed with the in-
terest focused on diagnosis of industrial robots, where a repetitive operation is
almost a requirement in most of its applications.

In robotics, condition monitoring and fault detection methods are mainly con-
sidered in the time-domain. Due to the complex dynamics of an industrial robot,
the use of nonlinear observers for fault detection is a typical approach (Caccav-
ale and Villani (2003)). Since observers are sensitive to model uncertainties and
disturbances, some methods attempt to diminish these effects. In Brambilla et al.
(2008) and De Luca and Mattone (2004), nonlinear observers are used together
with adaptive schemes while in Caccavale et al. (2009), the authors mix the use
of nonlinear observers with support vector machines. The problem has also been
approached by the use of neural networks as presented in Vemuri and Polycar-
pou (2004) and in Eski et al. (2010), where vibration data are used for diagnosis.
Parameter estimation is a natural approach because it can use the physical in-
terpretation of the system, e.g. Freyermuth (1991). No reference was found for
condition monitoring methods of industrial robots that make a direct use of the
repetitive behavior of the system.

In the literature, actuator failures are typically considered as abrupt changes in
the output torque signals. These fault models can relate to several types of fail-
ures such as a motor malfunction, power supply drop or a wire cut. Such failures
are however difficult to predict and therefore might cause damages even if de-
tected. One example of a failure type that is not abrupt is a failure that follows
after a gradual wear of a component. This type of fault develops with time/usage
and might be detected at an early stage, allowing for cbm. Even if such wear is
a long process of several years, it is possible to study the phenomena in acceler-
ated wear tests by running the robot at much higher stress levels than allowed.
In this work, data resulting from accelerated wear tests performed in a lab are
considered for the proposed methods.

It is well known that friction changes can follow as a result of wear processes in
mechanical systems, see e.g. Kato (2000). In Bittencourt et al. (2011a), this depen-
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Figure 1: Static friction in a robot joint. As seen in (a), the wear causes
an increase of the friction in the joint. The effects of disturbances caused
by load τl and temperature T are however very significant as illustrated in
(b). These effects were measured in similar gearboxes and are presented in
directly comparable scales.

dency in an industrial robot joint is studied and modeled. A possible diagnostic
solution is thus to monitor the friction in the joints. The problem is however
challenging since friction depends on other phenomena such as load and tem-
perature (Bittencourt et al. (2010)), see Figure 1. In Bittencourt et al. (2011a), a
method is proposed for wear identification in a robot joint based on a test cycle
and a known friction model. The study shows that it is possible to achieve ro-
bust wear estimates and presents basic limitations of identification methods for
wear monitoring. Its practical use is however limited since it requires a test cy-
cle and assumes a known friction model which can describe the effects of speed,
load, temperature and wear. Furthermore, test-cycles reduce the robot availabil-
ity which is not desirable from a robot user perspective.

In this paper, a quantity suitable for condition monitoring of systems that op-
erate in a repetitive manner is proposed. The quantity relates to the differences
found in the distributions of data taken under recurring conditions, e.g. from the
execution of the same task. The problem of robust wear monitoring in a robot
joint is used to illustrate the method throughout the paper with an experimental
case study and simulations. The basic framework is presented in Section 2 with
an experimental study of wear monitoring in a robot joint. In Section 3, ideas
are presented and illustrated through examples to handle the cases where the
repetitive behavior of the system changes, e.g. when several tasks are executed
multiple times. Ideas used to reduce the sensitivity to disturbances are presented
in Section 4 with detailed simulation studies of the effects of temperature for the
robotics application. Finally, conclusions and possible extensions are given in
Section 5.



120 Paper C Monitoring of Systems that Operate Repetitively

2 Monitoring of Systems that Operate in a Repetitive
Manner

Consider a general system from which it is possible to extract a sequence of mea-
sured data,

YM =[y0, · · · , yj , · · · , yM−1],

where yj = [yj1, · · · , y
j
i , · · · , y

j
N ]T denotes the N dimensional vector of measure-

ments, which is sequentially repeated M times.

The sequence yj could have been generated as the result of deterministic and
stochastic inputs, ZM and VM , where VM is assumed unknown, and ZM could
have known and unknown components. For example, the data generation mech-
anism could be modeled as a set of equations

yj = h(zj , vj ), (1)

where h( · ) is a general function. Let the set of deterministic inputs ZM be catego-
rized in three distinct groups, UM , DM and FM . The sequences fj are unknown
and of interest (a faulti ), while uj and dj are respectively known and unknown
(e.g. inputs and disturbances). For the purpose of monitoring yj to detect changes
in fj , the following assumptions are taken:

Assumption C.1 (Faults are observable). Changes on fj affect the measured
data yj .

Assumption C.2 (Regularity of yj if no fault). It is considered that the moni-
tored data yj change only slightly along j, unless in the presence of a nonzero
fault fj .

Assumption C.3 (Regularity of dj). The deterministic disturbance dj is such
that it changes only slightly along j. Notice that this follows partly from Assump-
tion C.2.

Assumption C.4 (Nominal data are available). At j=0, f0 =0 and the sequence
y0 is always available.

Notice that if uj satisfies the Assumptions C.1, C.2 and C.4, it can be included in
the monitored sequence yj .

The rationale is then to simply compare the nominal data y0 (always available
from Assumption C.4) against the remaining sequences yj . While Assumption
C.1 is necessary, Assumption C.2 ensures that two given sequences yk , yl are com-
parable and might differ significantly only if there is a fault. Two basic questions
arise which are answered in the next subsections

iThe terminology adopted in this paper defines a fault as a deviation of at least one characteristic
property of the system from the acceptable / usual / nominal condition.
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• How to characterize yj?

• How to compare two sequences yk , yl for monitoring?

Furthermore, Assumptions C.2, C.3 and C.4 are too restrictive in many appli-
cations. In Sections 3 and 4, alternatives are presented in order to relax these
assumptions.

For an industrial robot executing a regular task under wear changes, the basic
framework applies as follows. An industrial robot can be described as a multi-
body dynamic mechanism by

τ = M(ϕ)ϕ̈ + C(ϕ, ϕ̇) + Dϕ̇ + τg (ϕ) + τs(ϕ) + τf (ϕ̇, τl , T ,w), (2)

where τ is the applied torque, ϕ is the vector of angular positions (at motor
and arm sides), M(ϕ) is the inertia matrix, C(ϕ, ϕ̇) relates to speed dependent
terms (e.g. Coriolis and centrifugal), D is a damping matrix, τg (ϕ) are the gravity-
induced torques, τs(ϕ) is a nonlinear stiffness. The function τf ( · ) contains the
joint friction components and is dependent on joint speed ϕ̇, the manipulated
load τl , the temperature inside the joint T , and the wear levels w.

Using the introduced notation, the deterministic unknown input of interest f,
is the wear level w, which is considered to be zero when the robot is new and
to increase with time/usage. In typical industrial robots’ applications, angular
position at the motor side and motor current are measured quantities. Angular
position measurements ϕ are achieved with high resolution encoders and can be
differentiated to achieve motor angular speed ϕ̇. The current is the control input
to the motor and it is common to assume that the relationship between current
and applied torque τ is given by a constanti . Since, from (2), it is clear that τ is
affected directly by w (satisfying Assumption C.1), only τ is considered of interest
and included in y. The remaining variables, ϕ and its derivatives, load torque τl
and joint temperature T are considered as disturbances and included in d.

Notice that the effects of ϕ, its derivatives, and τl are defined by the trajectory f,
executed by the manipulator. If the monitored sequences yj are achieved from
the operation of the same task f, these disturbances satisfy Assumption C.3, no-
tice that they considerably vary along i. If this behavior is also valid for T , then
yj satisfies Assumption C.2 and the framework is valid. Joint temperature is how-
ever the result of complicated losses mechanisms in the joint and heat exchanges
with the environment and might not satisfy the assumption. The effects of T are
in fact comparable to those caused by w, recall Figure 1. The problem of robust
monitoring of w is therefore challenging.

2.1 Characterizing the Measured Data – NSEDE

There are several ways to characterize a sequence yj . It could be represented by
a single number, such as its mean, peak, range, etc. Summarizing the whole se-
quence into single quantities might however hide many of the signal’s features.

iThis is due to the fast dynamics of the current control loop compared to the arm.
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A second alternative would be to simply store the whole sequence and try to mon-
itor the difference y0 − yj but this requires that the sequences are synchronized,
which is a limitation in many applications. Sometimes, looking at the data spec-
tra are helpful, but this type of analysis requires the data to be ordered.

The alternative pursued in this work is to consider the distribution of yj , which
does not require ordering or synchronization and reveals many of the signal’s fea-
tures. Because the mechanisms that generated the data are considered unknown,
the use of a nonparametric estimate of the distribution of yj is a suitable alter-
native. A nonparametric estimate of the distribution p( · ) of yj can be achieved
with the use of kernel density estimators (Bishop (2007)),

p̂j (y) = N−1
N∑
i=1

kh(y − yji ), (3)

where kh( · ) is a kernel function, satisfying kh( · ) ≥ 0 and that integrates to 1 over
R. The bandwidth h > 0 is a smoothing parameter and y includes the domain
of YM . It is typical to choose kernels with a low pass behavior, where the band-
width parameter h controls its cutoff frequency. In this work, a Gaussian kernel
is considered, with h optimized for Gaussian distributions. See Bowman and Az-
zalini (1997) for more details on kernel density estimators and criteria/methods
for choosing h. From the definition, it follows that

∫
p̂(y) dy=1, that is, the distri-

bution estimate is normalized to 1. The quantity p̂j (y) is a nonparametric smooth
empirical distribution estimate (nsede) of yj .

Example 1
nsedes of Experimental Data from a Robot Executing a Regular Path under
Wear Changes
Accelerated wear tests were performed in a robot joint with the objective of study-
ing the wear effects. During these experiments, the joint temperature T was kept
constant to satisfy Assumption C.3. Throughout the tests, a task f was executed
regularly a total of M=33 times yielding a data set [τ0, · · · , τM−1]. The tests were
executed until the wear levels were considered significant, so that maintenance
should be performed. For an illustration, the torque sequences τ0, τ1 and τM−1

are shown in Figure 2a, together with their estimated nsedes in Figure 2b. The
sequences τ0 and τ1 are considered to be fault free while τM−1 was achieved with
increased wear levels. Notice how the nsedes are similar for the fault free data
and how they considerably differ from τM−1.

From Example 1 and Figure 2, it is possible to see that Assumptions C.2 and C.1
are valid and that it might be possible to monitor the changes in the nsedes to
infer about a fault. In the next subsection, a distance measure is defined between
nsedes.
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Figure 2: (a), torque signals at a joint under accelerated wear tests and their
nsedes, (b), related to the execution of a task f. The sequences τ0 and τ1

are fault free, τM−1 was achieved with increased wear levels in the gearbox.
A Gaussian kernel was used for computing the nsedes.

2.2 Fault Indicator – Kullback-Leibler distance

In statistics and information theory, the Kullback-Leibler divergence (kld) is
used as a measure of difference between two probability distributions. For two
continuous distributions on y, p(y) and q(y), it is defined as

DKL (p||q) = −
∞∫
−∞

p(y) log
q(y)
p(y)

dy. (4)

The kld satisfies DKL (p||q) ≥ 0 (Gibbs inequality), with equality if and only if
p(y) = q(y). The kld is not a distance, since in general it is not symmetric,
DKL (p||q) , DKL (q||p). The quantity

KL (p||q) , DKL (p||q) + DKL (q||p) , (5)

known as the Kullback-Leibler distance (kl), is however symmetric and also a
metric. For an up to date review of divergences, see Reid and Williamson (2011).

Although the kl distance is defined for probability functions, it can also be used
for nsedes since they are normalized to 1. An answer to the second question
outlined in the beginning of this section can therefore be given with the use of
the kl measure defined in (5). From Assumption C.4, fault free data are always
available, so that y0 is known and p̂0 can be evaluated. The quantities KL

(
p̂0||p̂j

)
can therefore be used as a fault indicator.

Example 2
Application of KL

(
p̂0||p̂j

)
for Experimental Wear Monitoring in a Robot

The same sequence [τ0, · · · , τM−1] used in Example 1 is considered here. First,
their respective nsedes are computed, resulting in [p̂0, · · · , p̂M−1]. Considering
τ0 to be fault free, the quantities KL

(
p̂0||p̂j

)
are computed for j = 1, . . . , M − 1.

As shown in Figure 3b, these quantities show a clear response to how the wear
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Figure 3: Monitoring of a wear fault in an industrial robot joint under accel-
erated wear tests. The friction changes caused by the wear fault are shown
in (a) for a comparison, the colormap relates to j. The fault indicator us-
ing KL

(
p̂0||p̂j

)
from Example 2 is shown in (b). The lower row presents the

resulting quantities when monitoring the accumulated changes from Exam-
ple 3. The incremental changes and the drift parameter ν are shown in (c).
The fault indicator from the cusum filtered increments is displayed in (d),
notice its robustness compared to (b).

level increases and can therefore be used as a wear indicator (recall that tempera-
ture was kept constant during these experiments). For an illustration of the wear
behavior during the experiments, the friction curves in the joint were estimated
using a dedicated experiment (see Bittencourt et al. (2010)) at each jth execution
of f and are shown in Figure 3a.

The above example illustrates how the basic framework can be successfully used
to monitor systems that operate in a repetitive manner. The regularity require-
ments described in Assumptions C.2 and C.3 are however limiting in many prac-
tical applications. The next sections discuss approaches to relax these assump-
tions.
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3 Monitoring the Accumulated Changes

Because the KL ( · || · ) is a metric, it satisfies the triangle inequality, which gives

KL
(
p̂0||p̂j

)
≤

j∑
k=1

KL
(
p̂k−1||p̂k

)
. (6)

Since KL
(
p̂k−1||p̂k

)
measures the difference between consecutive sequences, the

sum of these increments over 1, . . . , j gives the accumulated changes up to j,
which is related to a fault and can therefore be used for monitoring, without
requiring the assignment of nominal data.

Because of the noise components v, the increments KL
(
p̂j−1||p̂j

)
will also have

a random behavior when there is no fault. The simple summation of the incre-
ments will therefore behave like a random walk and drift away. An alternative is
to use the cumulative sum (cusum) algorithm (Gustafsson (2000)), defined as

Algorithm 3 cusum

g(j) = g(j − 1) + s(j) − ν (7)

g(j) = 0 if g(j) < 0. (8)

The test statistic g(j) adds up the signal to be monitored s(j), which in the context
presented here is s(j)=KL

(
p̂j−1||p̂j

)
. To avoid positive drifts, the drift parameter

ν is subtracted from the update rule (7). If, on the other hand g(j) becomes
negative, g(j) is reset, avoiding negative drifts. The resulting quantity, g(j) is
suitable for condition monitoring and does not require assignment of a nominal
data, that is, Assumption C.4 is relaxed. The drift parameter can be chosen as

ν = µ + κσ, (9)

where µ and σ are the mean and the standard deviation of the incremental changes
KL

(
p̂j−1||p̂j

)
under no fault and κ is a positive constant.

Example 3
Application of the cusum to KL

(
p̂j−1||p̂j

)
for Experimental Wear Monitoring

in a Robot Joint
The real fault case in Example 2 is considered again. Instead of using KL

(
p̂0||p̂j

)
as a fault indicator, the increments KL

(
p̂j−1||p̂j

)
are computed and the cusum

filter is used. The drift parameter is chosen as in (9), with κ= 3 and [µ, σ ] are es-
timated from the first 5 sequences. The resulting quantities are shown in Figures
3c and 3d, with a clear response to the wear increases.
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3.1 Monitoring Irregular Data

Let fj denote the conditions not related to faults under which a sequence yj was
generated. Assumption C.2 requires the whole sequence YM to have been gener-
ated under the same f, so that they are comparable. In principle, the alternative
solution of monitoring the accumulated consecutive increments KL

(
p̂j−1||p̂j

)
re-

quires only that fj−1 and fj are the same, thus relaxing Assumption C.2.

Since the behavior of the increments might differ depending on f, special care
should be taken when monitoring their accumulated changes. If the cusum al-
gorithm is used, the drift parameter ν can be set differently according to the
executed task, that is, ν will be a function of fj .

Example 4
Simulation of Wear Monitoring for a Robot Executing Several Tasks
To illustrate the idea, a simulation study is carried out (see the appendix for de-
tails on the simulation model). The simulations are carried out considering 3
different tasks ft , t=[0, 1, 2], which are taken from real applications of an indus-
trial robot. A realistic friction model is used that can explain, amongst others,
the effects of wear w. A wear fault scenario is considered where, motivated by
Blau (2009), the wear quantity w is assigned with a time-profile as

w(j) = w0 +
wf − w0

2
ξ(j) (10a)

ξ(j) = 1 +
j − jm(

1 + |j − jm|b
)−b (10b)

where j is the measurement sequence index, w0 is the wear level prior to wear
increases, wf is the wear level after the increases. To illustrate a partial damage
of the joint, the values w0 =0 and wf =50 are chosen. The transition function ξ(j)
models the time behavior of the wear with an exponential factor. The variable
jm assigns the index where the transition from w0 to wf is half the way, the con-
stant b changes the transition behavior. The remaining parameters are adjusted
according to the wear evolution in a real fault scenario, with jm = 75 and b = 1.
The behavior of w is shown as the dashed line in Figure 4. The figure also displays
the cusum statistic for increments which are mixed at random for the different
tasks ft in 10 different cases. The drift parameters are chosen as ν(j) = µt + σ t ,
where [µt , σ t] are estimated from the fault free execution of task ft . As it can be
seen, monitoring is still possible even when data are generated under different
conditions.

4 Reducing Sensitivity to Disturbances

An alternative to achieve robustness to disturbances is to consider weighting the
raw data yj according to prior knowledge of the fault and disturbances. Defining



4 Reducing Sensitivity to Disturbances 127

0 10 20 30 40 50 60 70 80

0

2

4

6

8

x 10
−3

j

C
U
S
U
M

Figure 4: cusum taken over sequential increments KL
(
p̂j−1||p̂j

)
resulting

from 3 different tasks. The increments are mixed at random, 10 cases are
presented (solid lines). Also shown are the scaled values of w (dashed) for a
comparison.

a weighting vector w ∈ RN , the weighted data are written as

ȳj = w ◦ yj , (11)

where ◦ is the Hadamard product (element-wise multiplication). The idea is to
choose w to maximize the sensitivity to faults while increasing the robustness to
disturbances.

Considering the basic framework presented in Section 2, a natural criteria for w
would be to choose it such that KL

(
p̂k(w)||p̂l(w)

)
is maximized when yk is fault

free and yl is faulty, and minimized in case they are both fault free or faulty.
A general solution to this problem is however difficult since it depends on how
p̂j (w) was computed (e.g. the kernel function chosen) and maximization over (5).
In this work, simpler criteria are used in a compromise of explicit solutions. As
it will be shown, the results are directly related to linear discriminant analyses.

4.1 Choosing w – Linear Discriminant Analyses

Consider that the data set YM is available, the fault status (present or not) is
known to each component yj , and the fault status is the same for each element
in yj . The fault free data are said to belong to the class C0, with M0 observations,
while the faulty data belong to class C1, withM1 =M−M0 observations. Applying
the weights w to the data set yields

ȲM ,
[
ȳ0, . . . , ȳM0 , ȳM0+1, . . . , ȳM1+M0

]
, (12)

and the objective is to choose w such that the separation between the classes is
maximized. A simple criterion is to consider the difference between the classes
means. The cth class mean over all Mc observations is

m̄c , N−1
N−1∑
i=0

Mc
−1

∑
j∈Cc

wiy
j
i

 (13)
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= N−1
N−1∑
i=0

wi

M−1
c

∑
j∈Cc

y
j
i

︸          ︷︷          ︸
,mci

= N−1wTmc. (14)

The distance between the means of classes C0 and C1 is proportional to

m̄1 − m̄0 ∝ wT (m1 −m0). (15)

This problem is equivalently found in linear discriminant analyses, see Bishop
(2007). Constraining w to unit length in order to achieve a meaningful solution,
it is easy to show that the optimal choice is to take w ∝ (m1 −m0), Bishop (2007).

A criterion based only on the distance between the classes mean does not consider
the variability found within each class, for instance caused by disturbances. An
alternative is to consider maximum separation between the classes mean while
giving small variability within each class. Considering a measure of variability
for each class as the mean of variances for each ith component,

s̄c , N−1
N−1∑
i=0

M−1
c

∑
j∈Cc

(wiy
j
i − wim

c
i )

2

 (16)

= N−1
N−1∑
i=0

w2
i

M−1
c

∑
j∈Cc

(yji −m
c
i )

2

︸                    ︷︷                    ︸
,sci

(17)

= N−1wT Scw, (18)

where Sc is a diagonal matrix with diagonal elements given by sci . Defining the

total within class variation as
∑
c

s̄c, the following criterion can be used when two

classes are considered

(m̄1 − m̄0)2

s̄1 + s̄0
∝ wT (m1 −m0)(m1 −m0)Tw

wT (S1 + S0)w
, (19)

which is a special case of the Fisher criterion, see Bishop (2007). It can be shown
that solutions for this problem satisfy

w ∝ (S1 + S0)−1(m1 −m0). (20)

That is, each weight wi is proportional to the ratio between the average changes,
m1
i −m

0
i , and the total variability found in the data, s1i + s0i .

Notice however that the solutions (15) and (20) require the data to be synchro-
nized, which is difficult in many practical applications. In case this is possible
(for instance using simulations), the result of such analyses might reveal some
useful pattern of the weights. For instance, if the weights are strongly correlated
to measured data, an approximate function can be used to describe the weights
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depending on the data, e.g. wi = h(yji ) for a continuous function h( · ).

Example 5: Simulation of Robust Wear Monitoring in a Robot Joint
To illustrate the ideas presented in this section, a simulation study is carried out
(see the appendix for details of the simulation model). A path f is simulated M=
M1 +M0 times under different conditions, forming a data set YM , with M1 =M0 =
100. A realistic friction model is used that represents the effects of wear w, and
joint temperature T . The two batches of data are generated with the following
settings,

τk : w = 0, T ∼ U [T,T + ∆T ], k ∈ C0 (21a)

τl : w = wc, T ∼ U [T,T + ∆T ], l ∈ C1 (21b)

where k ∈ C0 corresponds to the first M0 sequences and l ∈ C1 are the remaining
ones, wc = 35 is a wear level considered critical to generate an alarm (see Bitten-
court et al. (2011a)). Here, T is considered random, with uniform distribution
given by T = 30◦C and ∆T = 40◦C. This assumption is carried out for analyses
purposes.

The average distance m1
i −m

0
i and total variability s1i + s0i are displayed as a func-

tion of the joint speed ϕ̇ in Figure 5a. In the same figure, a worst case estimate,
largest s1i + s0i and m1

i − m
0
i closest to zero, is also shown (solid lines). Figure 5b

presents the ratio for such worst case estimate, which is considered as the optimal
weights according to (20). As it can be seen, the optimal weights present a strong
correlation with ϕ̇, which is not a surprise since the effects of w and T depend on
ϕ̇, recall Figure 1. The solid line in Figure 5b is a function approximation of the
optimal weights given by

w(ϕ̇) = sech(βϕ̇) tanh(αϕ̇) (22)

with α = 1.45 10−2 and β = 4.55 10−2. Effectively, the optimal weighting function
selects a speed region that is more relevant for robust wear monitoring. In Bitten-
court et al. (2011a), a similar behavior was found for the quality (variance) of a
wear estimate for different speeds under temperature disturbances.

The performance improvements achieved using the weighting function can be
illustrated by considering the detection of an abrupt change of w from 0 to wc.
Considering a data set generated according to (21), a pair (τm, τn) is given and
the objective is to decide whether the pair is from the same class or not, that is,
the two hypotheses are considered

H0 : m, n ∈ C0 or m, n ∈ C1 (23a)

H1 : m ∈ C0, n ∈ C1 or m ∈ C1, n ∈ C0. (23b)

In view of the framework presented in Section 2, this problem is analyzed by
computing the distribution of KL (p̂m||p̂n) for each hypothesis.

The overlap of these distributions gives the probability of false, Pf , and probabil-
ity of detection, Pd (the problem is a binary hypothesis test, see Van Trees (2001)
for more). The procedure is repeated for different values of ∆T , with and without
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Figure 5: Choice of optimal weights w. The effects of disturbances by tem-
perature and faults are shown in (a), together with a worst case estimate
(solid lines). The optimal weights for the worst case estimate are shown in
Figure 5b together with a function approximation (solid). Notice how the
optimal region for wear monitoring is concentrated in a narrow speed range.

the use of the weighting function. For the fixed Pf = 0.01, Figure 6a presents the
achieved Pd as a function of ∆T . Notice that the use of the weighting function
considerably improves the robustness to temperature variations, but for too large
∆T it becomes difficult to distinguish the effects.

A similar study can be performed to illustrate how wc affects the performance.
For the fixed ∆T =25◦C, data are generated according to (21) for different values
of wc. Similarly, the hypotheses distributions are computed. Figure 6b presents
Pd as a function of wc for the fixed Pf = 0.01. The improvements achieved using
the weighted data are obvious.

5 Conclusions and Future Work

The paper presented a framework for condition monitoring of systems that op-
erate in a repetitive manner. A data driven method was proposed that considers
changes in the distribution of data samples obtained from multiple executions of
one or several tasks. This was achieved with the use of kernel density estimators
and the Kullback-Leibler distance measure between distributions. The suggested
approach of monitoring the accumulated incremental changes allowed the frame-
work to be extended to the cases where fault free data are unavailable and/or the
repetitive behavior of the system varies. The use of a weighting function was pro-
posed in order to reduce sensitivity to unknown disturbances and increase sen-
sitivity to faults. The methods were illustrated using real data and simulations
for the problem of (robust) wear monitoring in an industrial robot joint. The
results show that robust wear monitoring in robot joints is made possible with
the proposed methods. For a complete validation however, more experiments us-
ing different cycles and with temperature variations are needed. The proposed
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Figure 6: Probability of detection Pd when Pf =0.01 for an abrupt fault with
wc=35 as a function of temperature variations ∆T (a), and as function of the
fault size wc for ∆T = 25◦C (b). Notice the considerable improvements when
using the weighted data.

methods should also be bench marked to existing methods.

The paper dealt only with univariate sequences yj . All quantities used (e.g. nsedes
and kl) can also be defined for the multivariate case. Therefore in principle the
framework can be extended to monitor multiple variables.

The kld is in fact a specialization of a f-divergence Reid and Williamson (2011),
a family of functions that can be used as a measure of the differences between
distribution functions. It might be interesting to study the use and properties of
different divergences. A similar argument is valid regarding the choice of kernel
function to compute the nsedes and criteria for choosing the smoothing parame-
ter.

Several filtering schemes are possible for the alternative of monitoring consecu-
tive increments KL

(
p̂j−1||p̂j

)
, e.g. using a moving window or a moving average.

When monitoring the accumulated changes, it is important to consider how often
should the sequences be compared. This issue is related to the time behavior of
the fault, which is typically unknown.

While this paper focused on a method to generate a quantity sensitive to faults,
the important issues of alarm generation and isolation were not addressed.

A Appendix

A.1 Simulation Model

The simulation model considered is the 2 link manipulator with elastic gear trans-
mission presented in the benchmark problem in Moberg et al. (2008). The sim-
ulation model is representative of many of the phenomena present in a real ma-
nipulator, such as,



132 Paper C Monitoring of Systems that Operate Repetitively

• measurement noise,
• coupled inertia,
• torque ripple,

• torque disturbances,
• nonlinear stiffness,
• closed loop.

With the objective of studying friction changes related to wear in a robot joint,
the static friction model described in Bittencourt et al. (2011a) is included in the
simulation model. The static friction model was developed from empirical stud-
ies in a robot joint (Bittencourt et al. (2010)) and describes the effects of angular
speed ϕ̇, manipulated load torque τl , temperature T , and wear w.

In the simulation setup, a task f is described by a set of reference joint positions
through time to the robot, which is controlled with feedforward and feedback
control actions, guaranteeing the motion performance. If no variations of w and
T are allowed, the torque sequence required for the execution of a task f varies
only slightly due to the stochastic components and feedback.

The paths f are taken from real applications of a 6 axes industrial robot. In order
to make it possible to simulate them with the 2 links robot model, the angles of
joints 2 and 3 of the real robot are matched to joints 1 and 2 in the simulation. In
this setup, the two main axes of the robot are studied.
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