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Modeling and Experiment Design for Identification
of Wear in a Robot Joint under Load and

Temperature Uncertainties based on Friction Data
André Carvalho Bittencourt and Patrik Axelsson

Abstract—The effects of wear to friction are studied based on
constant-speed friction data collected from dedicated experiments
during accelerated wear tests. It is shown how the effects of
temperature and load uncertainties produce larger changes to
friction than those caused by wear, motivating the consideration
of these effects. Based on empirical observations, an extended
friction model is proposed to describe the effects of speed, load,
temperature and wear. Assuming availability of such model
and constant-speed friction data, a maximum likelihood wear
estimator is proposed. The performance of the wear estimator
under load and temperature uncertainties is found by means
of simulations and verified under three case studies based on
real data. Practical issues related to experiment length are
considered based on an optimal selection of speed points to collect
friction data, improving the achievable performance bound for
any unbiased wear estimator. As it is shown, reliable wear
estimates can be achieved even under load and temperature
uncertainties, making condition based maintenance of industrial
robots possible.

Index Terms—industrial robotics, wear, friction, identification,
condition monitoring

I. INTRODUCTION

I NDUSTRIAL robots are used as a key factor to improve
productivity, quality and safety in automated manufactur-

ing. Robot installations are many times of crucial importance
in the processes they are used and an unexpected robot stop
or malfunction may lead to production and economical losses.
Increased safety, reliability, availability and maintainability
(SRAM) are therefore critical for industrial robots. Preventive
scheduled maintenance is a common approach to guarantee the
requirements on SRAM in the manufacturing industry. Such
scheduling is often determined from the estimated lifespan
of robot components, with considerable margins. Because
preventive maintenance is not determined by the actual robot
condition, unnecessary maintenance actions might take place.

In the current scenario, maintainability of industrial robots
can be greatly improved with the use of methods to deter-
mine its condition, allowing for condition based maintenance
(CBM). With focus on service, it is important that a change in
condition is detected before a critical degradation takes place,
so that timely maintenance actions can take place. Wear in a
robot joint may lead to a degradation of performance and to
an eventual failure. Because wear typically develops slowly
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with time and usage, it might be detectable in an early stage,
making CBM possible.

Wear can be defined as “the progressive loss of material
from the operating surface of a body occurring as a result of
relative motion at its surface” [1]. The need for relative motion
between surfaces implies that the wear mechanisms are related
to mechanical actionbetween surfaces. This is an important
distinction to other processes with a similar outcome and very
different nature, e.g. corrosion [2]. Wear is naturally related to
friction since friction can be defined as the tangential reaction
force between two surfaces in contact. Friction always opposes
motion, dissipating kinetic energy. A part of the work produced
by friction appears as heat transfer, vibrations and acoustic
emissions. Other outcomes of friction are plastic deformation,
adhesion and fracture which relate to wear.

The accumulated wear in a tribosystem may lead to varia-
tions in friction [3], [4]. Alternatives for wear monitoring are
thus possible provided it is applicable toobserve frictionand
the relation betweenfriction and wearis known. Monitoring
friction to infer about wear is however challenging since
friction is significantly affected by other factors than wear
such as temperature and load. The effects of temperature are
specially difficult since temperature is not measured in typical
robot applications. These co-effects should neverthelessbe
considered when verifying the reliability of a solution.

In the literature , little can be found about wear estimation
for industrial robots. This may be attributed to the lack of
wear models available and the high costs and time required to
perform wear experiments. There are related approaches used
for fault detection, where the objective is to decide whether a
change from nominal is present. Faults are typically considered
as actuator malfunctions, modeled as changes in the output
torque signals or in the parameters of a robot model. This
includes the case offriction changes, which is important since
they can relate to wear.

The use ofnonlinear observers, as presented in [5]–[10],
is important to support control law reconfiguration and fault
detection. In [11], an observer is used to estimate friction
torques in a rotating machine; the presence of a friction change
is detected based on a multiple hypotheses test where each
hypothesis is associated to a known friction model. In [12],
energy balanceequations are monitored for fault detection and
isolation; the framework is illustrated with a simulation study
of a robot manipulator with faults in dissipative components
(e.g. friction changes) and energy-storing components (e.g.
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load changes). Because the energy balance is also affected
by disturbances, knowledge of these effects to the system’s
energy can be used to achieve robustness; some approaches
are discussed in [12], see also [13].

Theestimation of friction parametersin a robot model from
measured data is a natural approach because of the physical
interpretation of these parameters. In [14], estimates of the
Coulomb and viscous friction parameters are compared to
confidence values of their nominal behavior. In the experi-
mental study presented, these parameters could indicate some
of the faults but could not readily distinguish between them;
e.g. the increase of joint temperature had a similar effect as
a fault in the drive-chain. As illustrated here, the effectsof
wear and temperature affect friction in a similar manner and
the simple friction model used in [14] did not consider this.
The effects of temperature to friction were considered in [15],
where estimates of the viscous friction parameter are used
to monitor the lubricant health in a mechanical transmission.
The lubricant temperature is estimated based on a Kalman
filter using environment temperature measurements and a heat
transfer model. A similar approach but based on an observer
of the viscous friction torque is also presented in [16] with
simulation studies for a robot joint.

In this paper, a wear estimator is proposed based on a known
friction model and constant-speed friction data which are
achieved throughdedicated experiments, in an off-line manner.
A solution based on dedicated experiments will decrease the
robot availability which is undesirable from the perspective
of a robot user. The trade-off between experiment length and
the estimator accuracy is therefore important and is studied
in detail. Themain contributions leading to the proposed
solution are listed

• first, the effects of wear to friction are modeled based on
empirical observations;

• an extended friction model is proposed and identified to
describe the effects of speed, temperature, load and wear;

• with a known friction model, maximum likelihood wear
estimators are proposed;

• experiment design is considered based on the achievable
performance for any unbiased wear estimator;

• the estimator is validated through simulations and case
studies based on real data.

These results are presented through Secs. II-C to V. Secs. II-A
and II-B review earlier results presented in [17] which are used
in this paper; namely, an experiment routine used to provide
constant-speed friction data and a friction model to describe
the nominal behavior of friction, i.e. under no considerable
presence of wear. The conclusions and proposals for further
research are presented in Sec. VI. The studies presented
in the paper are based on observed friction in joint 2 of
ABB IRB 6620 industrial robots. Joint 2 is chosen for the
study as it endures great stress variations for the type of robot
considered. The joint is equipped with a rotary vector type
of gearbox which is commonly found in industrial robots of
similar sizes.

A preliminary versionof a wear estimation approach based
on constant-speed friction data was presented in [4] where the

wear model was first presented and a prediction-error wear
estimator was suggested and verified. Here, wear estimators
are suggested based on a statistical framework, with a more
in-depth study of experiment design, achievable performance
and verification studies.

II. STEADY-STATE FRICTION IN A ROBOT JOINT

Friction is a dynamic phenomenon. At a contact level, the
surfaces’ asperities can be compared to (very stiff) bristles in
a brush, each of which can be seen as a body with its own
dynamics connected by the same bulk [18], [19]. Because the
internal friction states are not measurable, it is common to
study friction in steady-state, when friction presents a static
behavior. Experimental data show that underconstant speed,
the friction in a robot joint can be described by a static
function, see e.g. [17].

The simplified behavior of steady-state friction1 makes it
easier to be modeled and to identify the sources of changes,
e.g. caused by wear or temperature. A shortcoming is that
constant-speed data are not readily available from a robot
normal operation. This type of data can however be collected
based on the experimental procedure described in [17]. Data
collected from such an experiment will be used as input to the
wear estimators suggested here and the procedure is briefly
described in Sec. II-A.

Friction in a robot joint is affected by many factors. Using
constant-velocity friction data, the behavior of steady-state
friction is studied in detail in [17] where a static nonlinear
model was suggested to describe the effects of speed, tem-
perature and load. This model is reviewed in Sec. II-B and
extended in Secs. II-C and II-D to include a description of
observed changes caused by wear.

A. A Procedure to Estimate Friction at a Fixed Speed Level

A simple procedure is suggested in [4], [17] for the estima-
tion of constant-speed friction data which is revised here.A
manipulator is a multivariable, nonlinear system that can be
described in a general manner through the rigid multi-body
dynamic model

M(ϕ)ϕ̈+ C(ϕ, ϕ̇) + τg(ϕ) + τf = τ (1)

whereϕ is the motor position,M(ϕ) is the inertia matrix,
C(ϕ, ϕ̇) relates to Coriolis and centrifugal terms,τg(ϕ) are the
gravity-induced joint torques andτf contains the joint friction
components. The system is controlled by the input torque,τ ,
applied by the joint motor (in the experiments the torque
reference from the servo was measured)2. For single joint
movements (so that centrifugal forces are zero at that joint)
and under constant speed (so that inertial torques are zero), the

1In this paper, the term steady-state friction is used as a synonym of the
friction observed in constant-speed conditions.

2It is known that using the torque reference from the controller as a measure
of the joint torque might not always hold. The torque controller for the
robot considered in the studies has a steady-state error of maximum 5%. The
variations are because of the temperature dependence of the torque constant
of the motors.
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(a) Data collected for the estimation of the friction level at¯̇ϕ=42 and ϕ̄=0.
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(b) Estimated friction levels (circles) and predictions based on (4).

Fig. 1. Experimental procedure for the estimation of constant-speed friction. Data are collected for single joint movements back and forth around a position
ϕ̄ for a desired speeḋ̄ϕ, as shown in (a). The constant speed torque levels for the forward and backward movements,τ+ andτ− respectively, are segmented
and used for estimation ofτf according to (3). The procedure can be repeated for different speed levels and plotted against speed in a friction curve as shown
by the circles in (b). The dashed line corresponds to predictions computed based on the model in (4) with an interpretation of the model parameters.

applied torque at the joint drives only gravity induced torques
and friction, i.e.

τg(ϕ) + τf = τ. (2)

By considering forwards and backwards movements for a
speed level̄ϕ̇ around a position̄ϕ (so thatτg(ϕ̄) is the same in
both directions), adirection independentestimate of friction
can be achieved as

τf = (τ+ − τ−)/2 (3)

whereτ+ and τ− are the resulting torques when the joint is
moved forwards, respectively backwards. In the experiments,
each joint is moved separately with the desired speed¯̇ϕ in
both directions around a given joint anglēϕ. As an example,
Fig. 1(a) shows the measured joint angle-, speed- and torque3

data generated from such experiment in joint 2 of an ABB
IRB 6620. The constant speed data are segmented around
ϕ̄ and the constant-speed friction levels are achieved based
on (3). The procedure can be repeated for several¯̇ϕ’s and
a friction curve can be drawn, which contains steady-state
friction values plotted against speed, see Fig. 1(b). The average
time required to execute the trajectory to estimate friction at
one speed was optimized down to2.5 s.

Friction data collected using such procedure simplifies the
wear estimation problem since the experiment is performed in
a controlled manner, reducing the effects of external distur-
bances (found, e.g., in contact applications) and it does not
depend on a robot model, which may contain uncertainties.
The fact that it does not account for possible direction depen-
dencies of friction is not critical considering that wear would
cause a generalized increase of friction which is captured
by (3). Considering that performing experiments with the robot
will reduce its availability, it is important to reduce the number
of friction data required to provide accurate wear estimates.
As it will be shown, the choice of which and how many speed
levels where friction data are collected areimportant design
parameters, affecting the quality of the wear estimates and the
length of the experiments.

3Throughout the paper all torques are normalized to the maximum ma-
nipulation torque at low speed and are therefore displayed as dimensionless
quantities. All velocity measurements have values shown in the motor side,
before the reduction.

B. A Model for the Nominal behavior of Friction

The behavior of friction in a robot joint is considerably
affected by other variables than wear. To allow for a reliable
discrimination of wear, it is therefore important that the effects
caused by these variables are well understood. A common
description of a direction independent friction curve is given
according to

τf (ϕ̇) = Fc + Fse
−| ϕ̇

ϕ̇s
|α + Fvϕ̇ (4)

which is valid for ϕ̇ > 0 and whereFc, Fs, Fv, ϕs, α ≥ 0
are model parameters. The offset termFc is known as the
Coulomb parameter;Fse

−| ϕ̇
ϕ̇s
|α describes the decay of fric-

tion at intermediate speeds (Stribeck phenomenon) which is
common in lubricated friction, and tends to zero with speed
according to the Stribeck speed parameterϕ̇s and exponent
α; the termFvϕ̇ represents the viscous behavior of friction,
increasing friction at high speeds, see Fig. 1(b). Based on a
comprehensive experimental study of steady-state friction in
an industrial robot joint, this model was extended in [17] to
include a description of temperature and load according to

τ0f (ϕ̇, τl, T ) = {Fc,0 + Fc,τlτl}+ Fs,τlτle
−

∣∣∣ ϕ̇
ϕ̇s,τl

∣∣∣
α

+ (5a)

+ {Fs,0 + Fs,TT}e
−

∣∣∣ ϕ̇
{ϕ̇s,0+ϕ̇s,T T}

∣∣∣
α

+ (5b)

+ {Fv,0 + Fv,T e
−T
TVo }ϕ̇, (5c)

whereτl is the absolute value of the manipulated load torque
and T is the joint temperature, the remaining variables are
parameters used to model the friction behavior. The model (5)
extends the parametersFc, Fs, ϕ̇s in (4) as a linear function
of T and τl, where the exponential terms present a different
behavior for τl and T ; the viscous slope parameterFv is
extended as a nonlinear function ofT . A similar description
of load has also been reported for different devices in [20],
[21] and an exponential behavior of viscous friction with
temperature was also reported in [15].

In [17], the parameters in (5) were found for axis 2 of
an ABB IRB 6620 industrial robot with the use of joint
temperature measurements and an estimate ofτl based on
a robot model; the parameter values are given in Table I.
Fig. 2(a) presents observed and model-based predictions of
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TABLE I
IDENTIFIED PARAMETERS FOR THE MODEL(5), VALUES TAKEN FROM [17].

Fc,0 Fc,τl Fs,0 Fs,τl Fs,T Fv,0 Fv,T ϕ̇s,0 ϕ̇s,τl ϕ̇s,T TVo α
3.11 10

−2 2.34 10
−2 −2.50 10

−2 1.26 10
−1 1.60 10

−3 1.30 10
−4 1.32 10

−3 −24.81 9.22 0.98 20.71 1.36

friction curves for high and low values ofτl and T . Notice
the effects ofτl, which give an offset increase of the whole
curve together with an exponential-like increase at speeds
below25 rad/s. The effects ofT can be seen as an exponential
increase at speeds below80 rad/s and a decrease of the curve
slope at higher speeds. Notice further that for such temperature
and load values, there is a speed range where the effects are
less pronounced, in this case around80 rad/s.

1) Validation: As shown in [17], the model in (5) can
be used to predict the behavior of steady-state friction under
broad operation conditions. This model can thus be used as
a description of the nominal (wear free) behavior of friction.
The mean and standard deviation of the prediction error for
the model in (5), denominated here asε, were estimated
based on more than 5800 steady-state friction data points col-
lected under different speed, temperature and load conditions
as [µε, σε] = [−9.24 10−4, 4.23 10−3]. The same evaluation for
a model based on (4), dependent only on speed, gave a mean
and standard deviation for the error as[1.09 10−2, 1.34 10−2]
which are considerably larger.

C. A Model of the Wear effects to Friction

Monitoring a robot until a failure takes place is a costly and
time consuming task and it is thus difficult to fully comprehend
the effects of wear in a robot joint. An alternative is considered
here based on data collected from accelerated wear tests, where
the robot is run continuously under high load and stress levels
for several months or years until failure. The resulting friction
curves from such experiment at joint 2 of an ABB IRB 6620
robot are shown in Fig. 2(b), which were obtained under
the same load- and temperature levels. The different speed
dependency of these effects compared to those caused by
temperature and load in Fig. 2(a) is an important characteristic
of the problem. It shows that a careful selection of speed levels
is needed to obtain an accurate determination of wear based
on friction data.

Resolving for coupled effects between wear, temperature,
load and other parameters would require costly long term
experiments which are inviable even for accelerated tests.A
simplifying assumption is taken that considers the effectsof
load and temperature to beindependentfrom those caused
by wear. Under this assumption, the effects of wear can
be isolated in friction data collected under constant load
and temperature conditions, such as the friction curves of
Fig. 2(b). From such data, awear profile quantity, τ̃f , is
defined by subtracting nominal friction data, observed before
the accelerated wear tests started,τ0f , from the ones obtained
thereafter i.e.,

τ̃f = τf − τ0f . (6)

The resulting wear profile from the accelerated wear tests in
Fig. 2(b) can be seen in Fig. 3, where friction is presented
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Fig. 3. Friction wear profileτ̃f computed from the data in Fig. 2(b)
according to (6). The dotted line relates to the nominal (wear-free) friction
curve τ0

f
removed from the friction data. The dashed line indicates a wear

level considered important to be detected.

alongk and ϕ̇.
As can be noticed, the effects of wear appear as an increase

of friction in the low to intermediate speeds region (related to
the Stribeck phenomenon), and a small decrease of the viscous
friction velocity slope. Introducingw as a wear parameter, the
observations support the choice of a model structure for the
wear profile as

τ̃f (ϕ̇,w) = Fs,wwe
−

∣∣∣ ϕ̇
ϕ̇s,w w

∣∣∣
α

+ Fv,w wϕ̇, (7)

whereFs,w, ϕ̇s,w, Fv,w andα are model parameters. Except
for the offset term, the model has a similar structure as (4)
with coefficients dependent onw. The variablew relates to
the degree of which the wear effects appear in the observed
friction and it is not a physical quantity nor can it be
measured. The wear parameterw is defined by convention
with values between[0, 100], relative to a failure state, and is
a dimensionless quantity.

The valuew=100 denoting a failure state should be defined
as the point where the robot fails to perform according to the
requirements imposed by the application. Clearly, a failure is
always present in case the robot condition leads to a robot
stop. While a robot stop may be caused by a total mechanical
failure of the gearbox components, a more common situation is
to have stops triggered by the safety supervision of the robot.
The safety supervision may be triggered due to the presence of
torque levels exceeding a maximum allowed level. This torque
limit can thus be used to find the level ofw which would cause
a robot stop by the safety supervision system.

In order to allow for condition based maintenance, the
wear changes should be detected before a failure takes place.
In fact, an alarm should be generated early enough so that
appropriate maintenance actions can take place with minimal
interference, allowing for CBM. Because wear will develop
with time depending on how the robot is used, it is difficult to
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Fig. 2. Friction dependencies in a robot joint based on experimental studies. The offset values were removed for a comparison, their values are shown in
the dotted lines. The data were collected for similar gearboxes and are presented in directly comparable scales. Notice the larger amplitude of effects caused
by temperature and load compared to those caused by wear but thedifferent speed dependence.

TABLE II
PARAMETERS FOR THE MODEL(7) AND ONE STANDARD DEVIATION

IDENTIFIED USING THE WEAR PROFILE DATA ATk=96.77 WITH w=35.

Fs,w [ 10−4] Fv,w [ 10−7] ϕ̇s,w

9.02± 0.19 −5.15± 1.00 2.19± 0.15

determinate a priori a critical wear level to be detected. This
can be addressed with the development of lifetime models
for prognosis which is outside the scope of this work. Often,
lifetime models are developed based on the statistical behavior
of failure data [22]. Lifetime models are typically found during
product development and require a large number of observa-
tions to achieve models which are statistically significant.

1) Identification: The model (7) is identified with the wear
profile data of Fig. 3. For these data, a robot stop triggered by
the safety supervision occurs atk=100 which is considered
as a failure state. Based on a lifetime model developed for this
robot, the robot manufacturer decided that in order to allow
for CBM, it is critical to detect the wear level atk= 96.77.
Because it is important that the wear model is most accurate
for this critical level, the data collected atk=96.77 are used
for the identification of the parameters of the wear model under
the convention thatw=35. This convention is adopted because
the value ofτ̃f at k=96.77 and ϕ̇=28 rad/s is around35%
of the maximum value of̃τf for the entire data, which occurs
at k=100 and same speed. The parameterα is fixed to1.36
for consistency with the parameters found for (5), given in
Table I. The identification method described in [17] is used to
find the remaining parameters, which are shown in Table II.

2) Validation: Considering the identified parameters for the
model in (7), the wear levels of Fig. 3 are identified for
each k. With the identified wear values, the wear profile
given by model predictions from (7) and observations are
presented for the intervalk = [94, 98] in Fig. 4. As can
be noticed, the model can predict well the behavior ofτ̃f .
The mean and standard deviation for the prediction error of
the wear model in (7), nominated here asε̃, were estimated
as [µε̃, σε̃]=[9.72 10−4, 3.82 10−3].
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D. A Complete Model of Steady-State Friction

Under the assumption that the effects of load and tempera-
ture are independent of those caused by wear, it is possible to
extend the model given in (5) to include the effects of wear as

τf (ϕ̇, τl, T,w) = τ0f (ϕ̇, τl, T ) + τ̃f (ϕ̇,w), (8)

whereτ0f (ϕ̇, τl, T ) is given by (5) and̃τf (ϕ̇,w) is described
in (7). Fig. 5 presents the friction predictions given by the
proposed model atT =40◦C andτl=0.10 for wear values in
the rangew=[0, 100] when the parameters given in Tables I
and II are used. Notice that the effects are concentrated
in the speed range between0− 150 rad/s and also that the
resulting friction curves show good resemblance to Fig. 2(b).
As previously, the dashed line in Fig. 5 indicates an alarm
level for the wear withw=35.
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III. MODEL-BASED WEAR ESTIMATION

Consider that the experiment described in Sec. II-A is
repeatedN times independently under the same loadτl and
temperatureT at speed levels

Φ̇=[ϕ̇(1), · · · , ϕ̇(i), · · · , ϕ̇(N)]T

generating the related steady-state friction data points

Tf =[τ
(1)
f , · · · , τ

(i)
f , · · · , τ

(N)
f ]T .

A model for each steady-state friction datumτ (i)f can
be achieved by including an additive uncertainty term to
the model in (8). Assuming that the prediction errors for
models (5) and (7) follow independent Gaussian distribu-
tions, ε∼N (µε, σ

2
ε) and ε̃∼N (µε̃, σ

2
ε̃), the resultingdata

generation modelis

τ
(i)
f = τ0f (ϕ̇

(i), τl, T ) + ε+ τ̃f (ϕ̇
(i),w) + ε̃

= τf (ϕ̇
(i), τl, T,w) + ε̄ (9a)

ε̄ ∼ N (µε̄, σ
2
ε̄), µε̄ = µε + µε̃, σ2

ε̄ = σ2
ε + σ2

ε̃ . (9b)

Consideringµε̄ ≈ 0, the joint density function forTf is

p(Tf |τl, T,w) = N
(
Tf ; τf (Φ̇, τl, T,w),Σ

)
(10)

with Σ=Iσ2
ε̄ and

τf (Φ̇, τl, T,w) = [τf (ϕ̇
(1), τl, T,w), · · · ,

τf (ϕ̇
(i), τl, T,w), · · · , τf (ϕ̇

(N), τl, T,w)]
T

whereτf (·) is the nonlinear function given by (8).

An unbiased estimate of the load torqueτl is considered
available, achieved, e.g., using a robot model, with distri-
bution N (τl;µτl , σ

2
τl
). The information from this estimate is

included in the model by considering themarginal density
function

p̄(Tf |T,w) =

∫
∞

−∞

p(Tf |τl, T,w)N (τl;µτl , σ
2
τl
) dτl (11)

which for the Gaussian distributionp(Tf |τl, T,w) given in (10)
can be found explicitly since the dependence ofτf (·) on τl is
linear, see (5). The marginal density function is given by [23,
p. 93]

p(Tf |T,w) = N
(
Tf ; τf (Φ̇, T,w),Σ(Φ̇)

)
(12)

where

τf (Φ̇, T,w) , τf (Φ̇, µτl , T,w) (13)

Σ(Φ̇) = Σ +M(Φ̇)M(Φ̇)Tσ2
τl

(14)

M(Φ̇) , [m(ϕ̇(1)), · · · ,m(ϕ̇(i)), · · · ,m(ϕ̇(N))]T

m(ϕ̇) , Fc,τl + Fs,τle
−

∣∣∣ ϕ̇
ϕ̇s,τl

∣∣∣
α

,

notice the clash of notation in (13). It is further considered
that themodel parameters are known.

In this setting, the vector of unknowns isθ=[T,w]T has
the log-likelihood function

logL(θ) = logN
(
Tf ; τf (Φ̇, θ),Σ(Φ̇)

)
. (15)

Based on the achieved likelihood function, Sec. III-A discusses
maximum likelihood estimators ofw. The estimate is, of
course, dependent onTf and thus on the choice oḟΦ. For
a limited number of friction observationsN , the problem of
experiment designis to chooseΦ̇ such that the estimated wear
level is as accurate as possible. Experiment design is described
in Sec. III-B.

A. Maximum Likelihood Estimation

The maximum likelihoodestimate of θ given the data
vector Tf is the value for which the log-likelihood function,
given in (15), has a maximum, i.e.

θ̂ = argmax
θ

logL(θ).

The terms dependent onθ in the log-likelihood function have
the form

logL(θ) ∝ −
[
Tf − τf (Φ̇, θ)

]T
Σ(Φ̇)−1

[
Tf − τf (Φ̇, θ)

]
,

and the problem is therefore a weighted nonlinear least-
squares, whereT and w are estimated jointly. To restrict
the search space, it is possible to add constraints to the
problem according to available knowledge of the unknowns.
Naturally,w≥ 0, and it is also possible to include lower and
upper limits for the temperature, denotedT andT respectively.
For a robot operating in a controlled indoor environment,T
would be the minimum room temperature whileT is given by
the maximum room temperature and self heating of the joint
due to actuator losses. This gives the problem

[T̂ , ŵ] = argmin
T,w

[
Tf − τf (Φ̇, T,w)

]T
Σ(Φ̇)−1

[
Tf − τf (Φ̇, T,w)

]

s.t. 0 ≤w

T ≤T ≤ T ,

(16)

which is solved usinglsqnonlin available in Matlab’s
Optimization Toolbox with initial values found from a coarse
grid search.

The estimator of (16) is valid forN ≥ 2 since at least
two equations are needed to solve for the two unknowns.
For N=1, an approximation of the marginalized likelihood
function p(Tf |w) can be used. Considering thatT can occur
with equal probability over its domain, i.e.T ∼ U(T , T ), the
marginalized likelihood function is,

p(Tf |w) =
1

T − T

∫ T

T

p(Tf |T,w) dT. (17)

Since there is no analytical solution for (17), Monte Carlo
Integration (MCI) is used to approximate it in a symbolic
expression inw as

p̂(Tf |w) =
1

NT

NT∑

i=1

p(Tf |, T
(i),w) (18)

for NT randomly generated samplesT (i) ∼ U(T , T ).
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Using the approximated marginalized likelihood function
of (18) leads to the problem

ŵ = argmin
w

− p̂(Tf |w)

s.t. 0 ≤w.
(19)

This nonlinear constrained minimization is solved using
fmincon from the Optimization Toolbox in Matlab with
initial values taken from a coarse grid search.

B. Experiment Design

An estimate θ̂ of θ is dependent on the dataTf , the
associatedΦ̇ and on the estimator used. The mean square
error of an estimate can be used as a criterion to assess how
the choice ofΦ̇ affects the performance. Let the bias of an
estimateθ̂ be denotedb(θ),E[θ̂]− θ, then from the Craḿer-
Rao lower bound (see e.g. [24, Exercise 2.4.17]), it follows

MSE(θ̂) = E

[
(θ̂ − θ)2

]
= Var(θ̂) + b(θ)bT (θ)

≥ b(θ)b(θ)T + [I +∇θb(θ)]F (θ)−1 [I +∇θb(θ)]
T

(20)

where

F (θ) = E
[
∇θ logL(θ)(∇θ logL(θ))

T
]

(21)

is the Fisher information matrix. Neglecting the bias term,
which is a function of the estimator used,MSE(θ̂) ≥ F (θ)−1.
The achieved bound can be minimized by affecting the inverse
of the Fisher information matrix, improving the achievable
performance for any unbiased estimator. For the log-likelihood
function in (15), the Fisher information matrix is given by
(see [25] for a proof)

F (Φ̇, θ) = [∇θτf (Φ̇, θ)]Σ(Φ̇)
−1[∇θτf (Φ̇, θ)]

T (22)

where the dependence onΦ̇ is highlighted.
The objective of the experiment design is to chooseΦ̇ that

minimizes the bound on̂w, i.e. MSE(ŵ). For θ = [T,w]T ,
MSE(ŵ) corresponds to the 2,2-element of the inverse of the
information matrix and the problem is thus

Φ̇∗ =argmin
Φ̇

[F (Φ̇, θ)−1]2,2, (23)

where[·]i,j denotes thei, j-element of a matrix. Dropping the
argument forF (Φ̇, θ), the analytical expression for[F−1]2,2
is given by

[F−1]2,2 =
[F ]1,1

[F ]1,1[F ]2,2 − [F ]21,2
.

For a positive definiteΣ(Φ̇), the problem is well-posed only
if ∇θτf (Φ̇, θ) has rank equal to the number of unknowns.
This can only be achieved ifN ≥ 2 and if there are at
least two linear independent columns in∇θτf (Φ̇, θ), e.g. if
at least two different speed values are chosen. To ensure the
later, additional constraints are added to keep a minimum
separation,δϕ̇, between each speed level iṅΦ. Furthermore,
the search is limited to the minimuṁϕ and maximumϕ̇ speed
levels for which the experiment of Sec. II-A can be performed.

The optimal speed values are therefore given as the solution
to the problem

Φ̇∗ =argmin
Φ̇

[F (Φ̇, θ)−1]2,2

s.t. ϕ̇(i) − ϕ̇(j) ≤ −δϕ̇, (i < j)

ϕ̇ ≤ ϕ̇(i) ≤ ϕ̇

(24)

This is a constrained nonlinear minimization which is solved
here usingfmincon in Matlab with initial values found from
a coarse grid search.

The case whereN = 1 can be considered by using the
approximated marginalized likelihood function given by (18).
Using this approximation the Fisher information matrix is

F (Φ̇,w) , E

[(
∂ log p̂(Tf |w)

∂w

)2
]
.

The differentiation ofp̂(·) is performed symbolically and the
expectation is computed using MCI withNτf samples taken
from p̂(Tf |w) in (18), leading to the estimatêF (Φ̇,w) of
F (Φ̇,w). The associated optimization problem is thus

Φ̇∗ =argmin
Φ̇

F̂ (Φ̇,w)−1

s.t. ϕ̇ ≤ ϕ̇(i) ≤ ϕ̇
(25)

which is also a constrained nonlinear minimization problem
and is solved in the same manner as (24).

IV. SIMULATION STUDY

A simulation study is first considered to illustrate the use of
the experiment design criteria defined in Sec. III-B and wear
estimators proposed in Sec. III-A.

A. Definition of Parameters Used

The framework of Sec. III requires knowledge of the friction
model parameters in the data generation model (9). The
parameters for the nominal part given in (5) can be identified
for a new robot using joint temperature measurements and
an estimate of the joint load torques, see e.g. [17]. The
parameters for (7), describing the wear behavior, are more
difficult because failure data are required. For CBM, wear
estimates are needed before a failure of the system, in which
case the parameters for (7) cannot be known in advance. This
can however be overcome with the use of historical failure
data. The simulation studies that follows illustrate the case
where these models are known, focusing on the effects of
temperature and load uncertainties. In Sec. V, the effects of
uncertainties in the wear model are studied based on real data.

Here, the friction parameters used are given in Tables I
and II which were identified for joint 2 of an ABB IRB 6620
industrial robot. The noise properties of (9b) are taken from
the model validation in Secs. II-B1 and II-C2. Applying (9b)
to these values givesµε̄=4.80 10−5≈0 andσε̄=5.70 10−3. The
mean and standard deviation for the load estimate used in (11)
are chosen asµτl =0.5 andστl =0.1. Finally, The optimization
parameters used in the identification and experiment design
problems are given in Table III.
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TABLE III
OPTIMIZATION PARAMETERS.

Experiment design Identification Approximations
ϕ̇ ϕ̇ δϕ̇ T T NT Nτf

1 280 5 30 50 100 200

TABLE IV
CHOICE OF OPTIMAL SPEED VALUES FOR DIFFERENT VALUES OFN .
“COST” IS THE VALUE OF THE OBJECTIVE FUNCTION IN(25) (N=1)

OR (24) (N ≥ 2) COMPUTED AT Φ̇∗ .

N Cost Φ̇∗

1 45.91 33.78
2 26.01 [35.84, 40.84]T

3 19.65 [33.68, 38.68, 43.68]T

4 16.50 [31.65, 36.65, 41.65, 46.65]T

B. Experiment Design

As discussed in Sec. III, the objective of experiment design
is to chooseΦ̇ that gives as high accuracy as possible for
the wear estimate. From a practical perspective, it is also
important to limit the number of friction data pointsN . Here,
the experiment design will be considered forN = [1, 2, 3, 4].
For friction data collected according to the experiment defined
in Sec. II-A, this would thus give up to one minute of total
experimentation time for a six axis robot.

The problems (25) and (24) are solved forN=1 andN=
[2, 3, 4] respectively when[T,w]=[40, 35]. The optimal speed
values found are shown in Table IV, which have values in a
region between30− 50 rad/s.

To provide more insights of the experiment design problem,
note that the information matrix used in the optimal solution
for (24) is dependent on products of the terms

f ′

T (T, ϕ̇) ,
∂τf (ϕ̇, θ)

∂T
, f ′

w
(w, ϕ̇) ,

∂τf (ϕ̇, θ)

∂w
(26)

which, because of the model structure, are function only ofϕ̇
and the differentiation variable. These derivatives relate to
the information aboutT and w contained in the model. A
large absolute value of these derivatives corresponds to more
information about the particular parameter. The aim of the
experiment design is to gather information aboutw, and hence
it is natural that speed points are selected where|f ′

w
| is larger

than |f ′

T | as it is possible. The terms|f ′

w
| and |f ′

T | evaluated
at [T,w]= [40, 35] are shown in Fig. 6(a) as a function ofϕ̇.
For the speed region of30 − 50 rad/s, it is possible to note
that |f ′

w
| is larger than|f ′

T | by a factor of two.
The model gradients are however dependent on the operat-

ing point for T andw. Therefore, it is not possible to select
Φ̇ that is optimal in general. To illustrate these dependencies,
Fig. 7 shows contour plots of|f ′

w
| and |f ′

T | as a function
of speed,T andw. The dashed lines in Fig. 7 relate to the
value where the derivatives are zero. In both sub figures, the
gradients have negative values to the right of the dashed lines
and are otherwise positive. Unfortunately,|f ′

T | is often larger
than |f ′

w
| (notice that the scale used forf ′

T is a factor of ten
times larger than forf ′

w
). Nevertheless, the different speed

dependencies allow for a selective choice ofΦ̇ that improves
performance of the wear estimates.

To illustrate how the optimal speed region can vary with op-
erating points, Fig. 6(b) displays the speed region where|f ′

w
|>

2|f ′

T | whenw=35, i.e. the critical value to be detected, andT
varies in the range30−50 C◦. Notice that this speed region is
not optimal in the sense of (24) or (25), but relates to a region
where the information forw is considerably larger than forT .
As it can be seen, only a narrow band of speed values contain
useful information for the estimation ofw for a particular value
of T . The speed band also varies with temperature, with no
overlap over all temperature values considered.

It is important to emphasize that the characteristics shown
here are valid for the specific model parameters used and
different properties are expected for different robots and
gearboxes. A similar behavior of temperature and wear have
however been observed for various robot units equipped with
a similar type of gearbox. Furthermore, different criteriathan
(23) could be used. The criterion used here has the purpose
to achieve as accurate as possible estimateŵ, irrespective of
the performance for̂T . A different criterion could be, e.g. to
minimize the trace ofF (Φ̇, θ)−1, which would choosėΦ with
a different relevance to the effects ofT .

C. Bias and Variance Properties of the Wear Estimators

With the optimal speed values found in Table IV, the
bias and variance properties of the proposed estimators are
evaluated based on Monte Carlo simulations. The true wear
level is fixed atw=35 and temperature is varied in the range
T =[30, 50]. The data generated by (9) are input to (19) or (16)
for N=1 andN=[2, 3, 4] respectively, and the estimation is
repeated a total ofNMC=1 103 times per operating point.

Fig. 8 shows the simulation results for the bias and variance
of the estimators as a function of the true temperature levelT .
As it can be seen, the bias and variance are reduced withN .
The reduction in the variance is specially large forN = 2
compared toN=1, which is related to marginalization effects
of T . The bias presents a nonlinear behavior withT while the
variance seems to be unaffected byT .

V. STUDIES BASED ON REAL DATA

Gathering enough informative data related to wear from
the field would have been inviable since wear faults take a
long time to develop and are infrequent. Even in accelerated
wear tests, it may take several months or years before wear
effects become significant. Another difficulty with such tests
is the high cost of running several robots to obtain reliable
statistics. Moreover, temperature studies are challenging since
the thermal constant of a large robot is of several hours.

Other than simulation studies, the only viable alternativein
the research project was to combine nominal friction data (with
no acute wear present) and wear profile data, collected from
a different robot of the same type from accelerated wear tests
under constant load and temperature conditions. The nominal
and wear profile datasets are denotedTf

0 andT̃f respectively.
These data were collected from axis 2 of an ABB IRB 6620
industrial robot, equipped with a rotary vector gearbox type.
Each of these datasets are matrices where each row contains
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Fig. 8. Monte Carlo based estimates of bias (a) and variance (b) of the estimators (19) and (16) (N=1 andN=[2, 3, 4] respectively) evaluated withw=35
andT in the band30− 50 C◦.

data from a friction curve collected in the following velocity
values

Φ̇ = [2.1, 8.7, 15.3, 21.9, 28.5, 35.1, 41.7,

82.2, 133.5, 184.7, 236.2, 287.1],
(27)

i.e., a total of12 different speed values are possible from these
datasets. The nominal dataset,Tf

0, contains data collected
under different load and temperature conditions, which are
stored in matrices of same size, denoted respectively asTl

andT. The wear profile data matrix,̃Tf , has rows associated
to the experimentation indexk.

The wear profile dataset determines the behavior of friction
as a function ofk. For a given wear profile dataset, the
objective is to emulate friction data collected under varying
conditions of load and temperature. First, the desired load

and temperature behaviors are pre-defined as a function ofk
according toT (k) ∈ T and τl(k) ∈ Tl. Second, the datasets
are combined as a function ofk and the desired speeḋϕ ∈ Φ̇,
according to

τf (k, ϕ̇) = [Tf
0]ik,jϕ̇ + [T̃f ]k,jϕ̇ (28a)

jϕ̇ , {j : [Φ̇]j = ϕ̇}, (28b)

ik , {i : [T]i,jϕ̇ = T (k) and [Tl]i,jϕ̇ = τl(k)}. (28c)

Notice that these data are not analytically generated, but
actually based on constant-speed friction data, collectedwith
the experiment described in Sec. II-A. Furthermore, the com-
bination of data according to (28a) is consistent to the model
structure in (8) and with the assumption that the effects of wear
are independent of those caused by load and temperature.
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A. Description of Scenarios

Three different wear profile datasets are considered, they

are assigned as̃Tf

0
, T̃f

1
andT̃f

2
. The dataset̃Tf

0
was used

for the wear modeling presented in Sec. II-C, and is shown
in Fig. 3. The other two are shown in Fig. 9. Some relevant
characteristics of these datasets are listed below.

T̃f

0
small random variations, remaining around 0 up
to k = 90 followed by an exponential increase
thereafter.

T̃f

1
medium random variations, remaining around 0 up
to k = 70 followed by large increases. It has a
maximum amplitude which is56% of that found
in T̃ 0

f .

T̃f

2
small random variations, remaining stationary up
to k=30 followed by small increases up tok=97
from where it increases steeply. It has a maximum

amplitude which is106% of that found inT̃f

0
.

Only one dataset is used to describe the normal behavior
of friction and is assigned asTf

0. Three scenarios are

considered using the dataset pairs(Tf
0, T̃f

0
), (Tf

0, T̃f

1
)

and (Tf
0, T̃f

2
). The scenarios are called 0, 1 or 2 according

to the selected dataset for the wear profile.
To simplify the presentation of the results, the behavior

of T (k) and τl(k) are the same for the three scenarios,
they are shown in Fig. 10. Notice that the amplitude of the
friction changes due to temperature and load are considerably
larger than of those caused by wear for any of the scenarios.
The maximum change value found for the nominal friction
behavior is 157% relative to the maximum change found

in T̃f

0
.

The same model and optimization parameters considered in
Sec. IV-A are used for all scenarios. The parameters for the
friction model were identified based on the datasetsTf

0 and

T̃f

0
. Since these parameters are used for all scenarios, it can

be considered that the parameters for the nominal behavior of
friction are correct for all scenarios, illustrating the situation
where they are found based on experiments performed prior
to the tests and when the joint is healthy. The wear parameters
are however only consistent for Scenario 0 and Scenarios 1
and 2 illustrate the situation where the wear parameters are
based on historical failure data.

B. Results and Discussion

The choice of speed values for experiment design is limited
to the speed levels available from the datasets, given in (27).
The problems (24) and (25) are solved by considering every
possible combination of speed levels forN = [1, 2, 3, 4]. The
resulting optimal values are given in Table V and relate wellto
those found in Table IV. Notice that the optimal values depend
on the wear model parameters used. Since these parameters

were found usingT̃f

0
, optimality of Φ̇∗ is only expected for

Scenario 0.
The resulting wear estimates for the different scenarios are

shown in Figs. 11(a) to 11(c). The same scale for the axes is
used in the figures so they are directly comparable. The shaded

TABLE V
CHOICE OF OPTIMAL SPEED VALUES FOR DIFFERENT VALUES OF

FRICTION OBSERVATIONSN .

N Cost Φ̇∗

1 46.58 35.1
2 26.20 [35.1, 41.7]T

3 22.60 [28.5, 41.7, 82.2]T

4 18.00 [2.1, 28.5, 35.1, 41.7]T

areas in the figures highlight a region which should be easily
distinguishable from the rest in order to allow for an early
detection of excessive wear. Noticeably, the wear estimates
are consistent to the wear profile data used in all scenarios,
even for Scenarios 1 and 2 when the wear model is uncertain.
The wear estimates achieved atk=100 for all scenarios show
good correspondence to the maximum amplitude change found
in the respective wear profile data relative to that found inT̃ 0

f ,
for which the wear parameters were found. These observations
indicate positively to the viability of the determination of the
wear related parameters based on historical data.

The wear estimates become smoother for largerN , which is
in line with the simulation study of Sec. III-A. For all scenar-
ios, the larger wear estimates fork>90 allows for a distinction
of the critical (shaded) regions. The detection of a critical
wear change could be easily achieved in Scenarios 0 and 1
with a simple threshold, set e.g. at 35. The same threshold
would however give an early detection for Scenario 2. An early
detection is understood as less critical than a total failure of
the system but may lead to unnecessary maintenance actions.
More careful analyses of the wear estimates may therefore be
needed in order to give an accurate support for maintenance
decisions.

The fact that the wear estimates do not differ much withN
might lead to the conclusion thatN =1 should be used, but
this is only true if the optimal speed values are chosen. To
illustrate this, two wear estimates were achieved for Scenario 2
using one measurement only, atϕ̇ = 82.2 and ϕ̇ = 133.5.
As it can be noticed, the wear estimates are considerably
affected by changes in temperature when these speed values
are used. However, when these two measurements are used
together, the estimate becomes less sensitive. The inclusion
of measurements around the optimal speed values should also
increase robustness to uncertainties in the wear model.

VI. CONCLUSIONS AND FUTURE WORK

A model-based maximum likelihood wear estimator was
proposed based on a known friction model and constant-speed
friction data collected from experiments. Because friction is
considerably affected by other factors than wear, in particular
temperature, a friction model that can describe these variables
was suggested. Experiment design was also considered to
support the choice of speed levels of the friction data which
reveals more information about wear. Simulations and case
studies based on real data were considered to evaluate the
approach. The wear estimates achieved in the studies showed
a clear response to changes of friction, indicating that the
approach may open up for condition based maintenance of
industrial robots.
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Fig. 9. Friction wear profile data used in Scenarios 1 (a) and 2(b). The dashed line indicates a critical wear level to be found. The dotted lines relate to
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that was removed from the friction data according to (6).
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Fig. (d) illustrates Scenario 2 when non-optimal speed values are used forN = [1, 2]. The shaded areas in the figures relate to a region where a detection
should be made.
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The studies presented here are restricted to one type of
robot/gearbox and in an experimental verification performed in
a lab. To verify the applicability of the proposed solutionsin an
industrial scenario, a more extensive experimental campaign is
needed. Also interesting is to consider other types of variations
and how these affect the models and framework presented. For
example, a change of lubricant may require the re-estimation
of all or some of the friction parameters used.

It should be stressed that different characteristics of the
problem are expected for different devices, gearboxes and fault
mechanisms. The results and discussion presented here can
however provide useful guidance for those interested in using
similar approaches for different devices. Of key importance to
the proposed approach are the friction models used. The same
ideas suggested for experiment design and wear identification
can nevertheless be extended to other devices and model
structures as long as the friction model used is a static function
of wear. These problems can be addressed with the resulting
likelihood function. In case there are at least as many friction
data points as unknowns, the standard joint likelihood function
can be used, otherwise the marginalized likelihood is a suitable
alternative.

A natural extension to this work is to consider on-line wear
estimation. This could perhaps be achieved by considering data
from a friction observer, e.g. as presented in [11], [16]. The
sensitivity of such approach to unmodeled phenomena, e.g.
due to dynamic friction, and external disturbances should be
considered carefully based on experiments performed on a real
robot in different scenarios.
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