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Abstract—The effects of wear to friction are studied based on with time and usage, it might be detectable in an early stage,
constant-speed friction data collected from dedicated experimdga making CBM possible.
during accelerated wear tests. It is shown how the effects of Wear can be defined as “the progressive loss of material
temperature and load uncertainties produce larger changes to f th fi f f a bod . It of
friction than those caused by wear, motivating the consideration rom. e op.era '”9 suriace ? a body occurring as_a r.esu 0
of these effects. Based on empirical observations, an extended'€lative motion at its surface” [1]. The need for relativetion
friction model is proposed to describe the effects of speed, load, between surfaces implies that the wear mechanisms aredelat
temperature and wear. Assuming availability of such model to mechanical actiorbetween surfaces. This is an important
and constant-speed friction data, a maximum likelihood wear istinction to other processes with a similar outcome arngt ve
estimator is proposed. The performance of the wear estimator diff t nat - AR . turalhatet t
under load and temperature uncertainties is found by means ' Qren _na urg, (?.g. corrosion [_ ]. Wear is natura )fie_ o
of simulations and verified under three case studies based on friction since friction can be defined as the tangential tieac
real data. Practical issues related to experiment length are force between two surfaces in contact. Friction always eppo
cpnsidered bqsed onan optimal .selection of speed points to collectmotion, dissipating kinetic energy. A part of the work prodd
friction data, improving the achievable performance bound for by friction appears as heat transfer, vibrations and aimust

any unbiased wear estimator. As it is shown, reliable wear L oth t f fricti lastic defoi i
estimates can be achieved even under load and temperatureem'ss'ons' €r outcomes ot iriction are plastic aeforona

uncertainties, making condition based maintenance of industrial adhesion and fracture which relate to wear.

robots possible. The accumulated wear in a tribosystem may lead to varia-
Index Terms—industrial robotics, wear, friction, identification, ~ 1ONS in friction [3], [4]. Alternatives for wear monitorgnare
condition monitoring thus possible provided it is applicable ebserve frictionand

the relation betweeffriction and wearis known. Monitoring
friction to infer about wear is however challenging since
|. INTRODUCTION friction is significantly affected by other factors than wea
NDUSTRIAL robots are used as a key factor to improveuch as temperature and load. The effects of temperature are
productivity, quality and safety in automated manufactuspecially difficult since temperature is not measured inciip
ing. Robot installations are many times of crucial impocgn robot applications. These co-effects should neverthelbess
in the processes they are used and an unexpected robot stupsidered when verifying the reliability of a solution.
or malfunction may lead to production and economical lasses
Increased safety, reliability, availability and maintiility In the literature, little can be found about wear estimation
(SRAM) are therefore critical for industrial robots. Pratiee for industrial robots. This may be attributed to the lack of
scheduled maintenance is a common approach to guaranteaitbar models available and the high costs and time required to
requirements on SRAM in the manufacturing industry. Sugberform wear experiments. There are related approachés use
scheduling is often determined from the estimated lifespdor fault detection where the objective is to decide whether a
of robot components, with considerable margins. Becauskange from nominal is present. Faults are typically carsid
preventive maintenance is not determined by the actualtrolds actuator malfunctions, modeled as changes in the output
condition, unnecessary maintenance actions might tale platorque signals or in the parameters of a robot model. This
In the current scenario, maintainability of industrial otd includes the case dfiction changeswhich is important since
can be greatly improved with the use of methods to detdhey can relate to wear.
mine its condition, allowing for condition based maintecan The use ofnonlinear observersas presented in [5]-[10],
(CBM). With focus on service, it is important that a change iis important to support control law reconfiguration and tfaul
condition is detected before a critical degradation takasgy detection. In [11], an observer is used to estimate friction
so that timely maintenance actions can take place. Wear ifiosques in a rotating machine; the presence of a frictiomgaa
robot joint may lead to a degradation of performance and i® detected based on a multiple hypotheses test where each
an eventual failure. Because wear typically develops slowhypothesis is associated to a known friction model. In [12],
energy balancequations are monitored for fault detection and
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load changes). Because the energy balance is also affestedr model was first presented and a prediction-error wear
by disturbances, knowledge of these effects to the systera&imator was suggested and verified. Here, wear estimators
energy can be used to achieve robustness; some approaehessuggested based on a statistical framework, with a more
are discussed in [12], see also [13]. in-depth study of experiment design, achievable perfooaan
Theestimation of friction parameteiig a robot model from and verification studies.
measured data is a natural approach because of the physical
interpretation of.these pgre}meters. In [14], estimateshef t ll. STEADY-STATE FRICTION IN A ROBOT JOINT
Coulomb and viscous friction parameters are compared to
confidence values of their nominal behavior. In the experi- Friction is a dynamic phenomenon. At a contact level, the
mental study presented, these parameters could indicate ssurfaces’ asperities can be compared to (very stiff) lessih
of the faults but could not readily distinguish between thema brush, each of which can be seen as a body with its own
e.g. the increase of joint temperature had a similar effect dynamics connected by the same bulk [18], [19]. Because the
a fault in the drive-chain. As illustrated here, the effeofs internal friction states are not measurable, it is common to
wear and temperature affect friction in a similar manner arsdudy friction in steady-state, when friction presents atict
the simple friction model used in [14] did not consider thishbehavior. Experimental data show that undenstant speed
The effects of temperature to friction were considered B],[1 the friction in a robot joint can be described by a static
where estimates of the viscous friction parameter are uskediction, see e.g. [17].
to monitor the lubricant health in a mechanical transmissio The simplified behavior of steady-state fricttomakes it
The lubricant temperature is estimated based on a Kalmeasier to be modeled and to identify the sources of changes,
filter using environment temperature measurements andta heg. caused by wear or temperature. A shortcoming is that
transfer model. A similar approach but based on an obsergenstant-speed data are not readily available from a robot
of the viscous friction torque is also presented in [16] withormal operation. This type of data can however be collected
simulation studies for a robot joint. based on the experimental procedure described in [17]. Data
collected from such an experiment will be used as input to the
In this paper, a wear estimator is proposed based on a knowvear estimators suggested here and the procedure is briefly
friction model and constant-speed friction data which amescribed in Sec. II-A.
achieved througledicated experimenti an off-line manner.  Friction in a robot joint is affected by many factors. Using
A solution based on dedicated experiments will decrease #énstant-velocity friction data, the behavior of steathtes
robot availability which is undesirable from the perspeeti friction is studied in detail in [17] where a static nonlimea
of a robot user. The trade-off between experiment length antbdel was suggested to describe the effects of speed, tem-
the estimator accuracy is therefore important and is studigerature and load. This model is reviewed in Sec. II-B and
in detail. Themain contributions leading to the proposed extended in Secs. II-C and 1I-D to include a description of
solution are listed observed changes caused by wear.
« first, the effects of wear to friction are modeled based on
empirical observations; ] o )
« an extended friction model is proposed and identified {3 A Procedure to Estimate Friction at a Fixed Speed Level
describe the effects of speed, temperature, load and wearA simple procedure is suggested in [4], [17] for the estima-
« with a known friction model, maximum likelihood weartion of constant-speed friction data which is revised hére.

estimators are proposed; manipulator is a multivariable, nonlinear system that cen b
« experiment design is considered based on the achievaidscribed in a general manner through the rigid multi-body
performance for any unbiased wear estimator; dynamic model
« the estimator is validated through simulations and case
studies based on real data. M(p)p+Clp, o) +19(0) +7p =17 1)

These results are presented through Secs. 1I-C to V. Seés. I\I/vhere is the motor positionM(y) is the inertia matrix
and II-B review earlier results presented in [17] which asedl 14 P 1 '

in this paper; namely, an experiment routine used to provi&(@’.w).relates tp .COHOIIS and centrlfuggl termg_,(a,_o) are the
constant-speed friction data and a friction model to dbecrigrawty-lnduced joint torques anef: contains the joint friction

the nominal behavior of friction, i.e. under no consideeablcom.ponems' Th? .system IS cpntrolled by Fhe Input torque,
aéjfplled by the joint motor (in the experiments the torque
q

presence of wear. The conclusions and proposals for furth : -

: : réference from the servo was measufedjor single joint
research are presented in Sec. VI. The studies presenté . .
: AU ovements (so that centrifugal forces are zero at that)joint
in the paper are based on observed friction in joint 2 Q

ABB IRB 6620 industrial robots. Joint 2 is chosen for thganI under constant speed (so that inertial torques are, zeo)

study as it endures great stress variations for the typehuftro 1n thi o

. 2T ) . n this paper, the term steady-state friction is used as argyn of the
considered. The joint is equipped with a rotary vector typfction observed in constant-speed conditions.
of gearbox which is commonly found in industrial robots of 2itis known that using the torque reference from the coreralls a measure
similar sizes. of the joint torque might not always hold. The torque congolfor the

A limi . f timati hb a)bot considered in the studies has a steady-state errorxafma 5%. The
preliminary versioror a wear estimation approac aS€Qriations are because of the temperature dependence afrtiieetconstant

on constant-speed friction data was presented in [4] where bf the motors.
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(a) Data collected for the estimation of the friction levekat42 and ¢ =0. (b) Estimated friction levels (circles) and predictions dzsn (4).

Fig. 1. Experimental procedure for the estimation of conssaeed friction. Data are collected for single joint moveradsgck and forth around a position
@ for a desired speeg, as shown in (a). The constant speed torque levels for tieafdrand backward movementst andr— respectively, are segmented
and used for estimation af; according to (3). The procedure can be repeated for diffespeed levels and plotted against speed in a friction cus\&hawn
by the circles in (b). The dashed line corresponds to predistcomputed based on the model in (4) with an interpretatidchemodel parameters.

applied torque at the joint drives only gravity induced togg B. A Model for the Nominal behavior of Friction

and friction, i.e. The behavior of friction in a robot joint is considerably
(o) + T =1 (2)  affected by other variables than wear. To allow for a regabl

By considering forwards and backwards movements for discrimination of wear, it is therefore important that tifeets
speed leve around a positiorp (so thatr, (¢) is the same in causgd 'by these .varlgble's are well ungje'rstood. A common
both directions), alirection independenestimate of friction description of a direction independent friction curve isegi

can be achieved as according to

Tr=(rt —17)/2 3) 71(¢) = Fo+ Foe |27 4 Fp @)

wherer™ and 7~ are the resulting torques when the joint isvhich is valid for 4 > 0 and whereF,, F;, F,, ps,a > 0
moved forwards, respectively backwards. In the experimenare model parameters. The offset tefh is known as the
each joint is moved separately with the desired spgeid  Coulomb parameterFse‘|ﬁ|u describes the decay of fric-
both directions around a given joint angte As an example, tion at intermediate speeds (Stribeck phenomenon) which is
Fig. 1(a) shows the measured joint angle-, speed- and tbrgqgemmon in lubricated friction, and tends to zero with speed
data generated from such experiment in joint 2 of an ABBccording to the Stribeck speed parametgerand exponent
IRB 6620. The constant speed data are segmented aroundhe termF, ¢ represents the viscous behavior of friction,
¢ and the constant-speed friction levels are achieved baseereasing friction at high speeds, see Fig. 1(b). Based on a
on (3). The procedure can be repeated for seveémmland comprehensive experimental study of steady-state fricio

a friction curve can be drawn, which contains steady-statgn industrial robot joint, this model was extended in [17] to

friction values plotted against speed, see Fig. 1(b). Tkeea@e include a description of temperature and load according to
time required to execute the trajectory to estimate frictx

2N
Ps

one speed was optimized down 26 s. 7]9(¢,71,T) ={F.o+ F.nm}+ Fsnme %l + (5a)
Friction data collected using such procedure simplifies the 7| ® ‘a
wear estimation problem since the experiment is performed i + {Fs,0 + FsrT}e o0t 2erthl 4+ (5b)
. . —T
a controlled manner, reducing the effects of external distu +{Foo+ Fyre™s b, (5¢)

bances (found, e.g., in contact applications) and it dogs no
depend on a robot model, which may contain uncertaintiédherer; is the absolute value of the manipulated load torque
The fact that it does not account for possible direction depeand 7' is the joint temperature, the remaining variables are
dencies of friction is not critical considering that wearuk Pparameters used to model the friction behavior. The model (5
cause a generalized increase of friction which is capturédtends the parametefs, Fi, ¢, in (4) as a linear function
by (3). Considering that performing experiments with theato 0f 7" and 7;, where the exponential terms present a different
will reduce its availability, it is important to reduce thamber behavior for7, and T'; the viscous slope parametéf, is
of friction data required to provide accurate wear estimateextended as a nonlinear function Bf A similar description
As it will be shown, the choice of which and how many spee®f load has also been reported for different devices in [20],
levels where friction data are collected aneportant design [21] and an exponential behavior of viscous friction with
parametersaffecting the quality of the wear estimates and thi€mperature was also reported in [15].
length of the experiments. In [17], the parameters in (5) were found for axis 2 of
an ABB IRB 6620 industrial robot with the use of joint
_3Thr_oughout the paper all torques are normalizgd to th_e ma)gimum ”l"émperature measurements and an estimate; dfased on
nipulation torque at low speed and are therefore displagedimensionless . . .
a robot model; the parameter values are given in Table I.

quantities. All velocity measurements have values shown énntiotor side, < e
before the reduction. Fig. 2(a) presents observed and model-based predictions of



TABLE |
IDENTIFIED PARAMETERS FOR THE MODEL(5), VALUES TAKEN FROM [17].

Fc,O Fc,‘rl Fs,O Fs,n Fs,T Fv,O FU,T Qbs,O Sbs,n Qbs,T Tvo [
3.111072  2.341072 —2.5010"2 1.2610~' 1.6010~3 1.3010~% 1.321073 —24.81 9.22 0.98 20.71 1.36

friction curves for high and low values af and 7. Notice
the effects ofr;, which give an offset increase of the whole
curve together with an exponential-like increase at speec
below25 rad/s. The effects df’ can be seen as an exponential
increase at speeds bel@® rad/s and a decrease of the curve
slope at higher speeds. Notice further that for such tenera
and load values, there is a speed range where the effects ¢
less pronounced, in this case arowtdrad/s.

1) Validation: As shown in [17], the model in (5) can
be used to predict the behavior of steady-state frictioneund
broad operation conditions. This model can thus be used ¢ o i
a description of the nominal (wear free) behavior of frintio ¢ (rad/s) °
The mean and standard deviation of the prediction error for o o o
the model in (5), denominated here as were estmated P9 % Felon ey pralery conputed o e tete 1 i, 200
based on more than 5800 steady-state friction data poitts GQirve 0 removed from the friction data. The dashed line indicates arwe
lected under different speed, temperature and load conditi level considered important to be detected.
as [pe, 0e) =[—9.241074,4.23 10-?]. The same evaluation for
a model based on (4), dependent only on speed, gave a mean
and standard deviation for the error Hs0910-2,1.3410-2] alongk and¢.

which are considerably larger. As can be noticed, the effects of wear appear as an increase
of friction in the low to intermediate speeds region (redate
C. A Model of the Wear effects to Friction the Stribeck phenomenon), and a small decrease of the @scou

friction velocity slope. Introducingv as a wear parameter, the
bservations support the choice of a model structure for the
wear profile as

Monitoring a robot until a failure takes place is a costly an
time consuming task and it is thus difficult to fully comprede
the effects of wear in a robot joint. An alternative is corsetl
here based on data collected from accelerated wear testge wh
the robot is run continuously under high load and stresddeve
for several months or years until failure. The resultingtidin  where F ,, ¢5w, Fyw and o are model parameters. Except
curves from such experiment at joint 2 of an ABB IRB 662@or the offset term, the model has a similar structure as (4)
robot are shown in Fig. 2(b), which were obtained undevith coefficients dependent on. The variablew relates to
the same load- and temperature levelBhe different speed the degree of which the wear effects appear in the observed
dependency of these effects compared to those causedfription and it is not a physical quantity nor can it be
temperature and load in Fig. 2(a) is an important charatieri measured. The wear parameteris defined by convention
of the problem. It shows that a careful selection of speeelsev with values betweef(), 100], relative to a failure state, and is
is needed to obtain an accurate determination of wear basedimensionless quantity.
on friction data. The valuew =100 denoting a failure state should be defined

Resolving for coupled effects between wear, temperatuges the point where the robot fails to perform according to the
load and other parameters would require costly long temaquirements imposed by the application. Clearly, a failigr
experiments which are inviable even for accelerated tésts.always present in case the robot condition leads to a robot
simplifying assumption is taken that considers the effefts stop. While a robot stop may be caused by a total mechanical
load and temperature to bHadependentfrom those caused failure of the gearbox components, a more common situasion i
by wear. Under this assumption, the effects of wear cao have stops triggered by the safety supervision of thetrobo
be isolated in friction data collected under constant lodbhe safety supervision may be triggered due to the presdnce o
and temperature conditions, such as the friction curves tofque levels exceeding a maximum allowed level. This terqu
Fig. 2(b). From such data, wear profile quantity, 7¢, is limit can thus be used to find the levelwfwhich would cause
defined by subtracting nominal friction data, observed t#efoa robot stop by the safety supervision system.
the accelerated wear tests startejﬁ, from the ones obtained In order to allow for condition based maintenance, the
thereafter i.e., wear changes should be detected before a failure takes. place
In fact, an alarm should be generated early enough so that
appropriate maintenance actions can take place with minima
The resulting wear profile from the accelerated wear testsiitterference, allowing for CBM. Because wear will develop
Fig. 2(b) can be seen in Fig. 3, where friction is presentedth time depending on how the robot is used, it is difficult to

o

%’f((pa W) = FS,Wwei Pow + qu,w W¢7 (7)

7~'f=7'f—7'](c). (6)
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(a) Observed friction curves (circles) and model-based ipred (b) Wear effects from accelerated tests. The colormap isetlo the
tions (lines) given by (5) for low and high values @f and r; and length of the tests with values between 0 and 100. The dashed |
no significant wear. relates to a wear level critical for CBM.

Fig. 2. Friction dependencies in a robot joint based on empartal studies. The offset values were removed for a compartbeir values are shown in
the dotted lines. The data were collected for similar geagb@nd are presented in directly comparable scales. Notckiiier amplitude of effects caused
by temperature and load compared to those caused by wear bdifférent speed dependence.

TABLE I w o530 7
PARAMETERS FOR THE MODEL(7) AND ONE STANDARD DEVIATION 0.041 ;T;Q? v :32%3%2 ﬁ;igéj%
IDENTIFIED USING THE WEAR PROFILE DATA ATk =96.77 WITH w=35. AN T N N W=35.00, k=96.77
0.03 :C;' N =W =46.73, k=97.85
Fow[10 7] Fyw[10°7] Pow T
9.024+£0.19 —515£1.00 2.19£0.15 = N
0.01
ok
. P " 6 50 160 1‘50 260 2‘50
determinate a priori a critical wear level to be detectedsTh ¢ (rad/s)

can be addressed with the development of lifetime models
for prognosis which is outside the scope of this work. Oftemjg. 4. Observed wear profile data (circles) and model priedist(lines).
lifetime models are developed based on the statisticalMi@ha

of failure data [22]. Lifetime models are typically foundréhg
product development and require a large number of observa-
tions to achieve models which are statistically significant

1) Identification: The model (7) is identified with the wear
profile data of Fig. 3. For these data, a robot stop triggesed b
the safety supervision occurs lat= 100 which is considered
as a failure state. Based on a lifetime model developed fsr th
robot, the robot manufacturer decided that in order to allow o (rad/s)
for CBM, it is critical to detect the wear level @t=96.77.

Because it is important that the wear model is most accuraig. 5. increase of wear levels given by the model (8) with akmp

for this critical level, the data collected &t=96.77 are used indicatingw. The dashed line relates to the critical wear lewek 35.

for the identification of the parameters of the wear modekund

the convention thav = 35. This convention is adopted because o

the value of7; at k=96.77 and =28 rad/s is around5% D- A Complete Model of Steady-State Friction

of the maximum value of; for the entire data, which occurs  ynder the assumption that the effects of load and tempera-
at k=100 and same speed. The parameteis fixed t01.36  ture are independent of those caused by wear, it is possible t

for consistency with the parameters found for (5), given igxtend the model given in (5) to include the effects of wear as
Table I. The identification method described in [17] is used t

find the remaining parameters, which are shown in Table II. (@, 7, Tow) = 70(4, 71, T) + 7 (9, w), (8)

ofF
o
=]
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2) Validation: Considering the identified parameters for thwherer})(cp,n,T) is given by (5) andrs(¢,w) is described
model in (7), the wear levels of Fig. 3 are identified foin (7). Fig. 5 presents the friction predictions given by the
each k. With the identified wear values, the wear profilgroposed model d'=40°C andr;=0.10 for wear values in
given by model predictions from (7) and observations athe rangew =[0, 100] when the parameters given in Tables |
presented for the intervat = [94, 98] in Fig. 4. As can and Il are used. Notice that the effects are concentrated
be noticed, the model can predict well the behaviorref in the speed range betweén- 150 rad/s and also that the
The mean and standard deviation for the prediction error gsulting friction curves show good resemblance to Fig).2(b
the wear model in (7), nominated here §swere estimated As previously, the dashed line in Fig. 5 indicates an alarm
as [z, 0] =1[9.72107*,3.821072]. level for the wear withw =35.



I1l. MODEL-BASED WEAR ESTIMATION Based on the achieved likelihood function, Sec. IlI-A dsses

repeatedN times independently under the same logacand course, dependent ofi; and thus on the choice cb. For
temperaturel” at speed levels a limited number of friction observation¥, the problem of

experiment desigis to chooseb such that the estimated wear

S - (1 - (¢ (NNT

o= [‘P( RN )] level is as accurate as possible. Experiment design isidedcr
generating the related steady-state friction data points in Sec. 1II-B.

Tr=lrf) o

A. Maximum Likelihood Estimation

A model for each steady-state friction datumﬁ can  The maximum likelihoodestimate off given the data

be achieved by including an additive uncertainty term i@actor7; is the value for which the log-likelihood function,
the model in (8). Assuming that the prediction errors fodiven in (15), has a maximum, i.e.

models (5) and (7) follow independent Gaussian distribu- N
tions, e~ N (pe,02) and e~N(uz, 02), the resultingdata 0= argmgxxlog L(6).
generation modeis

(i) 0/ 5 (i) ~ ) _ The terms dependent ahin the log-likelihood function have
T =T T) e+ T (¢, w) € the form

=T (gb(i), 7, Tyw) + & (9a)

. T . .
N B A B i)
and the problem is therefore a weighted nonlinear least-
squares, wherd’ and w are estimated jointly. To restrict
p(T¢|m, T, w) :N(7};rf(<i>,n,T, w),E) (10) the search space, it is possible to add constraints to the

. problem according to available knowledge of the unknowns.
with =702 and Naturally, w >0, and it is also possible to include lower and

75(D, 71, T, w) = [ (0N, 71, Ty w), - -, upper limits for the temperature, denofBcindT respectively.
For a robot operating in a controlled indoor environméiit,
would be the minimum room temperature whifeis given by
whereTy(-) is the nonlinear function given by (8). the maximum room temperature and self heating of the joint

due to actuator losses. This gives the problem

Consideringus ~ 0, the joint density function foff; is

Tf(QO(Z), Tl7T7 W)a e an(¢(N)aTlaT7 W)]T

An unbiased estimate of the load torquge is considered N ) T
available, achieved, e.g., using a robot model, with distri [T, W] = arg min |:7—f —7(9, T, w)} »(d)~t
bution N (7;; 1, 0Z,). The information from this estimate is ’W

included in the model by considering thearginal density {Tf —7p(®, T, W)} (16)
function N st. 0<w
p(T7|T,w) = / p(Ty| 7, T, w)N (115 por, 0'72_1) dn,  (11) T<T<T,

which is solved usingl sgnonl i n available in Matlab’s
Optimization Toolbox with initial values found from a coars
2grid search.

which for the Gaussian distributiqi{7;|r;, T, w) given in (10)
can be found explicitly since the dependencergf-) on 7; is
linear, see (5). The marginal density function is given bg, [

p. 93] The estimator of (16) is valid forV > 2 since at least
p(TF|T,w) :/\/(7};7-f(<i>,T, w)72(<i>)) (12) two equations are needed to solve for the two unknowns.
For N =1, an approximation of the marginalized likelihood
where function p(7;|w) can be used. Considering thAtcan occur
. A . with equal probability over its domain, i.&. ~ U(T,T), the
(8, Ty w) = 75 (@, iy, T W) 13) marginalized likelihood function is,
S(d) =% + M(d)M(9)To? (14) -
M) £ (@), (@), -, m(p )] §Tw) = =2 [ aTiTwar. @)
a —L£JT

_$
Ps,7y

m(p) = Fer + Fone Since there is no analytical solution for (17), Monte Carlo
notice the clash of notation in (13). It is further considkrelntegration (MCI) is used to approximate it in a symbolic

that themodel parameters are known expression inv as
In this setting, the vector of unknowns é5=[T",w]” has R 1 Nz 0
the log-likelihood function p(Tylw) = Ny > p(T5, 9, w) (18)
=1

log L(0) = log (T’[;Tf(q)’ %), 2((1))) ' 15 for Ny randomly generated samplé$?) ~ U/(T,T).



Using the approximated marginalized likelihood functiofhe optimal speed values are therefore given as the solution

of (18) leads to the problem to the problem
w = argmin — p(7s|w) (19) o :argngn [F(®,60) ]2
w 1
st 0<w. st oW — o) < 5y, (i < ) (24)
This nonlinear constrained minimization is solved using @ < oW <P

fm ncon from the Optimization Toolbox in Matlab with i is a constrained nonlinear minimization which is sdive

initial values taken from a coarse grid search. here using ni ncon in Matlab with initial values found from
a coarse grid search.

B. Experiment Design ) )

) —~ i The case whereN = 1 can be considered by using the

An estimated of ¢ is dependent on the datdy, the 5n516yimated marginalized likelihood function given byl

associated? and on the estimator used. The mean sqQUa{Ring this approximation the Fisher information matrix is
error of an estimate can be used as a criterion to assess how

the choice ofd affects the performance. Let the bias of an Féw)2E 0log p(Ty|w) 2
estimated be denoted(0) 2 E[f] — 6, then from the Crasr- Y ow '

Rao lower bound (see e.g. [24, Exercise 2.4.17]), it follows _ o o _
The differentiation ofp(-) is performed symbolically and the

MSE(§) = E [(57 9)2} = Var(d) + b(0)b7 (0) expectation is computed using MCI witN,, samples taken
r (0 from p(7;lw) in (18), leading to the estimaté&'(d,w) of

T —
> b(0)b(0)" + [ + Veb(0)] F(0) " [I + Vob(0)] F(®,w). The associated optimization problem is thus

where ®* =argmin ﬁ((i),w)_l
F(6) = E [Vg log £(8)(Vs log £(8))T] 1) ’ (25)

st <<

is the Fisher information matrix. Neglecting the bias ternwhich is also a constrained nonlinear minimization problem

=~

which is a function of the estimator usedSE(f) > F(6)~'. and is solved in the same manner as (24).
The achieved bound can be minimized by affecting the inverse
of the Fisher information matrix, improving the achievable IV. SIMULATION STUDY

performance for any unbiased estimator. For the log-fia®d o ginjjation study is first considered to illustrate the uge o

function in (15), the Fisher information matrix is given by experiment design criteria defined in Sec. IlIl-B and wear
(see [25] for a proof) estimators proposed in Sec. IlI-A.
F(®,0) = [Vors (0, 0)]2(D) " [Vors(9,0)]"  (22) o
A. Definition of Parameters Used
i ) . . The framework of Sec. Il requires knowledge of the friction
The objective of the experiment design is to cho@smTat model parameters in the data generation model (9). The
minimizes the bound o, i.e. MSEw). For 6 = [T,w]",  harameters for the nominal part given in (5) can be identified
MSE(w) corresponds to the 2,2-element of the inverse of thg, 5 new robot using joint temperature measurements and
information matrix and the problem is thus an estimate of the joint load torques, see e.g. [17]. The
B — i (F(. )1 parameters for (7), describing the wear behavior, are more
argmin [F(®,6)"" .2, (23) difficult because failure data are required. For CBM, wear
estimates are needed before a failure of the system, in which
case the parameters for (7) cannot be known in advance. This
can however be overcome with the use of historical failure

where the dependence dnis highlighted.

where[-]; ; denotes the, j-element of a matrix. Dropping the
argument forF'(®, 0), the analytical expression fd# )5 5

's given by data. The simulation studies that follows illustrate theeca
[T [Fl11 where these models are known, focusing on the effects of
[ Jo2 = Flia[Floz — [F12, temperature and load uncertainties. In Sec. V, the effefcts o

uncertainties in the wear model are studied based on real dat
For a positive definiteE(rb), the problem is well-posed only Here, the friction parameters used are given in Tables |
if Vors(®,0) has rank equal to the number of unknownsand Il which were identified for joint 2 of an ABB IRB 6620
This can only be achieved ifV > 2 and if there are at industrial robot. The noise properties of (9b) are takemnfro
least two linear independent columns mrf(d),e), e.g. if the model validation in Secs. II-B1 and 1I-C2. Applying (9b)
at least two different speed values are chosen. To ensure tihéhese values givgs =4.8010->~0 andoz=5.70102. The
later, additional constraints are added to keep a minimumean and standard deviation for the load estimate used jn (11
separationg,, between each speed level dn Furthermore, are chosen gg,, =0.5 ando,, =0.1. Finally, The optimization
the search is limited to the minimughand maximumy speed parameters used in the identification and experiment design
levels for which the experiment of Sec. II-A can be performegroblems are given in Table III.



TABLE Il

OPTIMIZATION PARAMETERS. To illustrate how the optimal speed region can vary with op-
erating points, Fig. 6(b) displays the speed region whgre>
Experiment design _Identification _ Approximations 2| f+| whenw =35, i.e. the critical value to be detected, &fid

¢ ‘19 6<p T T Nt NTf

ri T . . : A
T 280 : 30 50 100 200 varies in the rang80 — 50 C°. Notice that this speed region is

not optimal in the sense of (24) or (25), but relates to a regio

TABLE IV where the information fow is considerably larger than far.
CHOICE OF OPTIMAL SPEED VALUES FOR DIFFERENT VALUES OBV, As it can be seen, only a narrow band of speed values contain
COST" IS THE VALUE OF THE OBJECTIVE FUNCTION IN(25) (N =1) useful information for the estimation ef for a particular value
OR(24) (N > 2) COMPUTED AT ®*. . . .
of 7. The speed band also varies with temperature, with no
N Cost & overlap over all temperature values considered.
1 4591 33.78 It is important to emphasize that the characteristics shown
T . g
g ig-gé - [ggi‘év égi‘;] poes here are valid for the specific model parameters used and
4 1650 [31.65,36.65, 41.65,46.65] different properties are expected for different robots and

gearboxes. A similar behavior of temperature and wear have

however been observed for various robot units equipped with

a similar type of gearbox. Furthermore, different criteahan

(23) could be used. The criterion used here has the purpose
As discussed in Sec. Ill, the objective of experiment desigp achieve as accurate as possible estimaterespective of

is to choosed that gives as high accuracy as possible fape performance fof. A different criterion could be, e.g. to

the wear estimate. From a practical perspective, it is alfginimize the trace of'(%,6)!, which would choose with

important to limit the number of friction data poinfé. Here, 35 different relevance to the effects Dt

the experiment design will be considered for=[1, 2, 3, 4].

For friction data collected according to the experimentrofi

in Sec. II-A, this would thus give up to one minute of totaf>- Bias and Variance Properties of the Wear Estimators

experimentation time for a six axis robot. With the optimal speed values found in Table IV, the
The problems (25) and (24) are solved f¥r=1 and N= bias and variance properties of the proposed estimators are
2, 3, 4] respectively whenT’, w] = [40, 35]. The optimal speed evaluated based on Monte Carlo simulations. The true wear
values found are shown in Table 1V, which have values injavel is fixed atw =35 and temperature is varied in the range
region betweer30 — 50 rad/s. T =130, 50]. The data generated by (9) are input to (19) or (16)
To provide more insights of the experiment design problerfor N =1 and N =2, 3, 4] respectively, and the estimation is
note that the information matrix used in the optimal solutiorepeated a total alVyic =110° times per operating point.
for (24) is dependent on products of the terms Fig. 8 shows the simulation results for the bias and variance
o7 (,0) o7 (5,0) of the estimators as a fur_wction of the_ true temperature [E\(el
T, ) &2 20w ) 2 27 (26)  As it can be seen, the bias and variance are reduced Mith
or Ow The reduction in the variance is specially large fgr= 2
which, because of the model structure, are function only of compared taV =1, which is related to marginalization effects
and the differentiation variable. These derivatives eelad of 7. The bias presents a nonlinear behavior Witkwhile the
the information abou” and w contained in the model. A variance seems to be unaffected By
large absolute value of these derivatives corresponds t@ mo
information about the particular parameter. The aim of the
experiment design is to gather information abautind hence
it is natural that speed points are selected whé¢féis larger ~ Gathering enough informative data related to wear from
than|fr| as it is possible. The termg,,| and |f;| evaluated the field would have been inviable since wear faults take a
at [T, w] =140, 35] are shown in Fig. 6(a) as a function ¢f long time to develop and are infrequent. Even in accelerated
For the speed region &f0 — 50 rad/s, it is possible to note wear tests, it may take several months or years before wear
that | f;,| is larger than f7.| by a factor of two. effects become significant. Another difficulty with suchtses
The model gradients are however dependent on the opeiatthe high cost of running several robots to obtain reliable
ing point for T andw. Therefore, it is not possible to selecistatistics. Moreover, temperature studies are challgngjimce
$ that is optimal in general. To illustrate these dependenci¢he thermal constant of a large robot is of several hours.
Fig. 7 shows contour plots off),| and |f}| as a function  Other than simulation studies, the only viable alternaitive
of speed, T andw. The dashed lines in Fig. 7 relate to thaéhe research project was to combine nominal friction datth(w
value where the derivatives are zero. In both sub figures, the acute wear present) and wear profile data, collected from
gradients have negative values to the right of the dashed lira different robot of the same type from accelerated weas test
and are otherwise positive. Unfortunatelly;.| is often larger under constant load and temperature conditions. The ndémina
than | f;,| (notice that the scale used fgf. is a factor of ten and wear profile datasets are dencﬂ@@ ande respectively.
times larger than forf,,). Nevertheless, the different speed’hese data were collected from axis 2 of an ABB IRB 6620
dependencies allow for a selective choicetivothat improves industrial robot, equipped with a rotary vector gearboxetyp
performance of the wear estimates. Each of these datasets are matrices where each row contains

B. Experiment Design

V. STUDIES BASED ON REAL DATA
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Fig. 6. (a) Behavior off,, and f/. with respect to speed evaluated[at w] = [40, 35]. (b) The speed regions which giyé; | > 2|f7.| whenw=35 and T
varies in the band30 — 50]C°.
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Fig. 7. Absolute value of the friction model gradient fBrandw as a function ofp and differentiation point. Notice that the scale used fipris ten times
larger than the scale used fdf,.
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Fig. 8. Monte Carlo based estimates of bias (a) and variarjoef the estimators (19) and (16N(=1 and N =[2, 3, 4] respectively) evaluated with =35
andT in the band30 — 50 C°.

data from a friction curve collected in the following velgci and temperature behaviors are pre-defined as a functidn of
values according toT'(k) € T and7,(k) € T;. Second, the datasets
$— 2.1, 8.7, 15.3, 21.9, 28.5, 35.1,41.7 are combined as a function éfand the desired speetc @,
T ’ ’ ’ ’ ’ (27) according to
82.2, 133.5, 184.7, 236.2, 287.1],

i.e., a total of12 different speed values are possible from thesd (k) = [7}0]1‘5,“ +Tslks, (28a)
datasets. The nominal datasgf;’, contains data collected jo = 1{j: [®]; = ¢}, (28Db)
under QiﬁerenF load and temperature conditions, _which are i 2 {i: [T);;, = T(k) and [Ti], ;, = ni(k)}. (28c)
stored in matrices of same size, denoted respectively;as
andT. The wear profile data matrix[¢, has rows associatedNotice that these data are not analytically generated, but
to the experimentation indek. actually based on constant-speed friction data, colleai¢u

The wear profile dataset determines the behavior of frictidhe experiment described in Sec. II-A. Furthermore, the-com
as a function ofk. For a given wear profile dataset, theébination of data according to (28a) is consistent to the rhode
objective is to emulate friction data collected under vagyi structure in (8) and with the assumption that the effectsedmw

conditions of load and temperature. First, the desired loade independent of those caused by load and temperature.
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. . TABLE V
A. Description of Scenarios CHOICE OF OPTIMAL SPEED VALUES FOR DIFFERENT VALUES OF

Three differentowealr profiIeQdatasets are c%nsidered, they FRICTION OBSERVATIONSN .
are assigned &%y , 7y and7; . The datase¥; was used

Cost H*
for the wear modeling presented in Sec. II-C, and is shown 46.58 35.1
26.20 [35.1,41.7]T

in Fig. 3. The other two are shown in Fig. 9. Some relevant
chare(l)cteristics of these datasets are listed below.

Ty small random variations, remaining around O up

to £k = 90 followed by an exponential increase

thereafter. areas in the figures highlight a region which should be easily

Ty  medium random variations, remaining around O ugistinguishable from the rest in order to allow for an early
to £k = 70 followed by large increases. It has adetection of excessive wear. Noticeably, the wear estisnate
maximum amplitude which i$6% of that found are consistent to the wear profile data used in all scenarios,
in TJP. even for Scenarios 1 and 2 when the wear model is uncertain.

7;~ small random variations, remaining stationary uB’he wear estimates achievedk&t_lOO for all s_cenarios show
to k = 30 followed by small increases up to= 97 good correqundence to thg maximum gmplltude change found
from where it increases steeply. It has a maximuff the _respectlve wear profile data relative to that founﬂ'ﬁ’m .
amplitude which is106% of that found in7~}0. for which the wear parameters were found. These obsergtion

) ) indicate positively to the viability of the determination the
Only one dataset is used to describe the normal behavjor. . (ajated parameters based on historical data
of friction and is assigned ag;°. Three scenarios are

0 . The wear estimates become smoother for lafgewhich is
considered using the dataset paif®:”, 77 ), (73", 77 ) in line with the simulation study of Sec. Ill-A. For all scena
and (73°, ’7}2). The scenarios are called 0, 1 or 2 accordings, the larger wear estimates for- 90 allows for a distinction
to the selected dataset for the wear profile. of the critical (shaded) regions. The detection of a ctitica

To simplify the presentation of the results, the behavigvear change could be easily achieved in Scenarios 0 and 1
of T(k) and 7;(k) are the same for the three scenariogyith a simple threshold, set e.g. at 35. The same threshold
they are shown in Fig. 10. Notice that the amplitude of th&ould however give an early detection for Scenario 2. Anyearl
friction changes due to temperature and load are consigeragietection is understood as less critical than a total fikfr
larger than of those caused by wear for any of the scenaritii system but may lead to unnecessary maintenance actions.
The maximum change value found for the nominal frictioMore careful analyses of the wear estimates may therefore be
behavior is157% relative to the maximum change foundneeded in order to give an accurate support for maintenance
in 7-f°_ decisions.

The same model and optimization parameters considered inf Ne fact that the wear estimates do not differ much uith
Sec. IV-A are used for all scenarios. The parameters for tAEgNt lead to the conclusion thaf =1 should be used, but

friction model were identified based on the datasgt8 and this is only true if the optimal speed values are chosen. To

~0 . .. illustrate this, two wear estimates were achieved for Sterza
Tz . Since these parameters are used for all scenarios, it ¢l one measurement onlv. at— 82.2 and & — 133.5
be considered that the parameters for the nominal behafsior,0 g Y, al= o, $ = 1990,

- T : . As it can be noticed, the wear estimates are considerably
friction are correct for all scenarios, illustrating theusition .
. affected by changes in temperature when these speed values
where they are found based on experiments performed prior

L are used. However, when these two measurements are used
to the tests and when the joint is healthy. The wear paramet{aor ether, the estimate becomes less sensitive. The ionlusi

are however only consistent for Scenario 0 and Scenarios .
. T of measurements around the optimal speed values should also
and 2 illustrate the situation where the wear parameters are .
o ; inCrease robustness to uncertainties in the wear model.
based on historical failure data.

22.60 [28.5,41.7,82.2]T
18.00 [2.1,28.5,35.1,41.7]T

rwN R

VI. CONCLUSIONS AND FUTURE WORK

A model-based maximum likelihood wear estimator was
The choice of speed values for experiment design is limitefloposed based on a known friction model and constant-speed
to the speed levels available from the datasets, given i (2ffiction data collected from experiments. Because frittis
The problems (24) and (25) are solved by considering evefignsiderably affected by other factors than wear, in palgic
possible combination of speed levels f§r=[1,2,3,4]. The temperature, a friction model that can describe thesehlasa
resulting optimal values are given in Table V and relate weell was suggested_ Experiment design was also considered to
those found in Table IV. Notice that the optimal values depeupport the choice of speed levels of the friction data which
on the wear model parameters used. Since these parameigjgals more information about wear. Simulations and case
were found using7 , optimality of &* is only expected for studies based on real data were considered to evaluate the
Scenario 0. approach. The wear estimates achieved in the studies showed
The resulting wear estimates for the different scenaries a clear response to changes of friction, indicating that the
shown in Figs. 11(a) to 11(c). The same scale for the axesajsproach may open up for condition based maintenance of
used in the figures so they are directly comparable. The shadedustrial robots.

B. Results and Discussion
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(a) Wear profile datdTy . (b) Wear profile data7".

Fig. 9. Friction wear profile data used in Scenarios 1 (a) arfd)2The dashed line indicates a critical wear level to benéburhe dotted lines relate to
the nominal (wear free) friction curve}) that was removed from the friction data according to (6).

50
——=T]
0013 J{ \ I'-————1 \;_7!‘
3 RIS
‘f“i‘fx‘\\{i‘i{“\ 450 ! 106
(=008 A ~ \ i
I
o O uor ! 4041
I
0 & !
351 : | H0.2
! I
1' I
R S S S | R S——
50 k 30 3
. 0 10 20 30 40 50 60 70 80 920 10!
® (rad/s) 300 0
(a) Nominal friction behavior for all scenarios. (b) Associatedl” and 7.

Fig. 10. Behavior of nominal friction as a function ¢fand k for the scenarios considered (a); an offset value correfipgrto the smallest friction value
in the dataset was removed for a comparison to the wear effBetsassociated temperature and load values are shown in (b).
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(d) Scenario 2 with non-optimal speed values.

(c) Scenario 2.

Fig. 11. Wear estimates for the different scenarios invastidy Figs. (a) to (c) present the estimates for= [1, 2, 3, 4] using the optimal speed values.
Fig. (d) illustrates Scenario 2 when non-optimal speed wahre used fofV =[1,2]. The shaded areas in the figures relate to a region where etidate

should be made.



The studies presented here are restricted to one type[iaf
robot/gearbox and in an experimental verification perfatine
a lab. To verify the applicability of the proposed solutidman
industrial scenario, a more extensive experimental cagmpai [13]
needed. Also interesting is to consider other types of tiaria

and how these affect the models and framework presented. oy

example, a change of lubricant may require the re-estimatio
of all or some of the friction parameters used.

It should be stressed that different characteristics of thg
problem are expected for different devices, gearboxesaurt f
mechanisms. The results and discussion presented here
however provide useful guidance for those interested ingusi
similar approaches for different devices. Of key imporeatc
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the proposed approach are the friction models used. The SE[HI—) A. C. Bittencourt and S. Gunnarsson, “Static frictiond robot joint—

ideas suggested for experiment design and wear identificati

modeling and identification of load and temperature effedmiirnal of
Dynamic Systems, Measurement, and Control. 134, no. 5, 2012.

can nevertheless be extended to other devices and mddgl F. Al-Bender and J. Swevers, “Characterization oftfoie force dynam-

structures as long as the friction model used is a statictifumc

i [19]
of wear. These problems can be addressed with the resulting
likelihood function. In case there are at least as manyidict
data points as unknowns, the standard joint likelihood tionc
can be used, otherwise the marginalized likelihood is ablét
alternative.

A natural extension to this work is to consider on-line wedf !
estimation. This could perhaps be achieved by considegats d
from a friction observer, e.g. as presented in [11], [16]eTh
sensitivity of such approach to unmodeled phenomena, d’
due to dynamic friction, and external disturbances shoeld b
considered carefully based on experiments performed oala 13l
robot in different scenarios. (24]

[20]

(25]

REFERENCES
[1] A. R. Lansdown, A. L. Price, and J. Larsen-Basse, “Matlerio resist
wear—a guide to their selection and usédgurnal of Tribology vol.
109, no. 2, pp. 379-380, 1987.
J. A. Williams, “Wear and wear particles - some fundamerjtalsbol-
ogy International vol. 38, no. 10, pp. 863 — 870, 2005.
K. Kato, “Wear in relation to friction — a reviewWear, vol. 241, no. 2,
pp. 151 — 157, 2000.
A. C. Bittencourt, P. Axelsson, Y. Jung, and T. Béwgh, “Modeling and
identification of wear in a robot joint under temperature whisances,”
in Proc. of the 18th IFAC World CongresBlilan, Italy, Aug 2011.
V. Filaretov, M. Vukobratovic, and A. Zhirabok, “Obsewbased fault
diagnosis in manipulation robots¥lechatronics vol. 9, no. 8, pp. 929 |
— 939, 1999.
M. Mclntyre, W. Dixon, D. Dawson, and |. Walker, “Faultedtification
for robot manipulators,IEEE Transactions on Roboticsol. 21, no. 5,
pp. 1028-1034, Oct. 2005.
A. T. Vemuri and M. M. Polycarpou, “A methodology for faultadjnosis
in robotic systems using neural networkRdbotica vol. 22, no. 04, pp.
419-438, 2004.
W. E. Dixon, I. D. Walker, D. M. Dawson, and J. P. Hartranft
“Fault detection for robot manipulators with parametric utaiaty: A
prediction-error-based approachBEE Transactions on Robotics and
Automation vol. 16, no. 6, pp. 3628—-3634, 2000.
F. Caccavale, P. Cilibrizzi, F. Pierri, and L. VillaniAttuators fault diag-
nosis for robot manipulators with uncertain mod€l@ntrol Engineering
Practice vol. 17, no. 1, pp. 146 — 157, 2009.
A. De Luca and R. Mattone, “Actuator failure detectiondaisolation
using generalized momenta,” iroc. of the 2003 IEEE International
Conference on Robotics and Automation (ICRA). 1, Taipei, Taiwan,
sept. 2003, pp. 634 — 639 vol.1.
L. R. Ray, J. R. Townsend, and A. Ramasubramanian, “Opfiitterling
and Bayesian detection for friction-based diagnostics ichimes,”ISA
Transactionsvol. 40, no. 3, pp. 207 — 221, 2001.

(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

ics,” IEEE Control Systems Magazineol. 28, no. 6, pp. 64-81, 2008.
K. De Moerlooze, F. Al-Bender, and H. Van Brussel, “A gealised
asperity-based friction modelTribology Letters vol. 40, pp. 113-130,
2010.

P. Hamon, M. Gautier, and P. Garrec, “Dynamic identifimatdf robots
with a dry friction model depending on load and velocity,”Pnoc. of
the 2010 IEEE/RSJ International Conference on Intelligeobots and
Systemsoct. 2010, pp. 6187 —6193.

N. Kammerer and P. Garrec, “Dry friction modeling in dynarden-
tification for robot manipulators: Theory and experiments,Piroc. of
the 2013 IEEE International Conference on Mechatroniz813, pp.
422-429.

22] S. E. Chick and M. B. Mendel, “An engineering basis foatsstical
' lifetime models with an application to tribologyReliability, IEEE

Transactions onvol. 45, no. 2, pp. 208-215, 1996.

C. M. Bishop,Pattern Recognition and Machine Learnirist ed. New
York, USA: Springer, 2006.

H. L. Van TreesDetection, Estimation and Modulation Theory, Part |
Wiley, New York, 2001.

B. Porat and B. Friedlander, “Computation of the exadbrimation
matrix of Gaussian time series with stationary random compstien
IEEE Transactions on Acoustics, Speech and Signal Protgssil. 34,
no. 1, pp. 118 — 130, feb 1986.

André Carvalho Bittencourt graduated in Auto-
matic Control Engineer with honors from the Federal
University of Santa Catarina, Floriapolis, Brazil.

He received a Licentiate degree in January 2012
from Linkdping University, Sweden, where he is
currently a Ph.D. student. His main research inter-
ests are industrial robotics, diagnosis and condition
monitoring.

Patrik Axelsson received the M.Sc. degree in ap-
plied physics and electrical engineering in January
2009 and the Licentiate degree in automatic control
in December 2011, both from Lidping University,
Sweden, where he is currently a PhD student. His
research interests are sensor fusion and control for
industrial manipulators.



