LINK-SIC

Systems that Operate Repetitively

Consider a general system:

A task \mathcal{O} is executed M times and data is collected from each execution

With the purpose of monitoring \mathbf{y}^{j} to detect changes in \mathbf{f}^{j} , the following **assumptions** are made

Faults are observable: changes in f^{j} affect y^{j} . **Regularity of y^j if no fault:** y^j is similar along j unless $f \neq 0$. **Regularity of d^j:** d^j is similar along j. Nominal data are available: At j=0, $\mathbf{f}^0=0$ and \mathbf{y}^0 is available.

The basic idea is then to compare y^0 with y^j .

An industrial robot subject to wear and temperature changes

For more. This work is available as a technical report at http://www.control.isy.liu.se/~andrecb/publications/

A Data-driven Method for Monitoring of Repetitive Systems – Robust Wear Monitoring in an Industrial Robot Joint

André Carvalho Bittencourt, Kari Saarinen, Shiva Sander-Tavallaey

Characterizing and Comparing Data

There are several possible options to characterize y^{j} . Here, the **data** distribution is considered.

Characterizing the data / Comparing the data **Smooth Density Estimate / Kullback-Liebler distance**

$$\hat{p}^{j}(y) \triangleq \frac{1}{N} \sum_{i=1}^{N} k_{h}(y - y_{i}^{j}) \qquad \text{KL}\left(\hat{p}^{0} || \hat{p}^{j}\right) \triangleq I$$
$$D_{\text{KL}}\left(\hat{p}^{0} || \hat{p}^{j}\right) \triangleq -$$

+ no synch., no ordering, little tuning, no model. - requires y^0 , same \mho , regular d^j .

Monitoring the Accumulated Changes

The objective is to relax the assumptions of known \mathbf{y}^0 and regularity of \mathbf{y}^{j} (same $\boldsymbol{\mho}$).

COUSU 0.15 0.1

No assignment of y^0 the $KL(\cdot || \cdot)$ is a metric

$$\operatorname{KL}\left(\hat{p}^{0}||\hat{p}^{j}\right) \leq \sum_{k=1}^{j} \operatorname{KL}\left(\hat{p}^{k-1}||\hat{p}^{k}\right)$$

Monitor increments with a CUSUM

$$\begin{cases} g^{j} = g^{j-1} + \mathrm{KL}\left(\hat{p}^{j-1} || \hat{p}^{j}\right) - \nu \\ g^{j} = 0 \text{ if } g^{j} < 0 \end{cases}$$

with $\nu = \kappa \sigma + \mu$.

Handling several \Im s same! but $\mho^{j-1} = \mho^j$ with $\nu^j = \kappa \sigma(\mho^j) + \mu(\mho^j)$

- does not require y^0 , handles several \Im s. - regular d^{j} , more tuning, sensitive to sampling rate.

LINK-SIC Linköping Center for Sensor Informatics and Control — A Vinnova Industry Excellence Center

In practice, it is important to cope with irregular **d** to achieve robustness.

Handling disturbances of apply weights to the dat

The idea is to weight data according to knowledge about disturbances and faults. Criteria similar to LDA can be used. Let \bar{m}^k and \bar{s}^k be the average mean and variance for the weighted faulty data, k = 1, and weighted nominal data, k=0. The criterion

$$\max_{\mathbf{w}} \frac{\left[\bar{m}^{1}(\mathbf{w}) - \bar{m}^{0}(\mathbf{w})\right]^{2}}{\bar{s}_{1}(\mathbf{w}) + \bar{s}_{0}(\mathbf{w})}$$

For an industrial robot, optimal weights correlate with speed!

Summary

A data-driven method for monitoring of systems that operate in a repetitive manner is proposed which

- can be used online, in a batch manner
- can handle disturbances
- requires nearly no knowledge of the system
- is simple and easy to implement, with little tuning

$$\mathbf{\dot{z}} \triangleq \mathbf{w} \circ$$

gives,
$$\mathbf{w} \propto (\mathbf{S}^1 + \mathbf{S}^0)^{-1} (\mathbf{m}^1 - \mathbf{m}^0)$$

• requires no synchronization or ordering of data sequences

http://www.linksic.isy.liu.se/