

Linköpings universitet

Data mining for system identification

— applications to process identification

André Carvalho Bittencourt

Automatic Control, Linköping University, Sweden

February 23, 2015

Outline

- 1. Problem formulation
- 2. Theoretical guiding principles
 - Modeling
 - Data
 - Estimation
- 3. Tests and outline of algorithm
- 4. Mining data from an entire plant
- 5. Concluding remarks

Mining data for system identification

Historical database

- continuous vars r, u, y
- discrete mode variable *m*
- 195 control loops
- 5 types of process variables
- 4 samples per minute
- data pts 3.1K/min, 4.5M/day

Can we extract useful intervals of data for sysid?

Mining data for system identification

Historical database

- \blacksquare continuous vars r, u, y
- discrete mode variable *m*
- 195 control loops
- 5 types of process variables
- 4 samples per minute
- data pts 3.1K/min, 4.5M/day

Can we extract useful intervals of data for sysid?

Requisites and assumptions

Requisites

- minimal knowledge
- flexible
- fast
- measure of quality

Assumptions

- SISO loops
- linear dynamics
- real-valued poles*

Approach

- take guidance from the theory
- use flexible models
- and recursive solutions

System
$$S$$

$$y(k) = G_0(q)u(k) + H_0(q)e(k)$$

Model structure
$$\mathcal{M}(\theta)$$

$$y(k) = G(q, \theta)u(k) + H(q, \theta)e(k)$$

$$\hat{y}(k|\theta) = H(q,\theta)^{-1}G(q,\theta)u(k) + (1 - H(q,\theta)^{-1})y(k)$$

$$G_0(z) = G(z, \theta'), H_0(z) = H(z, \theta')$$

for $\theta' \in D_{\theta}. \Leftrightarrow S = \mathcal{M}(\theta')$

"true set"
$$D_T(S, \mathcal{M})$$

System S

$$y(k) = G_0(q)u(k) + H_0(q)e(k)$$

Model structure $\mathcal{M}(\theta)$

$$y(k) = G(q, \theta)u(k) + H(q, \theta)e(k)$$

$$\hat{y}(k|\theta) = H(q,\theta)^{-1}G(q,\theta)u(k) + (1 - H(q,\theta)^{-1})y(k)$$

Model set \mathcal{M}

 $\{M(\theta): \theta \in D_{\theta}\}$

$$G_0(z) = G(z, \theta'), H_0(z) = H(z, \theta')$$

for $\theta' \in D_{\theta}. \Leftrightarrow S = \mathcal{M}(\theta')$

System S

$$y(k) = G_0(q)u(k) + H_0(q)e(k)$$

Model structure
$$\mathcal{M}(\theta)$$

$$y(k) = G(q, \theta)u(k) + H(q, \theta)e(k)$$

$$\hat{y}(k|\theta) = H(q,\theta)^{-1} G(q,\theta) u(k) + (1 - H(q,\theta)^{-1}) y(k)$$

Model set \mathcal{M}

$$\{M(\theta): \theta \in D_{\theta}\}$$

$$S \in \mathcal{M}$$

$$G_0(z) = G(z, \theta'), H_0(z) = H(z, \theta')$$

for $\theta' \in D_{\theta}. \Leftrightarrow S = \mathcal{M}(\theta')$

"true set"
$$D_{\mathcal{T}}(\mathcal{S},\mathcal{M})$$

$$\{\theta \in D_{\theta} : \mathcal{S} = \mathcal{M}(\theta)\}$$

System S

$$y(k) = G_0(q)u(k) + H_0(q)e(k)$$

Model structure
$$\mathcal{M}(\theta)$$

$$y(k) = G(q, \theta)u(k) + H(q, \theta)e(k)$$

$$\hat{y}(k|\theta) = H(q,\theta)^{-1}G(q,\theta)u(k) + (1 - H(q,\theta)^{-1})y(k)$$

Model set
$${\mathcal M}$$

$$\{M(\theta):\theta\in D_{\theta}\}$$

$$S \in \mathcal{M}$$

$$G_0(z) = G(z, \theta'), H_0(z) = H(z, \theta')$$

for $\theta' \in D_{\theta}. \Leftrightarrow S = \mathcal{M}(\theta')$

"true set"
$$D_{\mathcal{T}}(\mathcal{S},\mathcal{M})$$

$$\{\theta \in D_{\theta} : \mathcal{S} = \mathcal{M}(\theta)\}$$

System S

$$y(k) = G_0(q)u(k) + H_0(q)e(k)$$

Model structure
$$\mathcal{M}(\theta)$$

$$y(k) = G(q, \theta)u(k) + H(q, \theta)e(k)$$

Optimal one-step ahead predictor

$$\hat{y}(k|\theta) = H(q,\theta)^{-1}G(q,\theta)u(k) + (1 - H(q,\theta)^{-1})y(k)$$

Model set \mathcal{M}

$$\{M(\theta): \theta \in D_{\theta}\}$$

$$S \in \mathcal{M}$$

$$G_0(z) = G(z, \theta'), H_0(z) = H(z, \theta')$$
 for $\theta' \in D_{\theta}. \Leftrightarrow S = \mathcal{M}(\theta')$

"true set"
$$D_{\mathcal{T}}(\mathcal{S},\mathcal{M})$$

$$\{\theta \in D_{\theta} : \mathcal{S} = \mathcal{M}(\theta)\}$$

One-to-one relation $T(q,\theta) \leftrightarrow W(q,\theta)$

$$y(k) = [G(q,\theta) \quad H(q,\theta)] \begin{bmatrix} u(k) \\ e(k) \end{bmatrix} = T(q,\theta)x(k)$$
$$\hat{y}(k|\theta) = [H(q,\theta)^{-1}G(q,\theta) \quad (1 - H(q,\theta)^{-1})] \begin{bmatrix} u(k) \\ y(k) \end{bmatrix} = W(q,\theta)z(k)$$

One-to-one relation $T(q,\theta) \leftrightarrow W(q,\theta)$

$$y(k) = [G(q,\theta) \quad H(q,\theta)] \begin{bmatrix} u(k) \\ e(k) \end{bmatrix} = T(q,\theta)x(k)$$
$$\hat{y}(k|\theta) = [H(q,\theta)^{-1}G(q,\theta) \quad (1 - H(q,\theta)^{-1})] \begin{bmatrix} u(k) \\ y(k) \end{bmatrix} = W(q,\theta)z(k)$$

Identifiability at θ'

Whether no other θ gives the same freq resp: $W(z,\theta) = W(z,\theta'), \forall z \implies \theta = \theta'$

One-to-one relation $T(q, \theta) \leftrightarrow W(q, \theta)$

$$y(k) = [G(q,\theta) \quad H(q,\theta)] \begin{bmatrix} u(k) \\ e(k) \end{bmatrix} = T(q,\theta)x(k)$$
$$\hat{y}(k|\theta) = [H(q,\theta)^{-1}G(q,\theta) \quad (1 - H(q,\theta)^{-1})] \begin{bmatrix} u(k) \\ y(k) \end{bmatrix} = W(q,\theta)z(k)$$

Identifiability at θ'

Whether no other θ gives the same freq resp: $W(z, \theta) = W(z, \theta'), \forall z \implies \theta = \theta'$

"True parameter" θ_0

If $S \in \mathcal{M}$ and \mathcal{M} is globally identifiable, then $D_T(S, \mathcal{M}) = \theta_0$.

Remarks

 \blacksquare choose $\mathcal{S} \in \mathcal{M}$

what about the data?

One-to-one relation $T(q, \theta) \leftrightarrow W(q, \theta)$

$$y(k) = [G(q,\theta) \quad H(q,\theta)] \begin{bmatrix} u(k) \\ e(k) \end{bmatrix} = T(q,\theta)x(k)$$
$$\hat{y}(k|\theta) = [H(q,\theta)^{-1}G(q,\theta) \quad (1 - H(q,\theta)^{-1})] \begin{bmatrix} u(k) \\ y(k) \end{bmatrix} = W(q,\theta)z(k)$$

Identifiability at heta'

Whether no other θ gives the same freq resp: $W(z, \theta) = W(z, \theta'), \forall z \implies \theta = \theta'$

"True parameter" θ_0

If $S \in \mathcal{M}$ and \mathcal{M} is globally identifiable, then $D_T(S, \mathcal{M}) = \theta_0$.

Remarks

- lacksquare choose $\mathcal{S} \in \mathcal{M}$
- what about the data?

ARX: delay expansion

$$W_u(z,\theta) \approx \sum_{i=1}^n b_i z^{-i} \triangleq B_n(z)$$

 $W_y(z,\theta) \approx \sum_{i=1}^n a_i z^{-i} \triangleq A_n(z)$

- \blacksquare exact if $n \to \infty$
- \blacksquare convergence depends on T_s
- unknown delays

$$\mathcal{N}_{u}(z,\theta) \approx \sum_{i=1}^{n} b_{i} L_{i}(z,\alpha) \triangleq \tilde{B}_{n}(z,\alpha)$$

 $\mathcal{N}_{y}(z,\theta) \approx \sum_{i=1}^{n} a_{i} L_{i}(z,\alpha) \triangleq \tilde{A}_{n}(z,\alpha)$

$$L_i(q,\alpha) = \frac{\sqrt{(1-\alpha^2)T_s}}{q-\alpha} \left(\frac{1-\alpha q}{q-\alpha}\right)^{i-1}$$

$$W_u(z, \boldsymbol{\theta_b}) = \tilde{B}_{n_b}(z, \alpha)$$

$$W_y(z, \boldsymbol{\theta_a}) = A_{n_a}(z)$$

ARX: delay expansion

$$W_u(z,\theta) \approx \sum_{i=1}^n b_i z^{-i} \triangleq B_n(z)$$

 $W_y(z,\theta) \approx \sum_{i=1}^n a_i z^{-i} \triangleq A_n(z)$

- \blacksquare exact if $n \to \infty$
- \blacksquare convergence depends on T_s
- unknown delays

L-ARX: Laguerre expansion

$$W_u(z,\theta) \approx \sum_{i=1}^n b_i L_i(z,\alpha) \triangleq \tilde{B}_n(z,\alpha)$$

 $W_y(z,\theta) \approx \sum_{i=1}^n a_i L_i(z,\alpha) \triangleq \tilde{A}_n(z,\alpha)$

- exact if $n \to \infty$
- lacksquare convergence depends on lpha
- more efficient with delays
- real poles

$$L_i(q,\alpha) = \frac{\sqrt{(1-\alpha^2)T_s}}{q-\alpha} \left(\frac{1-\alpha q}{q-\alpha}\right)^{i-1}$$

$$W_u(z, \boldsymbol{\theta_b}) = \tilde{B}_{n_b}(z, \alpha)$$

$$W_y(z, \boldsymbol{\theta_a}) = A_{n_a}(z)$$

ARX: delay expansion

$$W_u(z,\theta) \approx \sum_{i=1}^n b_i z^{-i} \triangleq B_n(z)$$

 $W_y(z,\theta) \approx \sum_{i=1}^n a_i z^{-i} \triangleq A_n(z)$

- \blacksquare exact if $n \to \infty$
- \blacksquare convergence depends on T_s
- unknown delays

Remarks

- describe "any" linear dynamics
- globally identifiable
- linear regressions
- Laguerre better for delays
- \blacksquare choice of n and α

L-ARX: Laguerre expansion

$$W_{u}(z,\theta) \approx \sum_{i=1}^{n} b_{i}L_{i}(z,\alpha) \triangleq \tilde{B}_{n}(z,\alpha)$$

$$W_{y}(z,\theta) \approx \sum_{i=1}^{n} a_{i}L_{i}(z,\alpha) \triangleq \tilde{A}_{n}(z,\alpha)$$

- \blacksquare exact if $n \to \infty$
- lacksquare convergence depends on lpha
- more efficient with delays
- real poles

$$L_i(q, \alpha) = \frac{\sqrt{(1-\alpha^2)T_s}}{q-\alpha} \left(\frac{1-\alpha q}{q-\alpha}\right)^{i-1}$$

$$W_u(z, \boldsymbol{\theta_b}) = \tilde{B}_{n_b}(z, \alpha)$$

$$W_y(z, \boldsymbol{\theta_a}) = A_{n_a}(z)$$

ARX: delay expansion

$$W_u(z,\theta) \approx \sum_{i=1}^n b_i z^{-i} \triangleq B_n(z)$$

 $W_y(z,\theta) \approx \sum_{i=1}^n a_i z^{-i} \triangleq A_n(z)$

- \blacksquare exact if $n \to \infty$
- \blacksquare convergence depends on T_s
- unknown delays

Remarks

- describe "any" linear dynamics
- globally identifiable
- linear regressions
- Laguerre better for delays
- \blacksquare choice of n and α

L-ARX: Laguerre expansion

$$W_{u}(z,\theta) \approx \sum_{i=1}^{n} b_{i}L_{i}(z,\alpha) \triangleq \tilde{B}_{n}(z,\alpha)$$

$$W_{y}(z,\theta) \approx \sum_{i=1}^{n} a_{i}L_{i}(z,\alpha) \triangleq \tilde{A}_{n}(z,\alpha)$$

- \blacksquare exact if $n \to \infty$
- lacksquare convergence depends on lpha
- more efficient with delays
- real poles

$$L_i(q,\alpha) = \frac{\sqrt{(1-\alpha^2)T_s}}{q-\alpha} \left(\frac{1-\alpha q}{q-\alpha}\right)^{i-1}$$

$$W_u(z, \boldsymbol{\theta_b}) = \tilde{B}_{n_b}(z, \alpha)$$

$$W_y(z, \boldsymbol{\theta_a}) = A_{n_a}(z)$$

- \blacksquare integrate u(k) if integrating plant
- guess of largest delay and time cte

Informative enough $\{z(k)\}_1^N$

Distinguishes non-equiv. models $\bar{E} [(W(z, \theta_1) - W(z, \theta_2)) z(k)]^2 = 0$ $\Rightarrow W(e^{i\omega}, \theta_1) \equiv W(e^{i\omega}, \theta_2)$

Persistent excitation (PE) of $\phi(k)$ Full rank information matrix $\bar{E}\left[\phi(k)\phi(k)^T\right]>0$

n-Suff. rich signal u(k) (SRn) if $\phi(k) = [u(k-1), \cdots, u(k-n)]$ is

ARX informative enough data open: iff u(k) is SRn_b closed: let $K(q) = \frac{X(q)}{Y(q)}$ $r(k) \equiv 0$, dist. rejection iff $(n_x - n_a, n_y - n_b) \ge 0$ $r(k) \not\equiv 0$, servo iff r(k) is SRn_r

Informative enough $\{z(k)\}_1^N$

Distinguishes non-equiv. models $\bar{E} [(W(z, \theta_1) - W(z, \theta_2)) z(k)]^2 = 0$ $\Rightarrow W(e^{i\omega}, \theta_1) \equiv W(e^{i\omega}, \theta_2)$

Persistent excitation (PE) of $\phi(k)$

Full rank information matrix $\bar{E} \left[\phi(k) \phi(k)^T \right] > 0$

n-Suff. rich signal u(k) (SRn) is $\phi(k) = [u(k-1), \dots, u(k-n)]$ is PE.

ARX informative enough data open: iff u(k) is SRn_b closed: let $K(q) = \frac{X(q)}{Y(q)}$ $= r(k) \equiv 0$, dist. rejection iff $(n_x - n_a, n_y - n_b) \ge 0$ $= r(k) \not\equiv 0$, servo iff r(k) is SRn_r $n_r \ge \min(n_2 - n_x, n_b - n_y)$

Informative enough $\{z(k)\}_1^N$

Distinguishes non-equiv. models $\bar{E} [(W(z, \theta_1) - W(z, \theta_2)) z(k)]^2 = 0$ $\Rightarrow W(e^{i\omega}, \theta_1) \equiv W(e^{i\omega}, \theta_2)$

Persistent excitation (PE) of $\phi(k)$

Full rank information matrix $\bar{E}\left[\phi(k)\phi(k)^T\right]>0$

n-Suff. rich signal u(k) (SR*n*) if $\phi(k) = [u(k-1), \dots, u(k-n)]$ is PE.

ARX informative enough data open: iff u(k) is SRn_b closed: let $K(q) = \frac{X(q)}{Y(q)}$ $r(k) \equiv 0$, dist. rejection iff $(n_x - n_a, n_y - n_b) \ge 0$ $r(k) \not\equiv 0$, servo iff r(k) is SRn_r $n_x \ge \min(n_x - n_a, n_y - n_b) = n_a$

Informative enough $\{z(k)\}_1^N$

Distinguishes non-equiv. models $\bar{E}\left[\left(W(z,\theta_1)-W(z,\theta_2)\right)z(k)\right]^2=0$ $\Rightarrow W(e^{\imath\omega},\theta_1)\equiv W(e^{\imath\omega},\theta_2)$

Persistent excitation (PE) of $\phi(k)$

Full rank information matrix $\bar{E}\left[\phi(k)\phi(k)^T\right]>0$

n-Suff. rich signal u(k) (SR*n*) if $\phi(k) = [u(k-1), \dots, u(k-n)]$ is PE.

ARX informative enough data

open: iff u(k) is SRn_b

losed: let
$$K(q) = \frac{X(q)}{Y(q)}$$

iff
$$(n_x - n_a, n_y - n_b) \ge 0$$

■
$$r(k) \not\equiv 0$$
, servo
iff $r(k)$ is SRn_r
 $n_r \ge \min(n_a - n_x, n_b - n_y)$

Informative enough $\{z(k)\}_{1}^{N}$

Persistent excitation (PE) of $\phi(k)$

Full rank information matrix $\bar{E} \left[\phi(k) \phi(k)^T \right] > 0$

n-Suff. rich signal u(k) (SR*n*) if $\phi(k) = [u(k-1), \dots, u(k-n)]$ is PE.

ARX informative enough data

open: iff u(k) is SRn_b

$$r(k) \equiv 0$$
, dist. rejection iff $(n_x - n_a, n_y - n_b) \ge 0$

■
$$r(k) \not\equiv 0$$
, servo
iff $r(k)$ is SRn_r
 $n_r \ge min(n_a - n_x, n_b - n_y)$

Step signal example

Let
$$u(k) = \Delta(k)$$
,
 $\phi(k) = [\Delta(k-1), \dots, \Delta(k-n)]$

$$\bar{E}[\phi(k)\phi(k)^T] = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$
, SR1!

Informative enough $\{z(k)\}_1^N$

Persistent excitation (PE) of $\phi(k)$

Full rank information matrix $\bar{E} \left[\phi(k) \phi(k)^T \right] > 0$

n-Suff. rich signal u(k) (SR*n*) if $\phi(k) = [u(k-1), \dots, u(k-n)]$ is PE.

ARX informative enough data

open: iff u(k) is SRn_b closed: let $K(q) = \frac{X(q)}{Y(q)}$

- $r(k) \equiv 0$, dist. rejection iff $(n_x - n_a, n_y - n_b) \ge 0$
- $r(k) \not\equiv 0$, servo iff r(k) is SRn_r $n_r \ge min(n_a - n_x, n_b - n_y)$

Remarks

- how to verify? finite sample?
- disturbance rejection?
- look at the estimate!

Informative enough $\{z(k)\}_1^N$

Distinguishes non-equiv. models $\frac{\bar{E}}{E} [(W(z, \theta_1) - W(z, \theta_2)) z(k)]^2 = 0$ $\Rightarrow W(e^{\imath \omega}, \theta_1) \equiv W(e^{\imath \omega}, \theta_2)$

Persistent excitation (PE) of $\phi(k)$

Full rank information matrix $\bar{E} \left[\phi(k) \phi(k)^T \right] > 0$

n-Suff. rich signal u(k) (SR*n*) if $\phi(k) = [u(k-1), \dots, u(k-n)]$ is PE.

ARX informative enough data

open: iff u(k) is SRn_b closed: let $K(q) = \frac{X(q)}{Y(q)}$

- $r(k) \equiv 0$, dist. rejection iff $(n_x - n_a, n_y - n_b) \ge 0$
- $r(k) \not\equiv 0$, servo iff r(k) is SRn_r $n_r \ge \min(n_a - n_x, n_b - n_y)$

Remarks

- how to verify? finite sample?
- disturbance rejection?
- look at the estimate!

The RLS estimate

$$\hat{\theta}_k = \arg\min_{\theta \in D_{\theta}} V_k(\theta) = \arg\min_{\theta \in D_{\theta}} \sum_{i=1}^k \lambda^{k-i} \varepsilon^2(k, \theta)$$

Consistent, i.e. $\hat{ heta}_{\infty}\in D_{T}(\mathcal{S},\mathcal{M})(= heta_{0})$, if

- $lacksquare{S} \in \mathcal{M}, \ \mathcal{M}(heta)$ is identifiable (globally
- $\lambda \rightarrow 1$, Z^N is informative enough

Remarks

- \blacksquare open, excitation in u
- servo, excitation in r
 through feedback

Frequency representation

The RLS estimate

$$\hat{\theta}_k = \arg\min_{\theta \in D_{\theta}} V_k(\theta) = \arg\min_{\theta \in D_{\theta}} \sum_{i=1}^k \lambda^{k-i} \varepsilon^2(k, \theta)$$

Consistent, i.e. $\hat{\theta}_{\infty} \in D_T(\mathcal{S}, \mathcal{M}) (= \theta_0)$, if

- $\mathcal{S} \in \mathcal{M}$, $\mathcal{M}(\theta)$ is identifiable (globally)
- $\lambda \to 1$, Z^N is informative enough

Frequency representation

For constant
$$\lambda^{k-i}=rac{1}{2N}$$
 and $N o\infty$. $ar V(heta)=rac{1}{4\pi}\int_{-\pi}^{\pi}\Phi_{arepsilon}(\omega, heta)d\omega$ and

$$\Phi_{\varepsilon} = \frac{|G_0 + B_{\theta} - G_{\theta}|^2}{|H_{\theta}|^2} \Phi_{u} + \frac{|H_0 - H_{\theta}|^2}{|H_{\theta}|^2} \left(\gamma_0 - \frac{\Phi_{ue}}{\Phi_{u}}\right) + \gamma_0$$

$$B_{\theta} = (H_0 - H_{\theta}) \frac{\Phi_{ue}}{\Phi}$$

The RLS estimate

$$\hat{\theta}_k = \arg\min_{\theta \in D_{\theta}} V_k(\theta) = \arg\min_{\theta \in D_{\theta}} \sum_{i=1}^k \lambda^{k-i} \varepsilon^2(k, \theta)$$

Consistent, i.e. $\hat{\theta}_{\infty} \in D_{\mathcal{T}}(\mathcal{S}, \mathcal{M}) (= \theta_0)$, if

- lacksquare $\mathcal{S}\in\mathcal{M}$, $\mathcal{M}(heta)$ is identifiable (globally)
- lacksquare $\lambda
 ightarrow 1$, Z^N is informative enough

Remarks

- lacktriangle open, excitation in u
- servo, excitation in r through feedback

Frequency representation

Open-loop, $\Phi_{ue} \equiv 0$. Unbiased estimate.

$$B_{\theta} = 0$$

The RLS estimate

$$\hat{\theta}_k = \arg\min_{\theta \in D_{\theta}} V_k(\theta) = \arg\min_{\theta \in D_{\theta}} \sum_{i=1}^k \lambda^{k-i} \varepsilon^2(k, \theta)$$

Consistent, i.e. $\hat{\theta}_{\infty} \in D_{\mathcal{T}}(\mathcal{S}, \mathcal{M}) (= \theta_0)$, if

- $\mathcal{S} \in \mathcal{M}$, $\mathcal{M}(\theta)$ is identifiable (globally)
- $\lambda \rightarrow 1$, Z^N is informative enough

Remarks

- \blacksquare open, excitation in u
- \blacksquare servo, excitation in rthrough feedback

Frequency representation

Servo, $\Phi_u = \Phi_u^r + \Phi_u^e$ and $|\Phi_{ue}|^2 = \Phi_u^e \gamma_0$. Excitation in r through feedback!

$$|B_{\theta}|^2 = |H_0 - H_{\theta}|^2 \frac{\gamma_0 \Phi_u^e}{(\Phi_u^r + \Phi_u^e)^2}$$

The RLS estimate

$$\hat{\theta}_k = \arg\min_{\theta \in D_{\theta}} V_k(\theta) = \arg\min_{\theta \in D_{\theta}} \sum_{i=1}^k \lambda^{k-i} \varepsilon^2(k, \theta)$$

Consistent, i.e. $\hat{\theta}_{\infty} \in D_{\mathcal{T}}(\mathcal{S}, \mathcal{M}) (= \theta_0)$, if

- lacksquare $\mathcal{S} \in \mathcal{M}$, $\mathcal{M}(heta)$ is identifiable (globally)
- lacksquare $\lambda
 ightarrow 1$, Z^N is informative enough

Remarks

- lacktriangle open, excitation in u
- servo, excitation in r through feedback
- dist, excitation in e through feedback

Frequency representation

Dist. rejection, $\Phi_u^r \equiv 0$. Noise must affect the input!

$$|B_{\theta}|^2 = |H_0 - H_{\theta}|^2 \frac{\gamma_0}{\Phi_{u}^e}$$

The RLS estimate

$$\hat{\theta}_k = \arg\min_{\theta \in D_{\theta}} V_k(\theta) = \arg\min_{\theta \in D_{\theta}} \sum_{i=1}^k \lambda^{k-i} \varepsilon^2(k, \theta)$$

Consistent, i.e. $\hat{\theta}_{\infty} \in D_{\mathcal{T}}(\mathcal{S},\mathcal{M}) (=\theta_0)$, if

- lacksquare $\mathcal{S} \in \mathcal{M}$, $\mathcal{M}(heta)$ is identifiable (globally)
- lacksquare $\lambda
 ightarrow 1$, Z^N is informative enough

Remarks

- lacktriangle open, excitation in u
- servo, excitation in r through feedback
- dist, excitation in e through feedback

Frequency representation

Dist. rejection, $\Phi_u^r \equiv 0$. Noise must affect the input!

$$|B_{\theta}|^2 = |H_0 - H_{\theta}|^2 \frac{\gamma_0}{\Phi_{\mu}^e}$$

Linear regression

(L-)ARX:
$$\hat{y}(k|\theta) = \varphi(k)^T \theta$$

Recursive solution

$$\hat{\theta}_{k} - \hat{\theta}_{k-1} = \bar{R}(k)^{-1} \varphi(k) \varepsilon(k, \hat{\theta}_{k-1})$$

$$\bar{R}(k) = \lambda \bar{R}(k-1) + \varphi(k) \varphi(k)^{T}$$

$$V_{k}(\hat{\theta}_{k}) = \lambda V_{k-1}(\hat{\theta}_{k-1})$$

$$+ \varepsilon(k, \hat{\theta}_{k-1}) \varepsilon(k, \hat{\theta}_{k})$$

Remarks

- closed-form recursive sol
- invertibility of R
- OR-RIS solution

Asymptotics

Let $\lambda \to 1$ and $k \to \infty$

$$\sqrt{1 - \lambda}(\hat{\theta}_k - \theta_0) \in As \mathcal{N}(0, P_\theta),$$

$$P_\theta \triangleq \frac{1}{2} \gamma_0 \bar{E} \left[\varphi(k) \varphi(k)^T \right]^{-1}$$

$$\Sigma_\theta = \frac{(1 - \lambda)}{2} \gamma_0 \bar{R}^{-1}$$

$$\hat{\gamma}_k = (1 - \lambda) V_k(\hat{\theta}_k)$$

$$\hat{\bar{R}}_k = (1 - \lambda) \bar{R}(k)$$

$$\hat{\Sigma}_k = \frac{(1 - \lambda)}{2} V_k(\hat{\theta}_k) \bar{R}(k)^{-1}$$

Linear regression

(L-)ARX:
$$\hat{y}(k|\theta) = \varphi(k)^T \theta$$

Recursive solution

$$\begin{split} \hat{\theta}_{k} - \hat{\theta}_{k-1} &= \bar{R}(k)^{-1} \varphi(k) \varepsilon(k, \hat{\theta}_{k-1}) \\ \bar{R}(k) &= \lambda \bar{R}(k-1) + \varphi(k) \varphi(k)^{T} \\ V_{k}(\hat{\theta}_{k}) &= \lambda V_{k-1}(\hat{\theta}_{k-1}) \\ &+ \varepsilon(k, \hat{\theta}_{k-1}) \varepsilon(k, \hat{\theta}_{k}) \end{split}$$

Remarks

- closed-form recursive sol
- invertibility of R
 - QR-RLS solution

Asymptotics

Let
$$\lambda o 1$$
 and $k o \infty$

$$\sqrt{1 - \lambda}(\hat{\theta}_k - \theta_0) \in As \mathcal{N}(0, P_\theta),$$

$$P_\theta \triangleq \frac{1}{2} \gamma_0 \bar{E} \left[\varphi(k) \varphi(k)^T \right]^{-1}$$

$$\Sigma_\theta = \frac{(1 - \lambda)}{2} \gamma_0 \bar{R}^{-1}$$

$$\hat{\gamma}_k = (1 - \lambda) V_k(\hat{\theta}_k)$$

$$\hat{R}_k = (1 - \lambda) \bar{R}(k)$$

$$\hat{\Sigma}_k = \frac{(1 - \lambda)}{2} V_k(\hat{\theta}_k) \bar{R}(k)^{-1}$$

Linear regression

(L-)ARX:
$$\hat{y}(k|\theta) = \varphi(k)^T \theta$$

Recursive solution

$$\begin{split} \hat{\theta}_{k} - \hat{\theta}_{k-1} &= \bar{R}(k)^{-1} \varphi(k) \varepsilon(k, \hat{\theta}_{k-1}) \\ \bar{R}(k) &= \lambda \bar{R}(k-1) + \varphi(k) \varphi(k)^{T} \\ V_{k}(\hat{\theta}_{k}) &= \lambda V_{k-1}(\hat{\theta}_{k-1}) \\ &+ \varepsilon(k, \hat{\theta}_{k-1}) \varepsilon(k, \hat{\theta}_{k}) \end{split}$$

Remarks

- closed-form recursive sol
- invertibility of R
 - QR-RLS solution

Asymptotics

Let $\lambda o 1$ and $k o \infty$

$$\sqrt{1-\lambda}(\hat{\theta}_k - \theta_0) \in As \mathcal{N}(0, P_{\theta}),
P_{\theta} \triangleq \frac{1}{2} \gamma_0 \bar{E} \left[\varphi(k) \varphi(k)^T \right]^{-1}
\Sigma_{\theta} = \frac{(1-\lambda)}{2} \gamma_0 \bar{R}^{-1}$$

$$\hat{\gamma}_k = (1 - \lambda) V_k(\hat{\theta}_k)$$

$$\hat{R}_k = (1 - \lambda) \bar{R}(k)$$

$$\hat{\Sigma}_k = \frac{(1 - \lambda)}{2} V_k(\hat{\theta}_k) \bar{R}(k)^{-1}$$

Linear regression

(L-)ARX:
$$\hat{y}(k|\theta) = \varphi(k)^T \theta$$

Recursive solution

$$\begin{split} \hat{\theta}_{k} - \hat{\theta}_{k-1} &= \bar{R}(k)^{-1} \varphi(k) \varepsilon(k, \hat{\theta}_{k-1}) \\ \bar{R}(k) &= \lambda \bar{R}(k-1) + \varphi(k) \varphi(k)^{T} \\ V_{k}(\hat{\theta}_{k}) &= \lambda V_{k-1}(\hat{\theta}_{k-1}) \\ &+ \varepsilon(k, \hat{\theta}_{k-1}) \varepsilon(k, \hat{\theta}_{k}) \end{split}$$

Remarks

- closed-form recursive sol
- invertibility of R
 - QR-RLS solution

Asymptotics

Let $\lambda o 1$ and $k o \infty$

$$\sqrt{1-\lambda}(\hat{ heta}_k - heta_0) \in As \, \mathcal{N}(0, P_{ heta}),$$
 $P_{ heta} \triangleq rac{1}{2} \gamma_0 ar{E} \left[arphi(k) arphi(k)^T
ight]^{-1}$
 $\Sigma_{ heta} = rac{(1-\lambda)}{2} \gamma_0 ar{R}^{-1}$

$$egin{aligned} \hat{\gamma}_k &= (1-\lambda) V_k(\hat{ heta}_k) \ \hat{ar{R}}_k &= (1-\lambda) ar{R}(k) \ \hat{\Sigma}_k &= rac{(1-\lambda)}{2} V_k(\hat{ heta}_k) ar{R}(k)^{-1} \end{aligned}$$

Linear regression

(L-)ARX:
$$\hat{y}(k|\theta) = \varphi(k)^T \theta$$

Recursive solution

$$\begin{split} \hat{\theta}_{k} - \hat{\theta}_{k-1} &= \bar{R}(k)^{-1} \varphi(k) \varepsilon(k, \hat{\theta}_{k-1}) \\ \bar{R}(k) &= \lambda \bar{R}(k-1) + \varphi(k) \varphi(k)^{T} \\ V_{k}(\hat{\theta}_{k}) &= \lambda V_{k-1}(\hat{\theta}_{k-1}) \\ &+ \varepsilon(k, \hat{\theta}_{k-1}) \varepsilon(k, \hat{\theta}_{k}) \end{split}$$

Remarks

- closed-form recursive sol
- invertibility of *R*
- QR-RLS solution

Asymptotics

Let $\lambda o 1$ and $k o \infty$

$$\sqrt{1-\lambda}(\hat{ heta}_k - heta_0) \in As \mathcal{N}(0, P_{ heta}),$$
 $P_{ heta} \triangleq rac{1}{2}\gamma_0 ar{E} \left[arphi(k) arphi(k)^T
ight]^{-1}$
 $\Sigma_{ heta} = rac{(1-\lambda)}{2}\gamma_0 ar{R}^{-1}$

$$\hat{\gamma}_k = (1 - \lambda) V_k(\hat{\theta}_k)$$
 $\hat{\bar{R}}_k = (1 - \lambda) \bar{R}(k)$
 $\hat{\Sigma}_k = \frac{(1 - \lambda)}{2} V_k(\hat{\theta}_k) \bar{R}(k)^{-1}$

 T_1 : step changes in u(k) or r(k)That is how the plant is operated! $|u(k)| > \eta_1$ or $|r(k)| > \eta_1$

or
$$\hat{y}(k|\theta) = \varphi_u(k)^T \theta_k^b + \varphi_y(k)^T \theta_k^a$$

under $\mathcal{H}_0: \theta^b = 0$
 $s(k) = (\hat{\theta}_k^b)^T (\Sigma_{\theta}^b)^{-1} \hat{\theta}_k^b \in As \, \mathcal{X}_{n_b}$
 $s(k)$ is used as a quality measure!

 T_1 : step changes in u(k) or r(k)That is how the plant is operated! $|u(k)| > \eta_1$ or $|r(k)| > \eta_1$

 T_2 : variability in y(k)

y(k) should vary after step Monitor variance of $y \gamma_v(k) > \eta_2$

under
$$\mathcal{H}_0: \theta^b = 0$$

 $s(k) = (\hat{\theta}_k^b)^T (\Sigma_\theta^b)^{-1} \hat{\theta}_k^b \in As \mathcal{X}_{n_b}$
 $s(k)$ is used as a quality measure!

 T_1 : step changes in u(k) or r(k)That is how the plant is operated! $|u(k)| > \eta_1$ or $|r(k)| > \eta_1$

 T_2 : variability in y(k)

y(k) should vary after step Monitor variance of $y \gamma_v(k) > \eta_2$

 T_3 : conditioning of info matrix

Check whether $\bar{R}(k)$ is invertible $\kappa_2^{-1}(\bar{R}(k)) = \frac{\sigma_{\min}(R(k))}{\sigma_{\max}(\bar{R}(k))} > \eta_3$

$$T_4$$
: Granger causality test

under
$$\mathcal{H}_0: \theta^b = 0$$

$$s(k) = (\hat{\theta}_k^b)^T (\Sigma_\theta^b)^{-1} \hat{\theta}_k^b \in As \mathcal{X}_{n_b}$$
 $s(k)$ is used as a quality measure!

 T_1 : step changes in u(k) or r(k)That is how the plant is operated! $|u(k)| > \eta_1$ or $|r(k)| > \eta_1$

T_2 : variability in y(k)

y(k) should vary after step Monitor variance of $y \gamma_v(k) > \eta_2$

T_3 : conditioning of info matrix

Check whether $\bar{R}(k)$ is invertible $\kappa_2^{-1}(\bar{R}(k)) = \frac{\sigma_{\min}(R(k))}{\sigma_{\min}(\bar{R}(k))} > \eta_3$

T_4 : Granger causality test

Can u(k) help predict y(k)?

For
$$\hat{y}(k|\theta) = \varphi_u(k)^T \theta_k^b + \varphi_y(k)^T \theta_k^a$$

under $\mathcal{H}_0: \theta^b = 0$
 $s(k) = (\hat{\theta}_k^b)^T (\Sigma_\theta^b)^{-1} \hat{\theta}_k^b \in As \, \mathcal{X}_{n_b}$
 $s(k)$ is used as a quality measure!

 T_1 : step changes in u(k) or r(k)That is how the plant is operated! $|u(k)| > \eta_1$ or $|r(k)| > \eta_1$

T_2 : variability in y(k)

y(k) should vary after step Monitor variance of $y \gamma_v(k) > \eta_2$

T_3 : conditioning of info matrix

Check whether $\bar{R}(k)$ is invertible $\kappa_2^{-1}(\bar{R}(k)) = \frac{\sigma_{\min}(R(k))}{\sigma_{\min}(\bar{R}(k))} > \eta_3$

T_4 : Granger causality test

Can u(k) help predict y(k)?

For
$$\hat{y}(k|\theta) = \varphi_u(k)^T \theta_k^b + \varphi_y(k)^T \theta_k^a$$

under $\mathcal{H}_0: \theta^b = 0$
 $s(k) = (\hat{\theta}_k^b)^T (\Sigma_\theta^b)^{-1} \hat{\theta}_k^b \in As \, \mathcal{X}_{n_b}$
 $s(k)$ is used as a quality measure!

5: Logical conditions

- \blacksquare T_{i+1} only computed if T_i passed
- Exit if any test fails
- \blacksquare Accept interval if T_4 passed
- Interval goes from T_1 to exit

FIR Example, Granger causality test

$$y(k) = B_{10}(q)(u(k) + d(k)) + e(k)$$

$$\theta \neq 0, k > 1000$$

$$d(k) \neq 0, \begin{cases} 500 < k < 1000 \\ 1500 < k < 2000 \end{cases}$$

- but works well to select data!
- statistical significance of (any) parameter

 $SNR_u=10$, $SNR_d=30$

Outline of the algorithm

Mining data from an entire plant

Plant

- 195 control loops
- 37 months of data
- 1.15G samples

Evaluation

- 170 minutes to run
- selects 1.46% of all samples
- finds all "bump" tests
- every test is important
- quality measure supports further analysis

	Mode of operation type count $(\%)$		Average length	
Loop type	open	closed	open	closed
Density (i)	14.59	1.20	76	88
Flow	1.37	5.00	199	419
Level (i)	3.51	0.25	72	127
Pressure (i)	5.00	3.00	64	108
Temperature	0.80	0.01	67	76

Mining data from an entire plant

Plant

- 195 control loops
- 37 months of data
- 1.15G samples

Evaluation

- 170 minutes to run
- selects 1.46% of all samples
- finds all "bump" tests
- every test is important
- quality measure supports further analysis

Summary

Requisites

- range of variables (normalization)
- \blacksquare mode operation type (change in u or r)
- integrating plant (finite gain models)
- guess of largest delay (tuning)
- guess of largest time cte (tuning)
- 7 tuning vars, 5 thresholds for entire plant

Extensions

- Kautz polynominals (complex poles)
- finding the topology
- MIMO case

