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Mining data for system identification

Historical database

continuous vars r, u,y
discrete mode variable m

195 control loops

4 samples per minute

]
]

m 5 types of process variables

]

m data pts 3.1K/min, 4.5M/day
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Mining data for system identification

Historical database
m continuous vars r, u,y
discrete mode variable m

195 control loops

4 samples per minute
data pts 3.1K/min, 4.5M/day

]
]
m 5 types of process variables
]
]

Can we extract useful intervals of data for sysid? J
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Requisites and assumptions 45{*

Assumptions
m SISO loops
m linear dynamics

m real-valued poles*

Requisites Approach
m minimal knowledge m take guidance from the theory
m flexible m use flexible models
m fast

m and recursive solutions

m measure of quality
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Modeling - definitions

m(k) e(k)—| Ho(q)
a?—'(k)_ k@ o g oY

System S
y(k) = Go(q)u(k) + Ho(q)e(k)

Model structure M(0)
y(k) = G(q,0)u(k) + H(q, 0)e(k)
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Modeling - definitions

m(k) e(k)—| Ho(q)
a?—'(k)_ k@ o g oY
System S Model set M
y(k) = Go(q)u(k) + Ho(q)e(k) {M(6) : 0 € Dy}
Model structure M(0) SeM
y(k) = G(q,0)u(k) + H(q,0)e(k) | Go(z)=G(z,0), Ho(z)=H(z,0')

for 0 € Dy. & S = M(0)

“true set” D1 (S, M)
(0 eDy:S=M(®B)
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Modeling - definitions

m(k) e(k)—| Ho(q)
r(k u(k k
a?—( Lo Tkig Lo W@ oY
System S Model set M
y(k) = Go(q)u(k) + Ho(q)e(k) {M(0) : 6 € Dy}
Model structure M(0) SeM

y(k) = G(q,0)u(k) + H(q,0)e(k) | Go(2)=G(z,0"), Ho(z)=H(z,0')
for 0’ € Dy. & S = M(#')

Optimal one-step ahead predictor

9(k|0) = H(q,0)71G(q,0)u(k) + “true set” D7(S, M)
(1= H(q,0)7") y(k) {0 € Dy:S=M(0)}
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Properties of models

One-to-one relation T(q,0) <> W(q,0)
v = [6ta.0) #(a.0)] 20| = 70,0000

3(619) = (0.0 6(a.0) (1= #a.0) ] 20| = Wea.0)200

y
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Properties of models

One-to-one relation T(q,0) <> W(q,0)

y0 = l6ta0) H(a0] [4] = T(a.0x(k

3(619) = (0.0 6(a.0) (1= #a.0) ] 20| = Wea.0)200

Identifiability at 6’

Whether no other 6 gives the same freq resp:
W(z,0) = W(z,0'),Vz — 6=2¢
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Properties of models
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y0 = l6ta0) H(a0] [4] = T(a.0x(k

3(619) = (0.0 6(a.0) (1= #a.0) ] 20| = Wea.0)200

Identifiability at 6’

Whether no other 6 gives the same freq resp:
W(z,0) = W(z,0'),Vz — 6=2¢

4

“True parameter” 6

If S € M and M is globally identifiable,
then DT(S, M) = 6y.

4
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Properties of models

///h ”,.“\:

One-to-one relation T(q,0) <> W(q,0)

y(K) = [6(0.6) H(q.)] [“(k)] — 7(q.0)x(k)

e(k)

P(k19) = [H(a.0) 2 G(q.0) (1 H(q,0) )] |“K

Identifiability at 6’

Whether no other 6 gives the same freq resp:
W(z,0) = W(z,0'),Vz — 6=2¢

“True parameter” 6

If S € M and M is globally identifiable,
then DT(S,M) = 6y.

4
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Remarks
m choose S € M
m what about the data?
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Flexible model structures - S € M

ARX: delay expansion
Wy(z,0)~ >0 bz " &
W,(z,0) = 37 aiz~' =
m exact if n — oo
m convergence depends on T

m unknown delays
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Flexible model structures - S € M

///h ’,.“\:

ARX: delay expansion L-ARX: Laguerre expansion

Wi(z0) = Ty bzl 2 B(z) | Wale,d) = Sy bil(z.o) £ Bi(z.0)
Wy(2.0) ~ Sy aiz7 2 An(z) | Wyl2.0) = S, aili(z.0) 2 Az

m exact if n — oo m exact if n — oo
m convergence depends on T, m convergence depends on «
m unknown delays m more efficient with delays

m real poles

Li(g,a) = V(A-a?)T, (1_aq>i—1

q—a qg—a
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Flexible model structures - S € M

ARX: delay expansion
Wy(z,0) =~ >0 biz™!
Wy(z,0) = 37, aiz™

m exact if n — oo

Y
L

m convergence depends on T

m unknown delays

Remarks

m describe “any” linear
dynamics

m globally identifiable
m linear regressions
m Laguerre better for delays

m choice of nand o
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L-ARX: Laguerre expansion

Wy(z,0) = >0 biLi(z,a) &
Wy (z,0) ~ 27:1 aiLi(z, )
m exact if n — o0

B,
A

m convergence depends on «
m more efficient with delays

m real poles

Li(q,a) = YOoIT: (1_aq)i—1

q—a qg—a

(z,x
n(2,
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Flexible model structures - S € M

ARX: delay expansion
Wy(z,0) ~ Y1, b,-z_’_'
Wy (z,0) ~ 3oiLy aiz™

m exact if n — oo

2 B,(z
2 Az

)
)

m convergence depends on T

m unknown delays

L-ARX: Laguerre expansion

Wy(z,0) = >0 biLi(z,a) &
Wy (z,0) ~ 21:1 aiLi(z, )
m exact if n — o0

By(z,0
An(z, a

m convergence depends on «

m more efficient with delays

Remarks

m describe “any” linear
dynamics

m globally identifiable
m linear regressions
m Laguerre better for delays

m choice of nand o

AW O =112 LY LETTR A A LT LN TRl Data mining for system identification

m real poles

Li(g,a) = V(A-a?)T, (1_aq)i—1

q—a qg—a

m W,(z,0p)=8,
y(Z,ea):

»(2, @)
An,(2)

m integrate u(k) if integrating plant

m guess of largest delay and time cte
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Properties of the data

Informative enough {z(k)}V
Distinguishes non-equiv. models
E[(W(z,61) — W(z,6)) z(k)]*=0
= W(e™,0;) = W(e™,6,)
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Properties of the data

Informative enough {z(k)}V
Distinguishes non-equiv. models
E[(W(z,61) — W(z,6)) z(k)]*=0
= W(e™,0;) = W(e™,6,)

Persistent excitation (PE) of ¢(k)

Full rank information matrix

E[¢(k)p(k)T] >0

n-Suff. rich signal u(k) (SRn)

if p(k)=[u(k—1), -, u(k—n)]is
PE.
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Properties of the data

Informative enough {z(k)}V
Distinguishes non-equiv. models
E[(W(z,61) — W(z,6)) z(k)]*=0
= W(e™,0;) = W(e™,6,)

Persistent excitation (PE) of ¢(k)

Full rank information matrix

E[¢(k)p(k)T] >0

ARX informative enough data
open: iff u(k) is SRnp,

n-Suff. rich signal u(k) (SRn)

if p(k)=[u(k—1), -, u(k—n)]is
PE.
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Properties of the data

Informative enough {z(k)}V

Distinguishes non-equiv. models
E[(W(z,61) — W(z,6)) z(k)]*=0
= W(e™,0;) = W(e™,6,)

Persistent excitation (PE) of ¢(k)

Full rank information matrix

E [o(k)p(k)T] >0

////' (,.?\;

ARX informative enough data
open: iff u(k) is SRnp,

n-Suff. rich signal u(k) (SRn)

if p(k)=[u(k—1), -, u(k—n)]is
PE.

A\

Step signal example
Let u(k)=A(k),
o(k)=[A(k —1),...,A(k — n)]

E[o(k)p(k)T] = [(1) g}, SRl
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Properties of the data

Informative enough {z(k)}V
Distinguishes non-equiv. models
E[(W(z,61) — W(z,6)) z(k)]*=0
= W(e™,0;) = W(e™,6,)

Persistent excitation (PE) of ¢(k)

Full rank information matrix

E [o(k)p(k)T] >0

///h (‘,.EE;

ARX informative enough data
open: iff u(k) is SRnp,

closed: let K(q) = %

m r(k) =0, dist. rejection
iff (nx — na,ny —np) >0

n-Suff. rich signal u(k) (SRn)

if p(k)=[u(k—1), -, u(k—n)]is
PE.
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Remarks
m how to verify? finite sample?

m disturbance rejection?
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Properties of the data

Informative enough {z(k)}V

Distinguishes non-equiv. models

E[(W(z,601) — W(z,62)) z(k)]* =0

= W(e™,0;) = W(e™,6,)

Persistent excitation (PE) of ¢(k)

Full rank information matrix

E [o(k)p(k)T] >0

///h ’,.“\

ARX informative enough data
open: iff u(k) is SRnp,

closed: let K(q) = %

m r(k) =0, dist. rejection

iff (nx — na,ny —np) >0
m r(k) #0, servo

iff r(k) is SRn,

ny > min(ny — ny, np — ny)

v

n-Suff. rich signal u(k) (SRn)

if p(k)=[u(k—1), -, u(k—n)]is
PE.
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Remarks
m how to verify? finite sample?
m disturbance rejection?

m look at the estimate!
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Recursive least squares

The RLS estimate

0, = argorgiDne Vi (0) = arg nggl)z}\k e2(k,0)
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Recursive least squares
The RLS estimate

k
A _ B _ i
Oy = arg min Vi(0) = arg min ,._Zl)\ 'e?(k,0)

Consistent, i.e. 0 € DT(S, M)(= ), if
m S € M, M(0) is identifiable (globally)
m )\ — 1, ZVN is informative enough

v

Frequency representation

, _ 1 (7
For constant ¥~/ = L and N — co. V(0) = /

-/
’G0+BQ—GQ|2 ‘Ho—H9|2
b, = P _
: |Ho2 Y H2 °
D e
By = (Hy — H,
9 = (Ho o) ®

u
AN OR =112 LY LT A A LT LWL TRl Data mining for system identification
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¢ (w,0)dw and

(Due
o, ) + Y
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Recursive least squares
The RLS estimate

k
A _ B _ i
Oy = arg min Vi(0) = arg min ,._Zl)\ 'e?(k,0)

Consistent, i.e. 0 € DT(S, M)(= ), if
m S € M, M(0) is identifiable (globally)
m )\ — 1, ZVN is informative enough

v

Frequency representation

Open-loop, ¢, = 0. Unbiased estimate.

By =0
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Remarks

m open, excitation in u
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Recursive least squares

The RLS estimate
k

O, =arg arggl) Vi(0) = arg onqu ’Zl N2k, 9)
Consistent, i.e. 0 € DT(S, M)(= ), if

m S € M, M(0) is identifiable (globally)

m )\ — 1, ZVN is informative enough

v

Frequency representation

Servo, ®, = O +d¢ and |® |2 = ®Evg. Excitation in r through feedback!

ode
|B@‘2:|H0—H9|2 Y0¥y

AN OR =112 LY LT A A LT LWL TRl Data mining for system identification

(07 + 5)?

Remarks

m open, excitation in u

m servo, excitation in r
through feedback
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Recursive least squares

The RLS estimate Remarks
B open, excitation in u

®m servo, excitation in r

k
H : _ - k—i_2
Oy = arg Jin Vi(0) = arg Jin z; N e%(k, 0)
: through feedback

Consistent, i.e. 0 € DT(S, M)(= ), if
m S €M, M(0) is identifiable (globally)
m )\ — 1, ZVN is informative enough

m dist, excitation in e
through feedback

v

Frequency representation

Dist. rejection, ®, = 0. Noise must affect the input!

2 70

|Bg|* = |Ho — Hy| e
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Recursive least squares

The RLS estimate Remarks

B open, excitation in u

B servo, excitation in r
through feedback

u dist_excitation i
through feedback

k
Oy = arg argige Vi(0) = arg argige z; N=ig2(k,6)
i

Consistent, i.e. 0 € DT(S, M)(= ), if
m S €M, M(0) is identifiable (globally)
m )\ — 1, ZVN is informative enough

v

Frequency representation

Dist. rejection, ®, = 0. Noise must affect the input!

2 70

|Bg|* = |Ho — Hy| e

AN OR =112 LY LT A A LT LWL TRl Data mining for system identification February 23, 2015 9/15



RLS for linear regressions

Linear regression
(L-)ARX: §(k[0) = (k)0 J
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RLS for linear regressions

Linear regression
(L-)ARX: §(k[0) = (k)0

Recursive solution
Ok —0k—1 = R(k) tp(k)e(k, Ok_1)
R(k) = AR(k — 1) + ¢(k)p(k)"
Vi(0k) = AVie1(Bi—1)
+ e(k, Bx_1)e(k, k)
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RLS for linear regressions

Linear regression
(L-)ARX: §(k[0) = (k)0

Recursive solution

Ok —0i_1 = R(k) L p(k)e(k, Bx_1)

R(k) = AR(k = 1) + p(k)o(k) T

Vie(0x) = \Vi1 (B 1)
+ e(k, Bx_1)e(k, k)
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Asymptotics
Let A\ — 1 and k = o0

VI = X0 — 6o) € AsN(0, Py),

Py £ %701:: [SO(k)SO(k)T] -
5, = (1- A),VOR—I

2
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RLS for linear regressions

Linear regression Asymptotics
(L-)ARX: y(k|0)=p(k)T6 Let A = 1 and k = oo
Recursive solution V1= A0k = 0o) € AsN(0, Py),
A A _ N 1 = -1
Ok — 01 = R(k) *o(k)e(k, Br_1) Py = 570E [so(k)so(k) T]
R(k) = \R(k — T 1-A) =
R(Ak) AR(k Al) + @(k)p(k) 5, = ( . ),YOR—I
Vie(0k) = AVi—1(0k—-1)
+ e(k, Ox—1)e(k, Ok) ) Finite sample estimates

Ak = (1 — A) Vi(B)
Re = (1 — \)R(K)
. (1-N)

Si=" Vi(0)R(k) ™!
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RLS for linear regressions

Linear regression Asymptotics
(L-)ARX: y(k|0)=p(k)T6 Let A = 1 and k = oo
Recursive solution V1= M0 — bo) € ASN(0, Py),
N A _ n 1 = -1
Ok — 01 = R(k) *o(k)e(k, Br_1) Py = 570E [so(k)so(k)T]
R(k) = AR(k — 1) + o(k)p(k)T 1-)) =
(A) ( A) p(k)e(k) 29=(2)70R1
Vi(0k) = AVi—1 (k1) /
+ e(k, Ok—1)e(k, bk) ) Finite sample estimates
Remarks k= (1-2A) Vk(ék)
m closed-form recursive sol ,ﬁ’k =(1- )\)R(k)
m invertibility of R . (1-)) "
Y, = Vi (B )R(k) ™1
m QR-RLS solution 2 k()R (k) |
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Tests

0: Normalize the data J

T1: step changes in u(k) or r(k)
That is how the plant is operated!
lu(k)| >y or [r(k)| > m
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Tests ‘5{‘

0: Normalize the data J

T1: step changes in u(k) or r(k)
That is how the plant is operated!
lu(k)| > m or |r(k)| >m

To: variability in y(k)

y(k) should vary after step
Monitor variance of y 7, (k) > no
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Tests

0: Normalize the data J

T1: step changes in u(k) or r(k)
That is how the plant is operated!
lu(k)| > m or |r(k)| >m

To: variability in y(k)

y(k) should vary after step
Monitor variance of y 7, (k) > no

T3: conditioning of info matrix

Check whether R’(k) is invertible

2 (RU) = S22t > m
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Tests

0: Normalize the data J Ta: Granger causality test
Can u(k) help predict y(k)?

T1: step changes in u(k) or r(k)
For (k|0) = (k)T 6P k)T62
That is how the plant is operated! or J(K|) = (k)" 0, + oy (k) T0F

lu(k)| > m or |r(k)| >m under H : GbA: 0
“ s(k)=(OD)T (2b)10b € As
T: variability in y(k) s(k) is used as a quality measure!

4

y(k) should vary after step
Monitor variance of y 7, (k) > no

T3: conditioning of info matrix

Check whether R’(k) is invertible

2 (RU) = S22t > m
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Tests

0: Normalize the data J Ta: Granger causality test
Can u(k) help predict y(k)?

T1: step changes in u(k) or r(k)

For (k|0) = (k)T 6P k)T62
That is how the plant is operated! or J(K|) = (k)" 0, + oy (k) T0F

lu(k)| > m or |r(k)| >m under H : 0bA: 0
“ s(k)=(OD)T (2b)10b € As
T: variability in y(k) s(k) is used as a quality measure!

y(k) should vary after step

Monitor variance of y 7, (k) > no 5: Logical conditions

m T;41 only computed if T; passed

T3: conditioning of info matrix m Exit if any test fails
Check whether R’(k) is invertible m Accept interval if T4 passed
> (R(K)) = Z::—I;((I,?))) > 13 = Interval goes from T to exit

February 23, 2015 11 /15

AN O =112 LY LT A A LT LN IRl Data mining for system identification



FIR Example, Granger causality test

y(k) = Bio(q) (u(k) + d(k)) + e(k) Remarks
m fails as a causality test

6 # 0,k>1000 m but works well to select data!
500 < k<1000 m statistical significance of (an
4(k) £0. e o)
1500 < k <2000 parameter

L L . '
0 500 1000 1500 2000

k
SNR,=10, SNR4=30
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Outline of the algorithm ‘5{‘

m(k)

JUl
c(k) = mo E
(k) >m I
ty(k) I
Yy (k) I
(k) > n o E
o(k) I3

R(k) T3

Ky (k) I3

Ky (k) > 3 B Es

s(k) Ia

s(k) > e &
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P

Mining data from an entire plant

Evaluation
Plant m 170 minutes to run
= 195 control loops m selects 1.46% of all samples
m 37 months of data m finds all “bump” tests
m 1.15G samples m every test is important
m quality measure supports further analysis

v

Mode of operation type count (%) Average length

Loop type open closed open  closed
Density (i) 14.59 1.20 76 88
Flow 1.37 5.00 199 419
Level (i) 3.51 0.25 72 127
Pressure (i)  5.00 3.00 64 108
Temperature  0.80 0.01 67 76
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Mining data from an entire plant

Evaluation
Plant m 170 minutes to run
m 195 control loops

m 37 months of data

m selects 1.46% of all samples
m finds all “bump” tests

m 1.15G samples m every test is important

m quality measure supports further analysis

Level, open Density, closed
0.8, 0.8 1=
= =l e, _.\____ t———
0.7 /_/\/v\ 07
0.6 0.6
- U __,,%.
0.5 I 0.5 P,
G S — LN
N, 5 Sl - , - A
oab A~ W 04 s s
.. _—— -
3900 3950 4000 4050 1350 1400 1450 1500 1550 1600
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Summary

Requisites

m range of variables (normalization)
mode operation type (change in u or r)
integrating plant (finite gain models)
guess of largest delay (tuning)

guess of largest time cte (tuning)

7 tuning vars, 5 thresholds for entire plant

Extensions
= Kautz polynominals (complex poles)
= finding the topology
m MIMO case
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