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Abstract

This paper presents a data-driven approach to diagnostics of systems that operate in a repetitive manner. Considering that
data batches collected from a repetitive operation will be similar unless in the presence of an abnormality, a condition change is
inferred by comparing the monitored data against an available nominal batch. The method proposed considers the comparison
of data in the distribution domain, which reveals information of the data amplitude. This is achieved with the use of kernel
density estimates and the Kullback-Leibler distance. To decrease sensitivity to disturbances while increasing sensitivity to
faults, the use of a weighting vector is suggested which is chosen based on a labeled dataset. The framework is simple to
implement and can be used without process interruption, in a batch manner. The approach is demonstrated with successful
experimental and simulation applications to wear diagnostics in an industrial robot gearbox and for diagnostics of gear faults
in a rotating machine.
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1 Introduction

In the manufacturing industry, preventive scheduled maintenance is a common approach used to improve equipment’s
safety, reliability, availability and maintainability. This setup delivers high availability, reducing operational costs
(e.g. small downtimes) with the drawback of high maintenance costs since unnecessary maintenance actions might
take place. Condition based maintenance (CBM), “maintenance when required”, can deliver a good compromise
between maintenance and operational costs, reducing the overall cost of maintenance. The extra challenge of CBM
is to define methods to determine the condition of the equipment. This can be done by comparing the observed
and expected (known) behaviors of the system through an algorithm. The output of such algorithm is a quantity
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sensitive to a fault ∗ , i.e. a fault indicator, which can be monitored to determine the current state of the system (e.g.
healthy/broken).

A common approach to generate fault indicators is based on the use of residuals, i.e. fault indicators that are
achieved based on deviations between measurements and the output of a system model, see e.g. [25,27]. A system
model is a map from input to output data. A system model provides important information about the behavior
of the system, facilitating the generation of fault indicators. Different approaches for residual generation are based
on, e.g., observers, parity-space and parameter identification. When a model of the system is not available or it is
too costly to be developed, alternatives are still possible. These alternatives will typically require extra (redundant)
sensory information or expert knowledge about the measured data, e.g., their nominal frequency content or the use
of labeled data. Essentially, however, any method will attempt to generate quantities that can be used to infer the
actual condition of the system given the available knowledge and observations, i.e. data.

The use of model-based approaches is common for diagnostics of machines. For robotics, many approaches have
been suggested based on the use of nonlinear observers, where the observer stability is typically guaranteed by
analyses of the decay rate of a candidate Lyapunov function, see e.g. [20,30,10,22,15,12,9]. Observers can also be
designed based only on data, without a description of the system based on first principles. Data-driven design of
observers are typically based on subspace identification of linear models and have been suggested for fault detection
in [14,42,16,44]. Parameter estimation is also a natural approach to model-based diagnostics because of the physical
interpretation of the system parameters, see e.g. [21,29,5].

In cases where the data are ordered with time, signal-driven methods are common for machinery diagnostics. These
are typically based on the use of integral transforms, e.g. Fourier, Radon, Karhunen-Loève or Wavelet. Each transform
will enhance different properties in the transformed domain and are suitable depending on the characteristics of the
signal, e.g. periodic, stationary, etc. The analysis of data in the frequency domain or time-frequency has found
particular success in the monitoring of rotating machines, see e.g. [40,13,19,23,38,24,25]. Some approaches have also
been proposed for the diagnostics of industrial robots with the use of additional sensory information [32,18].

A common challenge to data-driven methods is that the data characteristics’ will vary depending on the operating
points, which may complicate determination of fault presence. This is particularly restricting for an industrial robot
where the kinematic configuration of the robot may give varying load torques at the joints during motion. This
shortcoming can be circumvented by considering data from a specific operation of the system, e.g. under repetition.
A repetitive operation is found in various applications, e.g. in automated manufacturing. Repetition can also be forced
with the execution of specific diagnostic routines but with the drawback of reduced availability. Much attention has
been given recently to repetitive processes [36,37]. Study of repetitive processes have mainly focused on control [35,39]
and estimation problems [2,1]. A few approaches have been also suggested for model-based diagnostics, e.g. [43].

In this paper, a data-driven method is proposed for the generation of fault indicators for systems that operate
in a repetitive manner. It is considered that in case the condition of the system is nominal, data batches collected
from repetitive executions of the system will be similar to each other and will differ if the condition changes. The
comparison of a given data batch against a nominal one can thus be used to infer whether an abnormality is present.
The fault indicator proposed here relates to changes in the distribution of these batches of data. This is made possible
with the use of kernel density estimators and the Kullback-Leibler distance between distributions. A distribution
domain approach does not consider the dynamics of the system generating the data as is the case in, e.g., observer-
based approaches. As it will be presented, this leads to very simple diagnostics solutions that can perform well in
practical setups.

The proposed framework was initially developed with the interest focused on the diagnostics of wear in industrial
robots and a preliminary version of the work can be found in [7]. Here, more aspects are covered, including approaches
to detection, isolation and reduction of sensitivity to disturbances. Also, more experimental and simulation results
are presented for the robotics application. An additional application is also included for diagnostics of rotating
machinery based on vibration data collected from an accelerometer. The paper is organized as follows; a general
presentation of data-driven diagnostics and repetitive systems is given in Section 2, followed by the presentation of
the proposed approach for diagnostics in the distribution domain in Section 3. The applications are presented in
Sections 4 and 5. Conclusions and future work are given in Section 6.

∗ A fault is defined as a deviation of at least one characteristic property of the system from the acceptable/usual/ nominal
condition.
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2 Data-Driven Diagnostics and Repetitive Systems

Consider a general system from which it is possible to extract a sequence of data batches,

YK = [y1, · · · ,yk, · · · ,yK ], (1)

where yk = [yk,1, · · · , yk,n, · · · , yk,N ]T denotes the data vector in RN (e.g. measurements or known inputs) with
batch index k and element index n. The sequence yk could have been generated as the result of deterministic and
stochastic inputs, ZK and VK , where VK is unknown, and ZK may have known and unknown components. For
example, the data generation mechanism could be modeled as

yk = h(zk,vk), (2)

where h(·) is an unknown function. Let the set of deterministic inputs ZK be categorized in three distinct groups, RK , DK

and FK . The sequence fk is unknown and of interest (a fault), rk is known (e.g. references or control inputs) and
dk is unknown (disturbances).

The objective is to define a data-driven framework for the generation of fault indicators to determine the presence of
a fault fk. Because a data-driven approach depends on availability of data, it is assumed that data generated under
no fault is available. Let Y0 = {yk : fk =0} denote the set of data batches that were generated under no fault, the
following assumption is made:

A-1 (Nominal data are available) A sequence y0 ∈ Y0 is available.

The rationale is then to generate fault indicators from the comparison of the nominal data y0 (available from
Assumption A-1) against the remaining sequences yk. In order to generate fault indicators for yk using the nominal
data y0, two basic questions arise:

Q-1 How to characterize a sequence yk?
Q-2 How to compare the sequences y0, yk?

The first question targets the issue of finding a data processing mechanism of yk, written in a general form as gk ,
g(yk) : RN 7→ G with domain G, whose output enhances the ability to discriminate the presence of non-zero fk.

Given the nominal data in the transformed domain g0,g(y0), fault indicators can be achieved from the comparison
between g0 and gk. This is typically, but not necessarily, done with the use of a distance function represented
as d(g0, gk) : G×G 7→R+

0 . Different distances are possible depending on the domain G. For example, for diagnostics
of rotating machines gk could be the spectra of yk and d(·, ·) a spectral distance, see e.g.[3].

2.1 Detection, Performance and Isolation

Let Dm,n = {d(gi, gj) : yi ∈ Ym,yj ∈ Yn}, then D0,0 describes the behavior of the fault indicator when no fault is
present and D0,f , where Yf = {yk : fk 6= 0}, describes all possible faulty behaviors. A criterion for detectability
of an abnormality is that D0,f is not completely contained in D0,0, i.e. D0,f\D0,0 6= ∅. Since the distance d(g0, gk)
measures how far gk is from the nominal g0, it is expected that it will remain close to zero if d(g0, gk) ∈ D0,0 and to
deviate to positive values if d(g0, gk) ∈ D0,f . Suppose that it is possible to find a threshold ~ such that d(g0, gk) ≤ ~
most of the times when d(g0, gk) ∈ D0,0, a simple criterion for detection is then to consider a threshold check. Let
H0 denote the hypothesis that no fault is present, i.e. yk ∈ Y0, and H1 denote the alternative hypothesis that a
fault is present, i.e. yk ∈ Yf , then the decision mechanism is

d(g0, gk)
H1

≷
H0

~ (3)

and reads, decide for H1 if d(g0, gk) ≥ ~ otherwise decide for H0. The probabilities of error for this decision rule
can be quantified given the probability distribution of the fault indicator under the different hypotheses, denoted
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p(d|H0) and p(d|H1). The probability of a false detection Pf , i.e. deciding for a fault when none is present, and of
correct detection Pd, i.e. deciding for a fault when it is present can be evaluated by

Pf =

∫ ∞
~

p(x; d|H0) dx, Pd =

∫ ∞
~

p(x; d|H1) dx. (4)

Notice that for a fixed Pf there is an associated ~ (this is known as the Neyman-Pearson criterion for threshold
selection [41]) and therefore a Pd. For a satisfactory performance of the fault indicator, low Pf and high Pd are
typically desirable.

Since this is a data-driven framework, data from the different fault types are needed a priori to address the isolation
problem, i.e. determination of the fault type present. Let Ym={yk : fk= fm} denote the set of data generated under
the mth fault type with M possible fault modes, i.e. m ∈M=[1, 2, · · · ,M ]. For fault isolation it is assumed:

A-2 (Data from each fault type are available) A sequence ym ∈ Ym is available for each mth fault type.

Once a fault is detected, the fault type can be determined by choosing ym that is closest to yk in the sense of the
transformation g(·) and distance d(·, ·). That is, decide for presence of the m∗ fault type according to

m∗ = arg min
m∈M

d(gm, gk). (5)

2.2 Repetitive Systems

The amount of overlaps between the sets D0,0 and D0,f relates to how difficult it will be to determine the presence
of a fault. Ultimately, no overlap is present, i.e. |D0,0 ∩ D0,f |=0, when it is possible to determine the presence of a
fault with no errors. This is particularly difficult to achieve since yk, and thus D0,0 and D0,f , are affected by other
inputs than faults. Because |D0,0 ∩ D0,f | ≤ min |D0,0|, |D0,f |, an attempt to try to reduce the overlaps is to reduce
the size of the sets themselves. This can be achieved by restricting the behavior of the data yk or, conversely, by
restricting the possible input space. This paper focuses on monitoring data collected from a repetitive operation
of the system. A repetitive operation is meant by a system that executes the same trajectory r over each data batch
collected. This type of data is represented by the set

Yr={yk : rk=r}. (6)

Monitoring data yk ∈ Yr simplifies the problem since the behavior of the data will be more predictable. Examples of
systems that behave repetitively are common in automation applications. A repetitive operation can also be forced in
case r can be chosen freely; for instance data can be collected based on the execution of scheduled diagnostics tests.
This setup is also commonly found in vibration analyses and in signal-based diagnostics, where data are collected
under particular operating conditions, e.g. of speed, load and acceleration.

Considering that faults are detectable for a system operating under repetition, there may still be overlaps between the
sets D0,0

r and D0,f
r defined by Y0

r =Y0∩Yr and Yfr =Yf∩Yr. This is due to the effects of disturbances dk and noise vk.
By collecting data in a controllable manner, it might be possible to ensure repetition of the disturbance term, i.e.
to have dk=d for all batches. This will be however too restrictive for most applications. Even if dk=d is possible,
the noise components will always affect the data. To broaden the scope of the framework, a clear determination of
the fault presence despite dk and vk is desirable, leading to the question:

Q-3 How to handle non-repetitive disturbances dk and noise vk?

Questions Q-1 to Q-3 are addressed in the next section which defines the suggested approach for diagnostics of
repetitive systems in the distribution domain.
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3 A Distribution Domain Approach

3.1 Characterizing the Data – Kernel Density Estimate

The alternative pursued in this work is to consider the distribution of yk, which contains information about the
amplitude behavior of the data. Even though information contained in the ordering may be lost, this is a valid
approach since the effects of a fault often appear as changes in amplitude. Since data batches from a repetitive
operation are considered, i.e. yk ∈Yr, it is expected that the data distribution will remain similar in case no fault
is present. Because the mechanisms that generated the data are considered unknown, the use of a nonparametric
estimate of the distribution of yk is a suitable alternative. A nonparametric estimate of the distribution p(y) based
on the data vector y can be achieved from the empirical characteristic function. For a scalar random variable with
probability density function p(y), the characteristic function ϑ : R→C with argument ν is defined as, [17]:

ϑ(ν) = E
[
eiνy

]
=

∫ ∞
−∞

eiνyp(y) dy = F−1{p(y)}2π, (7)

where F−1{·} is the inverse Fourier transform. So the density function can be found from the characteristic function
through its Fourier transform. Given the sample y = [y1, · · · , yN ], the empirical estimate of ϑ(ν) is given by

ϑ̂(ν) =
1

N

N∑
n=1

eiνyn , (8)

the objective is then to estimate the density function from ϑ̂(ν). This is essentially a spectrum estimation problem.

A direct estimation of the density function from the Fourier transform of ϑ̂(ν) will however lead to an estimate
with increased variance for large values of ν, [28]. To avoid this problem, the empirical estimate of the characteristic
function is multiplied with a weighting function ψh(ν) = ψ(hν). The weighting function is typically symmetric,
satisfying ψ(0)=1 and tends to zero when ν tends to infinity. The density estimate is then given by

p̂(y) =
1

2π
F
{
ϑ̂(ν)ψ(hν)

}
=

1

2π

∫ ∞
−∞

1

N

N∑
n=1

eiν(yn−y)ψ(hν) dν

=
1

Nh

N∑
n=1

κ

(
yn − y
h

)
=

1

N

N∑
n=1

κh(y − yn), (9)

where κh(y)h=F−1{ψh(ν)}. The function κh(y) is a kernel function, satisfying κh(·)≥0 and that integrates to 1. The
resulting estimate is known as a kernel density estimate (KDE) and can also be generalized to the multidimensional
case [11]. The bandwidth parameter h controls the smoothness of the resulting estimate, increasing the smoothness
for larger values of h. When h→ 0, the kernel function approaches a Dirac delta and the resulting estimate will
be a set of impulses located at the data points. Typical kernel functions and their Fourier transforms are shown in
Figure 1. In this work, a Gaussian kernel is used with h optimized for Gaussian distributions, see [8]. For a detailed
treatment of kernel density estimators and criteria/methods for choosing h see [33,11,8,26].

3.2 Comparing Sequences – Kullback-Leibler Distance

In statistics and information theory, the Kullback-Leibler divergence (KLD) is commonly used as a measure of
difference between two probability distributions. For two continuous distributions on y, p(y) and q(y), it is defined as,
[34]

DKL (p||q) , −
∫ ∞
−∞

p(y) log
q(y)

p(y)
dy (10)

The KLD satisfies DKL (p||q) ≥ 0 (Gibbs inequality), with equality if and only if p(y)=q(y). The KLD is in general
not symmetric, DKL (p||q) 6=DKL (q||p). The quantity

KL (p||q) , DKL (p||q) +DKL (q||p) , (11)
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Fig. 1. Kernel functions (upper row) and their respective Fourier transforms. The parameter h controls the smoothness of the
density estimate, larger values will give smoother estimates.

known as the Kullback-Leibler distance, is however symmetric. An answer to Question Q-2 can therefore be given
with the use of the KL distance defined in (11). From Assumption A-1, fault-free data are always available, so
that y0 is known and p̂0(y) can be computed. The quantities KL

(
p̂0||p̂k

)
can therefore be used as a fault indicator,

remaining close to 0 in case p̂0(y) is close to p̂k(y) and otherwise deviating to positive values.

3.3 Handling Non-repetitive Disturbances and Noise – Data Weighting

One way to address Question Q-3 is to weight the raw data yk according to prior knowledge of the effects of faults,
disturbances and noise in order to give more relevance to parts of the data that relate to a fault. The approach
considered here will assume availability of a labeled dataset, where the fault status (present or not) is known to each
component yk and is the same to each of its elements yk,n. The disturbance vector dk and noise vk should contain
variations that are expected to be found during the system’s operation.

The dataset YK = [Y0
K0
, Yf

Kf
] contains K0 fault-free data, y0 ∈ Y0

r , and Kf =K −K0 faulty data yf ∈ Yfr . Each

batch yk is weighted according to

yk , w ◦ yk, (12)

where ◦ denotes the Hadamard product (element-wise multiplication). This yields the weighted dataset

YK ,
[
Y

0

K0
,Y

f

Kf

]
=
[
y01, · · · , y

0
K0
, yf1 , · · · , y

f
Kf

]
. (13)

The objective is to choose w to maximize the sensitivity to faults while decreasing sensitivity to disturbances and
noise. Considering the basic framework presented in Sections 3.1 and 3.2, a natural criterion would be to choose w

according to its effects to KL(̂pi|| p̂j), where p̂i is the KDE of yi and therefore dependent on w. When yi ∈ Y0
r

and yj ∈ Yfr , the distance should be maximized and if yi,yj ∈ Y0
r , it should be minimized. A general solution to

this problem is however difficult since it depends on how p̂k(y) is computed (e.g. the kernel function chosen) and
optimization over (11).

In this work, simpler criteria are considered in a compromise to explicit solutions. As it will be shown, the results are
related to linear discriminant analysis (LDA) used in classification problems, see e.g. [4]. In LDA, the inner product
wTy is used instead of the Hadamard product. While the data are reduced to a scalar quantity in LDA, the use
of the Hadamard product keeps the data dimensionality and therefore the KDE can still be computed, yielding the
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estimates p̂k. Furthermore, the objective in LDA is to obtain a classifier. Here, in contrast, w is chosen as to achieve
average separation between faulty and fault-free data while giving small variability to disturbances and noise.

Notice that once the weights are chosen, the same vector w is used for new data batches. For consistency, it is thus
required that the data sequences are synchronized. This can however be overcome in case the weights are strongly
correlated to measured data. In such case, an approximate function can be used to describe the weights relation
to the data, e.g. described as a static function w(·) such that wn =w(yk,n). The use of such representation of the
weights is illustrated in Section 4.2.

3.3.1 Choosing w – Linear Discriminant Analysis

A simple criterion is to maximize the average difference between the means of the datasets Y0
K0

and Yf
Kf

. For Y0
K0

(and similarly for Yf
Kf

), the average of the weighted data is given by

µ0 ,
1

N

N∑
n=1

[
1

K0

K0∑
k=1

wny
0
k,n

]
=

1

N

N∑
n=1

wn

[
1

K0

K0∑
k=1

y0k,n

]
︸ ︷︷ ︸

,µ0
n

=
1

N
wTµ0.

The average distance µf −µ0 is thus proportional to wT (µf −µ0) and the objective is to choose w which maximizes
the expression. This problem is equivalently found in LDA. Constraining w to unit length wTw=1 (otherwise the
criterion can be made arbitrarily large), it is possible to find that the optimal choice is according to (see e.g. [4,
Exercise 4.4]),

w∗ ∝ (µf − µ0). (14)

A criterion based only on the distance between the datasets means does not consider the variability found within
each dataset, e.g. caused by disturbances and noise. An alternative is to consider maximum average separation while
giving small variability within each dataset. The average value of the weighted variance vector over k for Y0

K0
(and

similarly for Yf
Kf

) is given by

s0 ,
1

N

N∑
n=1

[
1

K0

K0∑
k=1

(wnyk,n − wnµ0
n)2

]
=

1

N

N∑
n=1

w2
n

[
1

K0

K0∑
k=1

(yk,n − µ0
n)2

]
︸ ︷︷ ︸

,s0n

=
1

N
wTS0w,

where S0 is a diagonal matrix with diagonal elements given by s0n. Defining the total within class variation as sf +s0,
the following criterion can be used

(µf −µ0)2

sf +s0
∝ wT (µf − µ0)(µf − µ0)Tw

wT (Sf + S0)w
,

which is a special case of the Fisher criterion in LDA. It can be shown, see e.g. [4], that solutions for this problem
satisfy

w∗ ∝ (Sf + S0)−1(µf − µ0). (15)

That is, each weight w∗n is proportional to the ratio between the average changes caused by faults, µfn− µ0
n, and the

total variability found in the data, sfn + s0n, caused by disturbances and noise.
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Fig. 2. Friction levels τf in a robot joint as a function of motor speed ϕ̇ under different conditions of wear, temperature and
load. The offset values were removed for a comparison, their values are shown by the dotted lines. The data were collected
from similar gearboxes and are directly comparable. Notice the different scales used and the larger amplitude of effects caused
by temperature and load compared to those caused by wear. In (b), the colormap relates to the length of accelerated wear
tests during which the curves were registered.

4 Wear Monitoring in an Industrial Robot Joint

In this first application, the objective is to determine the presence of excessive levels of wear, w, in the gearbox of
a robot joint. Because increased wear levels may lead to increased friction in the gearbox, it is possible to monitor
friction to infer about wear. Since the friction torques must be overcome by the applied motor torques, τ , during its
operation, it is possible to extract information about friction from available data. Friction is however not only affected
by wear, but also by unknown disturbances, such as variations of load torques, τl, and the lubricant temperature, T ,
see Figure 2 ∗ . While it may be simpler to ensure constant load conditions, temperature is the result of complicated
losses mechanisms in the joint and heat exchanges with the environment which are difficult to control. The effects
of τl and T to friction are in fact comparable to those caused by w (recall Figure 2) and the problem is therefore
challenging. In [5], a model-based approach was suggested for this problem based on the identification of a wear
parameter from friction data collected under dedicated experiments. A shortcoming with this approach lies in the
need of a detailed friction model, which requires a large amount of experiments to be found. The data-driven approach
suggested here is considered as an alternative which requires little design effort since no model development is needed.

Since τ is affected by friction, and thus by wear, torque (current † ) data are considered for the generation of fault
indicators. The monitored data are collected from repetitive executions of a trajectory f. Relating to the notation
introduced in Section 2, the deterministic unknown input of interest, f , is the wear level w and the monitored data,
y, is τ which is affected by disturbances, d, caused by load τl and temperature T and by measurement noise v. A
trajectory, f, is a known deterministic sequence used as a reference to the motion control, i.e. it relates to r. In
many applications, the same trajectory is executed over and over again, ensuring a repetitive behavior of the robot.
For the results presented here, data collected from the execution of a trajectory f based on a test-cycle are used.
Torque data collected form this trajectory can be seen in Figure 3(a). Nominal torque data, τ0, are achieved from
the execution of f when the gearbox is new and no significant wear is present.

Section 4.1 presents experimental results for the wear monitoring problem when the changes in disturbances are kept
small. In Section 4.2, temperature disturbances are introduced in simulation studies and the use of weights described
in Section 3.3 are used to illustrate how to reduce sensitivity to disturbances.

4.1 Experimental Wear Monitoring under Constant Disturbances

Accelerated wear tests were performed with ABB IRB 6620 industrial robots with the objective of studying the
wear effects. In an accelerated wear test, the robot is run under high load and stress levels for several months or
years until the wear levels become significant and maintenance is required. Throughout the tests, the trajectory f

∗ Throughout the paper, all torque quantities are normalized to the maximum allowed torque and are therefore dimensionless.
† In the application, a torque estimate based on a constant relationship between current measurements is used. This simplifi-
cation is commonly used for control purposes since the current controller has much faster dynamics compared to the dynamics
of the robot arm and the such estimate is therefore perceived as the control input signal.
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was executed regularly a total of K times yielding a dataset [τ 0, · · · , τK−1]. The data were collected from axis
two of the robot which is equipped with a rotary vector gearbox type. The experiments were performed in a lab,
in a setup to avoid temperature variations ∗ and no load variations were present. It is thus considered that the
disturbances had a repetitive behavior dk=d over all batches. The data batch taken from the start of the operation
of a gearbox is considered to be fault-free and is labeled as nominal, τ 0. The quantities KL

(
p̂0||p̂k

)
are computed

for k= 1, . . . ,K−1 and are used as fault indicators. Data collected from two accelerated wear tests are considered
here. For an illustration of the wear behavior during the experiments, the friction levels in the joint were estimated
using a dedicated experiment (see [6] for a description of such experiment) at each kth execution of f and are shown
as function of motor speed ϕ̇.

For the first case, displayed in Figure 3, K=36 batches of data are considered. From analyses of the friction levels
in Figure 3(c), it is possible to note that wear only starts to considerably affect friction after k = 25. The effects
of wear to the torque sequences, shown in Figure 3(a), appear as small variations in amplitude due to increased
friction. The variations in the torque sequences are more easily distinguishable in the distribution domain as seen
in Figure 3(b). Wear affects the location and size of the distribution peaks. Notice further that the distributions
are similar for k ≤ 25 when the robot condition has not significantly changed. The resulting fault indicator, shown
in Figure 3(d), shows a clear response to the changes in friction, remaining close to 0 for k ≤ 25 and increasing
thereafter. To allow for CBM, it is considered that, in this test, a fault should be detected before k = 30. Using
data for k ≤ 25, the mean and standard deviation for the (considered) nominal behavior of the fault indicator are
estimated as [µ0, σ0]=[1.19 10−2, 5.09 10−3]. The dashed line in Figure 3(d) shows the value of ~=µ0 + 3σ0.

The second case, shown in Figure 4, illustrates the situation where a gearbox is replaced after a wear related failure
takes place. A total of K=111 data batches are collected during accelerated wear tests using the same test-cycle. A
gearbox failure occurs at k=73 when it is replaced by a new one. The friction curves related to the faulty gearbox
are shown in Figure 4(c), where it can be noticed that the changes due to wear start to appear around k=64. The
related distribution estimates for this gearbox are shown in Figure 4(a) where a similar behavior as in the previous
case can be noticed, with changes in the size and position of the distributions’ peaks. The data densities for the
replaced gearbox can be seen in Figure 4(b) where it is possible to notice that no significant variations are present.
The fault indicator is shown in Figure 4(d), where, as in the previous case, ~=µ0 + 3σ0. The filled circle highlights
the moment when the gearbox was replaced. As it can be seen in these studies, an early detection of the increased
wear is made possible with the use of the proposed fault indicator, allowing for CBM.

4.2 Simulated Wear Monitoring under Temperature Disturbances

Simulation studies were carried out to illustrate the ideas to reduce sensitivity to disturbances and noise presented
in Section 3.3. The use of simulations allow for more detailed studies of the effects of the disturbances compared
to what could be achieved based on experiments in a feasible manner. The simulation model is based on the two
link manipulator with elastic gear transmission presented in the benchmark problem of [31]. With the objective of
studying friction changes related to wear in a robot joint, the static friction model described in [5] is included in the
simulation model. The friction model included was developed from empirical studies in a robot joint and describes
the effects of angular speed ϕ̇, manipulated load torque τl, temperature T , and wear w.

4.2.1 Finding the weights w

According to the procedures described in Section 3.3, a labeled dataset is needed in order to find the optimal
weights. The dataset is achieved here based on simulations of the same test-cycle trajectory f used in Section 4.1.

Each labeled dataset Y0
K0

and Yf
Kf

contain K0 =Kf =100 batches with torque data generated from the sets

Y0
r = {τ k : wk=0, Tk∼U [T,T + ∆T ] , fk=f} (16a)

Yfr = {τ k : wk=wc, Tk∼U [T,T + ∆T ] , fk=f} (16b)

respectively, where wc = 35 is a wear level considered critical to generate an alarm (see [5] for details of the wear
model). Here, T is considered random, with uniform distribution given by T=30◦C and ∆T =40◦C. This assumption
is carried out for analysis purposes and allows for great variations of temperature disturbances.

∗ The environment temperature was controlled and the experiments were only performed after the robot temperature was
expected to be in equilibrium with the environment.
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Fig. 3. Monitoring of a wear fault in an industrial robot joint under accelerated wear tests and controlled load and temperature
disturbances. The friction changes caused by wear were estimated during the experiments and are shown in (c) for a comparison.
In the figures, the colormap relates to the friction values found. The monitored torque data from the execution of the
trajectory f are shown in (a), their respective KDEs were computed using a Gaussian kernel and are shown in (b). At k=0,
it is considered that the robot is fault-free and the fault indicator given by KL

(
p̂0||p̂k

)
is shown in (d) where the dashed line

represents an upper limit for the nominal behavior of the fault indicator. Notice the clear response of the fault indicator to
the wear changes.

The optimal weights given in (14) and (15) depend on the average changes found in the data, µfn − µ0
n, and the total

variability, sfn + s0n. These quantities are computed based on the labeled dataset and are displayed in Figure 5(a) as
a function of the motor speed ϕ̇. As it can be seen, the optimal weights present a strong correlation with ϕ̇. This
is not a surprise since the effects of w and T depend on ϕ̇, recall Figure 2. In the same figure, worst case estimates
along speed are also shown (solid lines), i.e. µfn − µ0

n closest to zero and largest sfn + s0n. Figure 5(b) presents the
ratio for such worst case estimates, which are considered as the optimal weights according to (15). The solid line in
Figure 5(b) is a function approximation of the optimal weights given by

w(ϕ̇) = sech(βϕ̇) tanh(αϕ̇) (17)

with α= 1.45 10−2 and β= 4.55 10−2. The parametrization of the weight vector as a function of ϕ̇ allows for a more
general use of the optimal weights and the same weighting function can be used for other trajectories. Effectively, the
optimal weighting function selects a speed region that is more relevant for wear monitoring, giving more emphasis
to data in low to intermediate speed regions. A similar behavior was also found in [5] for the achievable quality of a
wear estimate for different speeds under temperature disturbances.

4.2.2 Improvements in detection performance

To illustrate the possible improvements achieved with the use of the weighting function, an abrupt change detection
is considered. Given a nominal data batch τ 0 ∈ Y0

r , the detection problem is to decide whether a test batch τ k
belongs to Y0

r or Yfr based on the fault indicator KL
(
p̂0||p̂k

)
and where the sets Y0

r and Yfr are given by (16). This

10



τ

p̂
(y
)

 

 

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

10

20

30

40

50

60

70

(a) Estimated distributions for 0 ≤ k ≤ 72.
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(c) Friction curves for 0 ≤ k ≤ 72.
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Fig. 4. Monitoring of a wear fault in an industrial robot joint under accelerated wear tests and controlled load and temperature
disturbances. Data collected from the same trajectory f used in Figure 3 are considered. A wear fault develops in the gearbox
from k= 0 to k= 72, whereafter the faulty gearbox is replaced by a new one. The data distribution estimates for the faulty
gearbox are shown in Figure 4(a), which presents a similar behavior as for the previous case, recall Figure 3(b); the respective
friction curves are shown in Figure 4(c). The data distributions for the new gearbox are shown in Figure 4(b), where only
small deviations are visible. The nominal data are assigned at the start of operation of the gearboxes at k=0 and at k=73.
The resulting fault indicators are shown in Figure 4(d), with a clear response to the friction changes and a regular behavior
when no fault is present; the circle in the figure highlights when the gearbox replacement took place and the dashed lines
represent an upper limit for the nominal behavior of the fault indicator.
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Fig. 5. Choice of optimal weights w. The effects of disturbances by temperature and faults are shown in (a), together with a
worst case estimate (solid lines). The optimal weights for the worst case estimate are shown in (b) together with a function
approximation (solid). Notice how the optimal region for wear monitoring is concentrated in a narrow speed range.
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Fig. 6. Probability of detection Pd when Pf = 0.01 for an abrupt fault with wc = 35 as a function of temperature varia-
tions ∆T (a) and as function of the wear change size wc for ∆T =25◦C (b). Notice the considerable improvements when using
the weighted data.

corresponds to the following hypotheses

H0 : τ k∈Y0
r , H1 : τ k∈Yfr (18a)

where H0 indicates that no wear fault is present, with w= 0, and H1 indicates presence of a wear fault of size wc.
For given values of wc, T and ∆T , the test-cycle trajectory f is simulated to generate data according to (16). The
probability densities of the fault indicator under each hypothesis is estimated based on 5000 Monte Carlo runs with
and without the use of the weighting function. Based on the hypotheses densities’, the probability of detection Pd is
computed according to (4) for a threshold check when the probability of false alarm is Pf =0.01.

Figure 6(a) presents the achieved Pd as a function of ∆T for the fixed wc =35 and T =30◦C with and without the use
of the weighting function. Notice that the use of the weighting function considerably improves Pd under temperature
variations, but for too large ∆T it becomes difficult to distinguish the effects. A similar study is performed to
illustrate how wc affects the performance. Figure 6(b) presents Pd as a function of wc for the fixed ∆T = 25◦C
and T =30◦C. The improvements achieved using the weighted data are clear.

5 Gearbox Monitoring based on Vibration Data

In this application, vibration data collected from the gearbox test rig described in [19,23] are considered. The test
rig is composed of a motor coupled to a gearbox with three shafts and four spur gears. It is possible to study the
effects of different types of gear faults in the rig by replacing healthy gears with damaged ones. Four different fault
types (modes) are considered:

• m=0: healthy gears are used,
• m=1: a gear at the input shaft is damaged,
• m=2: a gear at the output shaft is damaged,
• m=3: a gear at the input and a gear at the output shafts are damaged.

Fault detection approaches for this problem have been proposed in [19] with the use of Hilbert and wavelet packet
transform and in [23] with a combination of Wavelet transform and time domain averaging. In these approaches, the
data are transformed to a time-frequency domain where different faults can be distinguished based on inspection
of the transformed data. The distribution domain approach proposed here is considered as an alternative for fault
diagnosis.

Data collected from an accelerometer placed close to the output shaft are considered for the analyses. All data
collection is performed under constant load and speed conditions in all settings, ensuring a repetitive behavior. For
each different condition, 8×1024 samples are available with data sampled at 2.56KHz. The datasets are divided
in K = 8 batches with N = 1024 samples to form Ym

K for each mode m. Figure 7(a) shows the fist data batch
ym1 for each mode m, notice that it is difficult to distinguish differences in the data sequences. In Figure 7(b), the
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Fig. 7. Diagnostics of a gearbox based on vibration data. A total of four different modes m are possible. An example of
data sequence from each mode is shown in (a). The data behavior in the distribution domain is shown in (b). The statistical
behavior of the fault indicator given by KL

(
p̂0||p̂k

)
is shown for yk ∈ Hm in (c). Notice that, despite the densities in (b)

being similar, the fault indicator clearly indicates the presence of a change in (c).

density estimates p̂mk (y) for every batch in every mode are displayed. Notice the smaller variability of the distribution
estimates within each mode compared to the variability found between modes.

To evaluate the fault indicator performance to change detection, the distance KL
(
p̂0||p̂k

)
is computed for every

possible pair such that y0 ∈ Y0
K and yk ∈ Ym

K for m ∈ [0, 1, 2, 3]. Since the distances are computed in pairs, this
gives 28 samples from the nominal set D0,0 (K=8 combined two by two) and K2 =64 samples from the sets D0,m for
m ∈ [1, 2, 3]. The hypotheses densities p(KL|Hm) are estimated based on these samples and are shown in Figure 7(c).
Notice the clear separation between the null hypothesis density, p(KL|H0), from the alternatives. For Pf =0.01, Pd
is computed based in (4) for a threshold check when deciding between H0 and Hm for m ∈ [1, 2, 3]; the achieved
values are Pd=[1, 0.991, 1]. To illustrate the approach to isolation as given in (5), the first data batch in each mode,
ym1 , is considered available. The isolation criterion given by m∗=arg minm KL (p̂m1 ||p̂k) chooses the correct mode for
all (K−1)×4 remaining data batches.

6 Conclusions and Future Work

The suggested framework considers the monitoring of changes in the distribution of data batches. Because no prior
knowledge is assumed about the data behavior, nonparametric kernel density estimates are used, which give great
flexibility, are simple to implement and have an inherent smoothing behavior. The validity of the framework and
methods were illustrated with promising results on real case studies and simulations for gearbox monitoring in
robotics and rotating machines. An important advantage of the framework presented is that no model or expert
knowledge of the system are required. Furthermore, it gives an alternative for systems where faults affect the data
amplitude but where stationary, periodic or linear behaviors are difficult or not possible, as in the robotics application
presented.

As future work, it would be interesting to further investigate the methods applicability to other domains and faults.
In this direction, the derivation of conditions for diagnosability are relevant. The determination of a change in data
collected under repetitive conditions simplifies the diagnostics problem considerably. In general however, it might not
possible to ensure the same repetitive behavior of the system. This is the case, for example, in the industrial robotics
application where trajectories are normally only repeated trough a certain period, depending on the manufacturing
plan. Thus, it would relevant to study approaches to handle systems with a varying repetitive behavior. The effects
of different kernel functions for the KDE, choice of bandwidth parameter and use of different distances between
densities are also important.
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