

Summary

The *static* friction phenomena in a manipulator joint is analyzed in detail regarding the influences caused by:

Joint position \Rightarrow related to asymmetries in the joint contact surfaces. **Joint load torques** \Rightarrow related to the increase of adhesion between the contact surfaces in the joint.

Temperature \Rightarrow related to variations of lubricant viscosity and contact surfaces interaction.

A series of experiments was carried out to consider the effects of each variable independently. According to the empirical observations a **new** static friction model, based on a standard velocity dependent model, is proposed to achieve an overall improved performance.

Friction Curve Estimation

Consider the manipulator rigid-body model:

$$M(\varphi_a) \ddot{\varphi}_a + C(\varphi_a, \dot{\varphi}_a) + \tau_g(\varphi_a) + \tau_f(\dot{\varphi}_m) = u$$

Moving one axis at a time in steady-state ve*locity*, then

$$\ddot{\varphi}_a \approx 0, \quad \mathcal{C}(\varphi_a, \dot{\varphi}_a) = 0$$

Assume $\tau_f(-\dot{\varphi}_m) = -\tau_f(\dot{\varphi}_m)$ (direction independence). Take movements over the same position $\bar{\varphi}_a$ in forward u^+ and backward u^- directions, for a constant speed $\overline{\dot{\varphi}}_m$:

$$\tau_f(\bar{\dot{\varphi}}_m) + \tau_g(\bar{\varphi}_a) = u^+, \qquad \Rightarrow \qquad \tau_f(\bar{\dot{\varphi}}_m) = \frac{u^+ - u^-}{2}$$

Moving the joint through several steady-state velocities back and forth, it is possible to estimate a static *friction curve* using (1).

Estimated static friction curve and \mathcal{M}_0 model-based predictions.

An Extended Friction Model to capture Load and **Temperature effects in Robot Joints** André Carvalho Bittencourt, Erik Wernholt, Shiva Sander-Tavallaey, Torgny Brogårdh

Notation

Joint arm pos φ_m | Joint motor pos Friction torque Gravity torque Inertial matrix Coriolis matrix Control input

(1)

Influences Analysis

Dedicated experiments at one of the joints of a 6 axes industrial robot were taken in order to analyze the joint friction influences caused by

Position φ_a : arm positions. **Perp. load** τ_p : resulting perpendicular load torque. Manip. load τ_m : resulting manipulated load torque. **Temperature** T: joint temps.

Special care was taken to avoid combined effects during the experiments. Using a model, a set of a configurations is chosen a priori in order to control variations of φ_a , τ_p and τ_m . Changes in T are achieved with a warm up cycle and cooling down.

Main Effects

- φ_a : no sensible effects.
- τ_p : no sensible effects (only small variations possible).
- τ_m : considerable *increase in the vel-weakening* regime.
- T: considerable *increase in the vel-weakening* regime and considerable decrease in the vel-strengthening.

Empirical Modeling

A standard parametrization of the static friction curve w.r.t. $\dot{\varphi}_m$ is

$$au_f(\dot{arphi}_m) = {oldsymbol{g}}(\dot{arphi}_m) + {oldsymbol{h}}(\dot{arphi}_m)$$
 =

of \mathcal{M}_0 that can cope with them.

Effects of τ_m

- F_c linear inc
- F_s linear inc

Effects of *T*

- F_s linear inc
- $\dot{\varphi}_s$ linear inc
- F_v exp. dec

Based on the observed behavior, the extended model \mathcal{M}^* is proposed

$$\tau_f(\dot{\varphi}_m, \tau_m, T) = \left[\{F_{c,0} + F_{c,0} + F_{c,0}$$

The parameters of \mathcal{M}^* are identified and it is validated over a wide operating range, reducing the average error *a factor of 6* when compared to \mathcal{M}_0 .

 $= \left[F_c + F_s e^{-\left|\frac{\dot{\varphi}_m}{\dot{\varphi}_s}\right|^{1.3}} \right] + \left[F_v \dot{\varphi}_m \right]$ (\mathcal{M}_0)

The effects of τ_m and T are analyzed further to argue about an extension

 $F_{c,\tau_{m}}|\tau_{m}|\} + F_{s,\tau_{m}}|\tau_{m}|e^{-\left|\frac{\dot{\varphi}_{m}}{\dot{\varphi}_{s,\tau_{m}}}\right|^{1.3}} +$ $\frac{\dot{\varphi}_{m}}{\varphi_{s,0}+\dot{\varphi}_{s,T}T}\Big|^{1.3} + \Big[\{F_{v,0} + F_{v,T}e^{\frac{-T}{T_{v_{0}}}}\}\dot{\varphi}_{m} \Big]$ (\mathcal{M}^*)

http://www.control.isy.liu.se/