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Abstract: This paper considers the problem of wear estimation in a standard industrial robot
joint. The effects of wear on the static friction of a robot joint are analyzed from experiments.
An extended static friction model is proposed that explains changes related to joint speed, load,
temperature and wear. Based on this model and static friction observations, a model-based
wear estimator is proposed. The performance of the estimator under temperature uncertainties
is found both by means of simulations and experiments on an industrial robot. Special attention
is given to the analyzes of the best speed region for wear estimation. As it is shown, the method
can distinguish the effects of wear even under large temperature variations, opening up for the
use of robust joint diagnosis for industrial robots.
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1. INTRODUCTION

In the manufacturing industry, preventive scheduled main-
tenance is a common approach used to guarantee the relia-
bility of a robot system, avoiding unpredicted stops. Such
scheduling is in general based on the estimated robot’s
components lifespan and not on its actual conditions.
With the development of model-based diagnosis meth-
ods, more sophisticated approaches have been proposed
for manipulator diagnosis (Caccavale and Villani (2003)).
These methods are based on the principle of analytical
redundancy, where residuals (deviations between the sys-
tem outputs and model-based predictions) are monitored
to perform fault detection, see Isermann (2005) for an
overview on model-based diagnosis methods. A typical
approach for residual generation in robotics is the use of
nonlinear observers, as presented in McIntyre et al. (2005).
Since observers are sensitive to model uncertainties and
disturbances, some methods attempt to diminish these
effects. In Brambilla et al. (2008) and De Luca and Mat-
tone (2004), nonlinear observers are used together with
adaptive schemes while in Caccavale et al. (2009), the
authors mix the use of nonlinear observers with support
vector machines. The problem has also been approached
by the use of neural networks as presented in Vemuri
and Polycarpou (2004) and in Eski et al. (2010), where
vibration data are used for diagnosis. Parameter estima-
tion is a natural approach because it can use the physical
interpretation of the system, see for example Freyermuth
(1991).

The diagnosis of actuators is a relevant research topic
for industrial robots. In the literature, actuator failures
? This work was supported by ABB and the Vinnova Industry
Excellence Center LINK-SIC at Linköping University.

are typically considered as abrupt changes in the output
torque signals. These fault models can relate to several
types of failures such as a motor malfunction, power supply
drop or a wire cut. Such failures are however difficult
to predict and therefore, even if detected, might still
cause damages. An important type of failure is the one
related to wear in robot joints. This type of fault develops
with time/usage and might be detected at an early stage,
allowing for condition-based maintenance.

The wear processes inside a robot joint cause an eventual
increase of wear debris in the lubricant. Monitoring the
iron content of lubricant samples taken from the robot
joint can thus be used as an indication of the joint
condition. The study of wear debris particles is known
as ferrography and was first introduced by Seifert and
Westcott (1972). Since then, the science has evolved and
helped to understand wear related phenomena (Roylance
(2005)). These techniques are however intrusive and costly,
requiring laboratory analyzes.

It is well known that friction changes can follow as a result
of wear processes in mechanical systems, see for example
Kato (2000). In this paper, the effects of wear on static
friction in a robot joint are analyzed and modeled through
empirical observations. As the study shows, the effects
are sensible and a possible diagnostic solution is thus to
monitor the joint friction.

The friction in a robot joint is the result of complex in-
teractions between contacting surfaces and can be affected
by other factors than wear, such as,

• temperature,
• force/torque levels,
• joint angle,

• velocity,
• acceleration,
• lubricant/grease properties.



When designing a diagnostic method, it is necessary to
understand the effects of the different variables to be
able to distinguish them from those related to wear. The
static friction model presented in Bittencourt et al. (2010)
is extended in this paper to achieve a model that can
represent the effects of speed, temperature, load and wear
in a robot joint. With the proposed model, it is possible
to predict the behavior of observed friction over wide
operating conditions, opening up for robust diagnosis.

In this paper, a wear estimator is defined given static fric-
tion observations, τf , and predictions from the developed
model, τ̂f (·). The estimator is defined in a prediction error
sense, that is

ŵ = arg min
w
V
(
τf − τ̂f (ϕ̇, τm, T,w)

)
, (1)

where V (·) is a cost function, w is the wear level, ϕ is the
vector of joint angles, ϕ̇= d

dtϕ, τm is the load component
that is manipulated by the joint and T is the joint
temperature, see also Fig. 1(b). Since joint temperature
is seldom measured in industrial applications, its effects
are considered assuming T as a random variable with an
unknown distribution function but known lower and upper
limits. The estimator characteristics under temperature
uncertainties are analyzed in detail.

Static friction observations are made possible through
a dedicated test cycle, which outputs τf at a set of
pre-defined speed levels. When designing test cycles, it
is important to distinguish between cycles used for the
development of diagnosis methods and cycles used for
diagnosis of a robot in an industrial installation. In the
later case, the cycle must take only a short time to perform.
This means that the cycle must be customly designed for
the estimation of the desired quantity. In the following, it
is shown that it is possible to obtain an efficient test cycle if
correct speed levels are used, even under large temperature
variations.

The wear estimator and its properties are studied based
on observed static friction in joint 2 of an ABB IRB 6620
industrial robot, see Fig. 1(a). Joint 2 is chosen for the
study as it endures great load variations for the type
of robot considered. The paper is organized as follows.
Section 2 presents a method to observe static friction in a
robot joint that can be used to define a test cycle. Section 3
discusses the static friction model presented in Bittencourt
et al. (2010). The main contributions are contained in
Sections 4 to 6, where

• the empirical wear model is developed,
• the model-based wear estimator is defined,
• the best speed region for wear estimation under

temperature uncertainties is discussed and
• the approach is validated through simulations and a

case study based on real data.

The conclusions and proposals for further research are
presented in Section 7.

2. STATIC FRICTION OBSERVATIONS THROUGH
EXPERIMENTS

A manipulator is a multivariable, nonlinear system that
can be described in a general manner through the rigid
multi body dynamic model

(a) ABB IRB 6620 robot
with 150 kg payload and
2.2 m reach.

(b) Schematics of the first
3 joints including the vari-
able definitions for joint 2.

Fig. 1. The study is based on joint 2 of the ABB robot IRB
6620. ϕ̇ is the joint angular speed, T the joint temperature,
the manipulated load torque τm is the load torque component
aligned to the joint degree of freedom.

M(ϕ)ϕ̈+ C(ϕ, ϕ̇) + τg(ϕ) + τf = u (2)

where M(ϕ) is the inertia matrix, C(ϕ, ϕ̇) relates to speed
dependent terms (e.g. Coriolis and centrifugal), τg(ϕ) are
the gravity-induced joint torques and τf contains the joint
friction components. The system is controlled by the input
torque, u, applied by the joint motor (in the experiments
the torque reference from the servo was measured 1 ).

When only one joint is moved (C(ϕ, ϕ̇) = 0 at that joint)
under constant speed (ϕ̈ ≈ 0), Eq. (2) simplifies to

τg(ϕ) + τf = u. (3)

The resulting applied torque u drives only friction and
gravity-induced torques. The required torques to drive a
joint in forward, u+, and reverse, u−, directions at the
constant speed level ¯̇ϕ and at a joint angle value ϕ̄ (so
that τg(ϕ̄) is equal in both directions), are

τ+
f + τg(ϕ̄) = u+ (4a)

τ−f + τg(ϕ̄) = u−. (4b)

In case an estimate of τg(ϕ̄) is available, it is possible
to isolate the friction component in each directions using
Eq. (4). If such estimate is not possible (e.g. not all
masses are completely known), τf can still be achieved in
the case that τf is independent of the rotation direction.
Subtracting the equations yields

τ+
f − τ−f = u+ − u−

and if τ+
f =−τ−f = τf , the resulting direction independent

friction evaluated at the constant speed ¯̇ϕ is:

τf =
u+ − u−

2
. (5)

In the experiments, each joint is moved with the desired
speed in both directions around a given joint angle ϕ̄.
Fig. 2 shows the measured joint angle-, speed- and torque 2

signals sampled at 2 kHz 3 for ¯̇ϕ= 42 rad/s around ϕ̄= 0.

1 It is known that using the torque reference from the servo as a
measure of the joint torque might not always hold because of the
temperature dependence of the torque constant of the motors. The
deviations are however considered to be small and are neglected in
this paper.
2 Throughout the paper all torques are normalized to the maximum
manipulation torque at low speed and are therefore displayed as
dimensionless quantities.
3 Similar results have been experienced with sampling rates down
to 220 Hz.
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Fig. 2. Excitation signals used for the static friction estimation
at ϕ̇=42 rad/s.
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Fig. 3. Static friction curve. Crosses indicate friction levels achieved
using Eq. (5), with the assumption that friction is direction in-
dependent. Dotted/dashed lines indicate friction levels achieved
using Eq. (4a) and Eq. (4b) respectively.

The constant speed data is segmented around ϕ̄ and the
static friction levels can be achieved using Eq. (4) or (5).
With the experimental setup used, the time needed for
measurements and computations of the friction level for
one joint at one speed was in average 14s.

The friction values achieved over the whole joint speed
range can be presented in a static friction curve, sometimes
referred to as a Stribeck curve, see Fig. 3. As seen in the
figure, there is only a small direction dependency of friction
for the investigated joint. Therefore, in this paper, friction
levels are achieved using Eq. (5), which is not influenced
by deviations in the gravity model of the robot.

Remark 1. Throughout the paper, friction values obtained
using the method presented above are named friction
observations.

A test cycle can be achieved by simply taking friction
observations at a set of different speed levels. The choice
of speed set is a design criteria, representing a compro-
mise between the test-cycle time and amount of friction
observations.

3. STATIC FRICTION MODEL

In Bittencourt et al. (2010), a static friction model that can
explain the effects of temperature and joint load torque
levels was presented. As shown, this model can be used
to predict the normal behavior of static friction under
broad operation conditions. The model is developed from
a standard description of the static friction and empirical
observations, taking the form:

τf (ϕ̇, τm, T ) =

{Fc,0 + Fc,τm |τm|}+ Fs,τm |τm|e
−
∣∣ ϕ̇
ϕ̇s,τm

∣∣1.3
+ (6a)
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T = 33◦ C, τm = −0.70
T = 80◦ C, τm = −0.70
T = 33◦ C, τm = −0.01
T = 80◦ C, τm = −0.01

Fig. 4. Observed static friction curves (circles) and model-based
predictions (lines) for low and high values of T and τm.

+ {Fs,0 + Fs,TT}e
−
∣∣∣ ϕ̇
{ϕ̇s,0+ϕ̇s,T T}

∣∣∣
1.3

+ (6b)

+ {Fv,0 + Fv,T e
−T
TVo }ϕ̇, (6c)

where τm is the manipulated load torque and T is the
joint temperature, see Fig. 1(b). The remaining variables
are parameters used to model the friction behavior. The
terms in (6a) describe the effects of τm, which are more
significant at low speeds; the terms in (6b) and (6c)
describe the effects of T at low, respectively high, speed
ranges (see Bittencourt et al. (2010) for a more detailed
discussion). The values for the identified parameters used
in this paper are shown in Table 1.

To illustrate the model behavior, Fig. 4 presents observed
and model-based predictions of friction curves for high and
low values of τm and T . Notice the effects of τm, which
give an offset increase of the whole curve together with an
exponential-like increase at speeds below 25 rad/s. The
effects of T can be seen as an exponential increase at
speeds below 80 rad/s and a decrease of the curve slope
at higher speeds. Notice further that for such temperature
changes there is a speed range where the effects are less
pronounced, in this case around 80 rad/s.

4. WEAR – ANALYZES AND MODELING

It might be difficult to fully comprehend the effects of wear
in a robot joint. Monitoring the system until a failure
takes place is a costly and time consuming task. With
the objective of understanding these effects, accelerated
wear tests were performed with a robot joint while friction
curves were observed periodically. During an accelerated
test, the robot joint under investigation is continuously
run for several months or years.

The results of such an experiment is shown in Fig. 5,
with observed friction curves obtained at the same load-
and temperature levels. As can be noticed, the effects
of wear appear first in the low speed region, in this
case, up to about 150 rad/s. In Fig. 5, the dashed line
indicates the samples associated with a wear level that
gear experts find relevant for issuing an alarm. Up to
this point, the changes appear mostly in the low speed
range. If the accelerated wear tests proceed, the friction
curve is also affected at higher speed levels. A direct
comparison with Fig. 4 reveals that the friction changes
caused by increased wear are in the same magnitude as
the changes caused by load/temperature but with different



Table 1. Identified parameters for the model (6).

Fc,0 Fc,τm Fs,0 Fs,τm Fs,T Fv,0 Fv,T ϕ̇s,0 ϕ̇s,τm ϕ̇s,T TVo

3.04 10−2 2.32 10−2 −2.44 10−2 1.28 10−1 1.69 10−3 1.29 10−4 1.31 10−3 −25.00 9.07 1.00 21.00
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Fig. 5. Effects of wear in friction curves observed at regular intervals
under accelerated wear tests taken under constant load- and
temperature conditions. The dashed line relates to the wear
level at which an alarm should be generated.

Fig. 6. Friction wear profile τ̃f computed from the data in Fig. 5.
The dashed line indicates the experiment where an alarm
should be given.

speed dependence. Therefore, it might be possible to
obtain a selective identification of wear in a robot joint.

4.1 Wear Modeling

Resolving for coupled effects between wear, temperature,
load and other parameters would require costly long term
experiments. In order to make it possible to examine and
model the effects of wear, a simplifying assumption is taken
that considers the effects of load/temperature independent
of those caused by wear.

Under this assumption, the effects of wear in the static fric-
tion curves of Fig. 5 can be isolated since temperature/load
conditions are the same for these data. A wear profile τ̃f
is defined by subtracting a friction curve observed before
the accelerated wear tests started from the ones obtained
from the same robot with accelerated tests. The resulting
wear profile from the accelerated wear test in Fig. 5 can be
seen in Fig. 6, where the curves are presented along a time
index k, indicating the length of the accelerated tests. In
the figure, the dashed line at time-index k= 80 relates to
the alarm level as in Fig. 5.

As can be noticed, the effects of wear appear as an increase
of the exponential-like behavior of the friction curves up
to 150 rad/s and small decrease of the velocity slope
dependency at higher speeds. Introducing w as a wear
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ŵ = 22.40, k = 78

ŵ = 30.40, k = 79

w = 35.00, k = 80

w = 46.70, k = 81

Fig. 7. Measured wear profile (circles) and model-based predictions
(lines).

parameter, the observations support the choice of a model
structure for the wear profile as

τ̃f (w) = Fs,wwe
−
∣∣ ϕ̇
ϕ̇s,w w

∣∣1.3
+ Fv,w wϕ̇. (7)

The model represents wear effects with an exponential-
and a velocity dependent terms, with 3 parameters. The
model parameters cannot be directly identified since the
wear quantity w is not measurable. To overcome this, w is
defined with values between [0, 100], relative to a failure
state, the value w=35 is chosen as a reference for the wear
effects associated with an alarm, at k=80 in Fig. 6. With
this convention, the parameters for (7) are identified using
the wear profile data τ̃f for the curve at k=80. The values
achieved are

Fs,w = 9.10 10−3, Fv,w = −5.3 10−7, ϕ̇s,w = 2.20. (8)

With the chosen parameters, an estimate ŵ is obtained
using the data for the whole wear profile in Fig. 6. Using
the identified wear values, the wear profile given by model
predictions from (7) and observations are presented for the
interval k=[78, 81] in Fig. 7. As can be noticed, the model
can fairly well predict the behavior of τ̃f .

Under the assumption that the effects of load/temperature
are independent of those caused by wear, it is possible to
extend the model given in (6) to include the effects of wear
as

τf (ϕ̇, τm, T,w) = τf (ϕ̇, τm, T ) + τ̃f (w), (9)

where τf (ϕ̇, τm, T ) is given by (6) and τ̃f (w) is described in
(7). With parameters given by Table 1 and Eq. (8), Fig. 8
presents the friction predictions given by the proposed
model at T = 40◦C and τm = 0.10 for wear values in the
range w=[0, 40]. Notice that the effects are concentrated
to the speed range of [0, 150] rad/s. As previously, the
dashed line in Fig. 8 indicates an alarm level for the wear,
it has a friction increase of 0.017 at 47 rad/s and w=35.

5. A MODEL-BASED WEAR ESTIMATOR

Considering that ϕ̇, τm and T can be measured/estimated,
it is possible to define a wear estimator in a prediction error
sense as in Eq. (1)

ŵ = arg min
w
V
(
τf − τ̂f (ϕ̇, τm, T,w)

)
, (10)
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Fig. 8. Increase of wear levels given by the model (9). The dashed
line relates to the wear level at which an alarm should be
generated.

where τf is observed through the procedure presented in
Section 2 and the predictions τ̂f are given by the model
in (9). Since the model is not invertible with respect to w,
the problem should be solved by nonlinear identification
methods.

In industrial applications, joint temperature measure-
ments are seldom available. In order to solve this problem
it is proposed to consider joint temperature to be a random
variable, with a certain probability distribution function
p(T ). The distribution function p(T ) is assumed to be
unknown, but with known lower and upper limits T , T .
For a robot operating in a controlled indoor environment,
T would be minimum room temperature while T is given
by the maximum room temperature and self heating of the
joint because of actuator losses.

To include the effects of T in the estimator, Eq. (1)
is solved for N realizations of the considered random,
T . The estimator assumes that p(T ) is constant in the
given temperature range and samples are drawn with
equal probabilities over [T , T ]. The expected value of the
resulting N estimates is then taken as the wear estimate,

ŵi = arg min
w
V (τf − τ̂f (ϕ̇, τm, Ti,w)) (11a)

ŵ = E [{ŵN}] , Ti ∼ U(T , T ), i = 1, . . . , N (11b)

here τ̂f (ϕ̇, τm, Ti,w) is given by (9) and {ŵN} denotes the
sequence {ŵ1, . . . , ŵN}.
To solve the minimization problem in (11a), grid search is
used with a square error cost function V (·). To evaluate
(11b), a Monte Carlo simulation is carried out. For a given
observation of τf , it takes N samples Ti from U(T , T ),
yielding N estimates {ŵN}. The expected value of the
sequence {ŵN} is taken as the wear estimate ŵ.

5.1 Statistical Properties

To evaluate the behavior of the proposed estimator, the
static friction observations are assumed to follow the model

τf = τf (ϕ̇, τm, T,w
0) + e, (12a)

e ∼ N (0, σ2
e), T ∼ p(T ) = N (µT , σ

2
T ) (12b)

where τf (·) is generated according to the model (9) with
parameters given in Table 1 and Eq. (8), and where e is
additive measurement noise. The stochastic properties of
e are motivated by experimental studies of the estima-
tion method presented in Section 2. For the considered
joint, the estimated standard deviation is σe = 0.0015.
The wear level is defined as w0 = 35, which means 35%

ϕ̇ (rad/s)

w
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Fig. 9. Contour plot of the estimated probability distribution
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Fig. 10. Estimated bias of ŵ along the robot speed range. Notice
the better performance in the interval [50, 90] rad/s.

wear in relation to a failure state, and is related to
the alarm level for the wear as discussed in Section 4.
Temperature is considered to follow the normal distribu-
tion T ∼ N (µT , σ

2
T ), with mean and standard deviation

[µT , σT ] = [40, 3]◦C. The chosen distribution illustrates
the scenario where friction observations are always taken
after the same sequence of events during the day, for
instance between two production shifts, in a room with
controlled environment temperature. The large standard
deviation is used to cope with, amongst others, variations
of room temperature and variations of self-heating caused
by the different loses for the operations of the robot. The
observations of friction torques τf obtained from the model
in (12) are used as input to the estimator defined in (11),
with N = 200, [T , T ] = [30, 50]◦C and parameters to
τ̂f (ϕ̇, τm, Ti,w) given in Table 1 and Eq. (8).

To evaluate the performance of the estimation method,
10, 000 simulations were made at 56 different speeds in
the range ϕ̇=[0, 280] rad/s. The estimation is performed
separately for each speed point to assess the method
performance along the achievable speed range. Fig. 9
presents the estimated probability distribution function of
the estimates ŵ with respect to speed in a contour plot,
together with their expected values. As can be noticed,
the variability of the estimates is smaller in the speed
range [30, 55] rad/s. Fig. 10 presents the estimated bias
over speed. Notice the small bias at speeds up to 150 rad/s
and the monotonic increase at higher speeds. The results
are directly related to the behavior of the modeled wear
and temperature effects for the considered p(T ) (recall
Fig. 4 and Fig. 8).

Variance. From the simulation studies, it is possible to
estimate the resulting variance of the estimator. For the
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observation model defined in (12), introduce

p̄(τf |w) ,
∫∫

p(τf |w, e, T ) p(e)p(T ) dedT, (13)

where p(·) denotes a probability distribution function.
Eq. (13) is the marginalization of the effects of measure-
ment noise and random temperature. Using p̄(τf |w), the
Cramer-Rao bound (CRB) for any unbiased estimator can
be defined as (Van Trees (2001))

E
[(
ŵ − w0

)2] ≥M−1 (14a)

M =E

[(
∂

∂w
log p̄(τf |w)

)2
]

(14b)

Since there is no analytical solution for (13), Monte Carlo
Integration (MCI) is used to compute it numerically. The
derivative in (14b) is approximated numerically with the
central difference,

log p̄(τf |w0 + h)− log p̄(τf |w0 − h)

2h
for h=0.1.

The CRB is shown together with the variance for the pro-
posed estimator in Fig. 11. As can be noticed, the variance
is high at low and high speeds. The estimator can however
approximate the CRB at the speed region [30, 55] rad/s.
This illustrates the relevance of a correct choice of speed
points to observe friction for wear identification.

6. CASE STUDY

Gathering enough informative data related to wear from
the field is inviable since robots will rarely have wear
related problems. The alternative of running accelerated
wear tests is also difficult since it might take several
months before any wear effects can be seen and it is
difficult to obtain reliable statistics without extremely
high cost of running several robots. Moreover, tempera-
ture studies are also challenging since the thermal time
constant of a large robot is several hours. An alternative
is proposed that considers two data sets:

Wear profile The first data set is used to relate to the
evolution of the wear effects. A wear profile τ̃f (k), as
defined in Section 4.1 is used with this purpose. In this
study, the data from Fig. 6 is considered.

Temperature effects The second data set is used to
relate to effects caused by temperature. Several friction
curves are observed on another robot of same type over
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Fig. 12. Reference (line) and achieved (histogram) temperature
distributions for the data used in the case study.

broad temperature conditions and no influence of wear.
Joint temperature measurements were registered during
the experiments and each friction curve in the set is
associated with a joint temperature T . The notation
τ0
f (T ) is then used to denote the friction curve in this

data set related to the temperature T .

Neglecting any possible combined effects of temperature
and wear, the static friction observation model is defined
as

τ∗f (k) = τ̃f (k) + τ0
f (T ). (15)

Using this framework, it is possible to generate faulty fric-
tion observations under different temperature conditions.
Notice that these data are not analytically generated, but
actually based on static friction observations.

To achieve a desired temperature distribution for the
observations τ∗f (k), the friction data τ0

f (T ) are chosen
according to the associated T . The reference distribution
considered for this case study is the same used in Sec-
tion 5.1, N (µT , σT ), with mean and standard deviation
[µT , σT ]=[40, 3]◦C. The reference and achieved tempera-
ture distributions for the data used in this case study can
be seen in Fig. 12.

With the generated data, wear is estimated separately
for each speed, using the method given in Eq. (11), with
[T , T ] = [30, 50]◦C, N=200 and parameters given in
Table 1 and Eq. (8). The resulting estimates can be seen
in Fig. 13 for ϕ̇ = 35.98 and ϕ̇ = 84.23.

An evaluation of the estimates against the actual wear
value is not possible since the quantity w is not measurable.
As an alternative, a wear estimate is taken directly from
the fault profile data τ̃f (k). This estimate is found as the
value of w minimizing the prediction error between τ̃f (k)
and the fault profile model in Eq. (7),

ŵ∗(k) = arg min
w
V (τ̃f (k)− ˆ̃τf (w)), (16)

with parameters given in Eq. (8). The minimization at
index k is performed using data from all speeds. Since
ŵ∗(k) is achieved directly from τ̃f (k) (under no tempera-
ture disturbances), using all data available at k, its value is
considered the best possible wear estimate given the avail-
able information. Its value is therefore used as a reference
for a comparison. The resulting values are shown in the
dashed line in Fig. 13, notice that the estimates achieved
at ϕ̇ = 35.98 are quite close to ŵ∗.

Using ŵ∗ as a reference, the estimates ŵ can be eval-
uated through ∆ŵ = ŵ − ŵ∗. Its mean, E[∆ŵ], worst
case deviation, |∆ŵ|∞, and standard deviation σ∆ŵ are
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Fig. 13. Estimated wear levels as function of k at selected speed
points and ŵ∗.
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Fig. 14. Bias, worst case deviation and 3 standard deviation of
∆ŵ = ŵ − ŵ∗ along ϕ̇.

computed over the indexes k at each speed. The results,
shown in Fig. 14, relate qualitatively to the simulation
studies presented in Section 5.1, with larger variance at
low and high speeds with increasing bias at high speeds.

The estimation performance was found to be good at
speeds close to 35 rad/s. In this speed region, ŵ increases
according to ŵ∗ but with slight biases. The best result was
found at ϕ̇=35.98 rad/s, with a bias of −0.18, worst case
deviation of 8.11 and standard deviation of 4.02. At this
speed region, even a simple threshold, set at 35 could be
used to detect the critical wear increase w=35.

7. CONCLUSIONS

In this paper, a method to estimate wear in a robot joint
has been presented. The method is based on the fact that
the wear processes inside a robot joint causes increases
of the joint friction. To explore this, the effects of wear
on the behavior of static friction have been analyzed and
modeled. A model-based wear estimator was defined based
on static friction observations from a test cycle and an
extended friction model that can represent friction with
respect to speed, load, temperature and wear. Since joint
temperature is seldom measured in industrial applications,
its effects were considered in the estimator by treating it
as a random variable with unknown distribution and know
lower and upper limits.

A test cycle was proposed that can be used to achieve
static friction observations at a pre-defined set of speeds.
In order to find the optimal speed region to perform wear
estimation, simulations were used to asses the variance of
the estimates in presence of large temperature variations.
The simulation results were supported by a case study
based on real data. As it was shown, the wear estimates

in the optimal speed region could be used to perform fault
detection, allowing for robust condition based maintenance
of industrial robots. This optimal speed region is however
narrow, emphasizing the relevance of a correct choice of
speed values. If the friction observations are made on
a robot installed in a manufacturing line, there is the
tradeoff between making the test cycle both accurate and
short. In case more time can be spent for the diagnosis
routine, the accuracy of the estimation could be improved
by observing friction at various speeds around the optimal
one.

The work will proceed with studies of the method when
also variations of the torque levels and the lubricant
properties take place. Later studies will moreover be made
of the accuracy of the developed method for different
types of robot joints. Especially interesting is to find out
the friction- and wear behavior of different gear types.
Investigations will also be made to see if it is possible to
perform reliable wear estimations without using custom
designed experiments.
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