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Let (A;B;C;D) be a balanced realization of a system G. That is

A

�

� + �A + C

�

C = 0

A� + �A

�

+BB

�

= 0

(a,b) Is the balanced realization unique? If (A;B;C;D) is a balanced realiza-

tion then (TAT

�

; TB; CT

�

; D) is also a balanced realization if T

�

T = I

and T� = �T . Since, � is diagonal any T = diag [�1;�1; : : : ;�1] will

do.

(c) Consider the balanced realization of G(s) =

120�60s+12s

2

�s

3

120+60s+12s

2

+s

3

. Try to

�nd a balanced realization such that as many elements as possible are

zeroed in (A;B;C;D). In this case � = I. Then any unitary T will

satisfy T� = �T .

sys = nd2sys ([-1 12 -60 120], [1 12 60 120]);

[bal, sig] = sysbal (sys);

P = sys2pss(bal); % turns the system in a [A B;C D] matrix

T1=daug ([orth(P(1:3,4)) null(P(1:3,4)')],1);

P1 = T1'*P*T1;

T2=daug (1,[orth(P1(2:3,1)) null(P1(2:3,1)')],1);

P2 = T2'*P1*T2

bal2 = pss2sys (P2, 3);

This yields the following system
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Let G =

~
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N be a normalized coprime factorization. Perform a model

reduction of
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Determine an upper bound for the relative error between G
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A transfer functionG is called positive real ifG is stable and ReG(j!) > 0

for all ! 2 R. Determine if G(s) = D +C(sI �A)B is positive real without

making a frequency sweep.

The system is positive real if G(j!)+G(j!)

�

> 0 for all ! 2 R. Speci�cally,

we must require that R = D +D

�

> 0. We further know that

G =

"

A B

C D

#
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=
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Then
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Note that �(j!) is real for all ! 2 R. If G is positive real then �(j!) > 0

for all ! 2 R. Otherwise there exists at least on ! 2 R such that �(j!) = 0.

Thus �

�1

has no poles on the imaginary axis if and only if G is positive real.

The A-matrix of �

�1

:
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Thus G is positive real if and only if D +D

�

> 0 and H has no imaginary

eigenvalues.

Also refer to the ZDG book, section 13.5.

4

We will here consider the problem of controlling and stabilizing the atti-

tude of a rocket using thrust vector control. A hypothetical rocket is used

and we consider the control of the second stage, which has its burn phase in

the upper atmosphere. The vehicle is aerodynamically unstable due to the

fact that the center of pressure is in front of the center of mass. The vehicle

is stabilized by directing its movable nozzle. The velocity of the vehicle is

assumed to be relatively high, and we use the approximation that attitude

is identical to angle of attack, which allows us to use only two states in the

model. Neglecting aerodynamic damping we use

�y = ay + bu

as our model of the vehicle dynamics, where y is the attitude of the vehicle,

u is the thrust vector de
ection, and a and b are parameters.

The parameters a and b are uncertain due to uncertainties in dynamic

pressure (caused by altitude, velocity and air density), gravimetrics, and

aerodynamics. In addition, the a parameter depends on the angle of attack.
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Figure 1: The augmented rocket plant

The parameter a can be modeled explicitly by an uncertainty while vari-

ations in b can be included in the phase and gain margin.

A delay of 0.06 seconds is included in the loop for modeling computational

delay, sampling e�ects and actuator dynamics.

Design a controller that should satisfy the following requirements.

(i) a = a

0

+ a

1

�

1

; �

1

2 [0; 1];

(ii) The gain margin shall be 6 dB or better;

(iii) The phase margin shall be 35 degrees or better;

(iv) The compensator gain shall be less than {6 dB at frequencies above 50

rad/s.

A state-space model G is de�ned by

d

dt
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#

"

z
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#

=

"

1 0

1 0

# "

x

1

x

2

#

(1)

where a

0

= 0:5, a

1

= 0:5 and w

1

= �

1

z

1

. The system is augmented according

to �gure 1 in order to take into account the requirements as uncertainties.
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A delay of 0.06 seconds is included for modeling computational delay,

sampling e�ects and actuator dynamics. This delay is implemented by a

�rst order Pad�e approximation,

d(s) =

1� 0:03s

1 + 0:03s

; (2)

which is valid with a relatively good accuracy up to about 30 rad/s.

The gain and phase margins are assured by including a complex uncer-

tainty in the feedback loop by the gain

1 + k

m

�

2

q

1� k

2

m

; (3)

with k

m

= 0:6 and j�

2

j < 1.

For ensuring low enough gain at high frequencies the compensator gain

is restricted by jK(j!)j < jW

k

(j!)j where

W

k

(s) = 2

(s+ 7:436)

2

+ 19:75

2

(s+ 7:07)

2

+ 49:84

2

(s+ 20:54)

2

+ 9:36

2

(s+ 60:28)

2

+ 72:89

2

: (4)

This requirement comes from the fact that the rocket is not a rigid structure

but has 
exible modes due to the elasticity in structure and interstage joints.

In a conservative design, like this one, we make no assumption on the phase

since 50 rad/s is higher than the bandwidth of the system (determined by the

total delay in the loop). Thus, stability is assured by the gain requirement

for ! > 50.

The system is augmented by the a-variation (�

1

), the gain and phase

margin requirement (�

2

), and the high-frequency gain requirement (�

3

) as

depicted in �gure 1.

� Design

We start the design by D-K iterations. In the �rst iteration no scalings

are used and the controller is obtained by a \straight" H

1

synthesis. Next

a frequency sweep of the closed loop system is performed and the maximum

�-value is computed with respect to frequency. The result is shown in table 1

on the �rst row.

5



In iteration 2, scalings are computed by �tting a state-space system to

the frequency sweep data, using musynfit in the �-Analysis and Synthesis

Toolbox [?]. Third-order scalings are used for �

1

and �

2

while the scaling

for �

3

is constant.

An abbreviated Matlab command sequence for the two �rst iterations is

given below.

% iteration # 1: unscaled augmented system denoted by sysx

>> [k1, clp1] = hinfsyn (sysx, 1, 1, 2, 3, 0.0001);

Gamma value achieved: 2.5715

% iteration #2

>> w = logspace (-1,2);

>> blk = [1 0; 1 0; 1 0];

>> [bnds, dvec, sens] = mu (frsp (clp, w), blk);

>> D = musynfit ('first', dvec1, sens1, blk, 1, 1);

>> mux = mmult (D, sysx, minv(D));

>> [k2, clp2] = hinfsyn (mux, 1, 1, 1, 1.2, 0.0001);

Gamma value achieved: 1.1006

>> [bnds2, dvec2, sens2] = mu (frsp (clp2, w), blk);

We then repeat the H

1

synthesis, this time on the scaled system. This

time both the H

1

norm and the �-value are signi�cantly lower than in the

�rst iteration. Two moreD-K-iterations are performed as is shown in table 1.

The column denoted D+A scaling gives the orders of the scaling matrices

D for �

1

, �

2

and �

3

respectively. The scaling for �

3

is always one. The

D-K-iterations converge after four iterations.

Table 1: Summary of the � iterations. The order of the scaling matrices are

given within brackets under the D-scaling column. For instance 3 denotes

that D is of third order. The column denoted by H

1

gives the H

1

norm of

the scaled system; � shows the maximum value of � with respect to frequency

assuming that all uncertanties are dynamic.

iter D scaling H

1

�

C

1 - 2.5715 2.4620

2 [3, 3, 0] 1.1006 1.1003

3 [3, 3, 0] 1.0487 1.0487

4 [3, 5, 0] 1.0486 1.0487
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We select the compensator from the third iteration since this is of slightly

lower order than the fourth iteration compensator without any signi�cant

loss in performance. The third iteration compensator has 19 states and

it is reduced to �ve states by �rst removing the fast dynamics (one pole)

and replacing it by a constant and then performing a balanced realization

on the normalized coprime factorization of the compensator. This gives a

compensator of order �ve, which is almost indistinguishable from the original

third iteration compensator. The � value of the closed-loop system using

the reduced compensator is 1.0605, which is slightly higher than the value

obtained using the best compensator from the D-K algorithm.

K(s) = �0:466

s+ 0:86

s+ 26:24

(s+ 7:07)

2

+ 49:85

2

(s+ 5:97)

2

+ 18:54

2

(s+ 60:24)

2

+ 73:01

2

(s+ 14:87)

2

+ 16:04

2

:

(5)
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