1 Getting Started

Regard the following plant

$$
\ddot{y}=y+u
$$

which models an inverted pendulum that is controlled by a torque at the pivot point of the pendulum. The plant is unstable and has its open-loop poles in ± 1. Try to find a controller that stabilizes the plant. Try to obtain reasonable phase and gain margins (e.g. 35 deg and 6 dB). Try to reduce the bandwidth. What happens with the stability margins?

Next introduce a delay in the loop. The delay is unknown and may take any value from zero up to τ seconds. Try to find controllers for some values of τ, say $0.1,0.2,0.5$ and 1 seconds. What happens with the phase and gain margins as the delay is increased? What is the maximum allowed delay? Remember that the controller should be stable for any delay between 0 and τ.

2 Commands

During this course, we will use commands in the Robust Control Toolbox for use with Matlab. I have summarized a number of commands that you may find useful.

2.1 System representation

In the Robust Control Toolbox (RCT), systems can represented by their A, B, C and D matrices.

```
>> A = [-1 2;0 -2];
>> B = [0; 1];
>> C = [1 1];
>> D = 0;
>> sys = ss (A, B, C, D);
or
>> sys1 = tf ([lll
```

To show the system's representation just type its name sys:
sys
$\mathrm{a}=$

	x 1	x 2
x 1	-1	2
x 2	0	-2

b $=$
u1
x1 0
x2 1
c $=$
$\begin{array}{rrr} & \mathrm{x} 1 & \mathrm{x} 2 \\ \mathrm{y} 1 & 1 & 1\end{array}$
d $=$ u1
y1 0

Continuous-time state-space model.
or
>> sys1
Transfer function:
$s+3$

$s^{\wedge} 2+3 s+2$
If you just want to know the size of the system, use

```
>> size(sys)
State-space model with 1 outputs, 1 inputs, and 2 states.
```

or

```
>> size(sys1)
```

Transfer function with 1 outputs and 1 inputs.

2.2 Manipulating Systems

You can connect systems in series using multiplication $*$ or in parallel using addition or subtraction, + or - .

```
>> GK = G * K
>>GK = G + K
>> GK = G - K
```

The inverse of a (square) system:

```
>> Ginv = inv (G); % or Ginv = eye(size(G,1))/G;
```

You can stack and augment systems

```
>> GK = [G, K];
>> GK = [G; K];
>> GK = append (G, K) %% [g 0; 0 k]
>> GK = blkdiag (G, K)
%% [g 0; 0 k]
```

Feedback using linear fractional transformation (LFT):

```
>> Cl = lft (G, K); % or Cl = star (G, K);
```

In some cases the system G may appear at several positions:

```
>> GG = [G; G];
```

This means that G is repeated twice:

```
>> size ([sys; sys])
State-space model with 2 outputs, 1 inputs, and 4 states.
```

Note that here we have four states, twice as may as in the original sys. (We have introduced unobservable modes). If we instead write

```
>> size ([1; 1]*sys)
State-space model with 2 outputs, 1 inputs, and 2 states.
```

You can select certain rows and columns from a system

```
>> Gsel = G(1:2, [1 3]);
```


2.3 Analysis

Poles and zeros of a system:

```
>> disp (pole (sys)')
    -1 -2
>> disp (zero (sys)')
    -3
```

Instead of using pole, you can also use eig. If the argument is an LTI (linear time invariant) system, eig returns the poles, otherwise the eigenvalues. Note that a static matrix D and ss (D) are different objects, the first one is an ordinary matrix, while the second one is a static LTI system. For instance eig (D) returns the eigenvalues of D, while eig (ss (D)) returns an empty matrix.

