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Introduction
Electrical interconnects are considered to be the major 
limitation to performance of scaled electronics.

Wire delay ~ RC
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Wire delay scales as (feature size)-2

Logic delay scales as (feature size) 
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Introduction
If properly dimensioned, wires behave as transmission 
lines.

Wire delay ~ L/vd

vd = v0/n
(            , refractive index)

Microstrip Coplanar waveguide

Ground planes

Global wires not scaled, use upper level metals
Wire delays related to speed of light

rn ε=
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Modeling transmission lines

z,y impedance and admittance per unit length
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Lumped wire model:

Interpretation: One wave in each direction
In our case, with skin effect:
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Step response

Without skin effect

With skin effect Attenuation 50%
(rDCL/Z0=2ln2)

Attenuation

Delay

RLC behavior

RC behavior
Step
response
of 
transfer
function
H

Attenuation <50% → transmission line behavior
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Modeling transmission lines

Ground plane

ZS H(jω), Zc
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For Zs=ZL=Zc: G=H
For Zs=Zc, ZL=∞: 2H

(Solve circuit equations with two waves)

ZL

(Note that Zc depends on ω)
(ω→∞,                           )clZZc =→ 0
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Modeling transmission lines
Converting to time domain

( )( )( )1112
1 ttaerfs −+=

)()( HSiffttv = (Step in time domain)

(Step response in time domain)

( ) xcjrljeH ωω +−= Voltage transfer function 
Complex and frequency dependent r
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Modeling transmission lines
Step response of open wire
(ZS=Z0, ZL=∞)

Step response of H alone

Attenuation ~50%

Note:
Full step
response
better than 
H alone
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Wire performance
Latency (delay)

High loss case (RC-case), rDCL/Z0>2ln2. Elmore delay good approximation:
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Low loss case (LC-case), rDCL/Z0<2ln2:
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Wire performance
Capacity or maximum data rate

Single pulse Eye diagram

Eye opening

Eye opening = 2S(T)-1,    S(t) step response, T symbol time

We need a minimum opening for safe data detection, say 64%

S(T)

T
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Wire performance

On-chip local wire

On-chip global wire

Off-chip wire (board)
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Wire performance
Pre-emphasis

Pre-emphasis is a standard method to 
increase the data-rate by “sharpening”
the step response

frequency

Wire response

Filter response

The open-wire response shows “self-pre-emphasis”
because of frequency-dependent Zc

Pre-emphasis is further enhanced by “overdriving”, using RS<Z0



9

Christer Svensson, SPIE 2003 17

Wire performance
Crosstalk

Eye opening

Neighboring wires cause 
crosstalk, which further 
reduces the eye-opening

64% eyeopening without
crosstalk, plus 18% crosstalk
leaves 46% eyeopening

Crosstalk is a complex function of mutual inductance and capacitance
(function of wire spacing), signal risetime, and driver and load impedances.
We simulated it using HSPICE (and two neighboring wires).
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Wire performance
Power consumption

For “short”, open wires (electrical length < half symbol time)
(1cm length at 10Gb/s):

B, datarate, Vdd, voltage swing, data assumed random
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Network-on-Chip example
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Router 

Data 
link 

Cores (processors, memories, etc.)

Each data link
In upper, thick
metal,
max length 2cm



11

Christer Svensson, SPIE 2003 21

Network-on-Chip example
Wire/driver example

2µm3.5µm

12µm4µm

Inverter in 0.18µm CMOS
Wn=88µm, wp=194µm, RS=20Ω

Actual step response

Step response 
without overdrive

Step response, terminated

Wire length 2cm

2µm x 4µm copper wire, low loss
12µm spacing, X-talk<18%
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Network-on-Chip example
Estimated performance

• Simulated velocity: 108m/s (c0/3)
• Simulated maximum data-rate 10Gb/s
• Each link is 16 bit wide, 2 links carry 320Gb/s (bidirectionally)
• Each 2 links need 544µm width

8 by 8 Network:
• Bidirectional, bisection bandwidth: 2560Gb/s (also one edge I/O)
• Total bandwidth available to cores: 20480Gb/s

(if 10% load, still >2Tb/s bandwidth)
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Network-on-Chip example

Router Average area 
per router 

Link 

Estimation of space and power

8 by 8 network on 20 by 20 cm chip
31% of one metal layer used

Total power estimated to 1.4W
(at full random data activity and 1.8V)
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Conclusions
By utilizing thick upper metal layers (2µm) as microstrip:
• We may reach velocities close to velocity-of-light
• We may reach global (2cm) bandwidths of 10Gb/s

A 8x8 2D Network-on-Chip concept may
• Serve 64 cores with up to 20Tb/s bandwidth
• Sustain 2Tb/s bisection bandwidth
• All at less than 1.4W power consumption


