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Abstract—We present in this paper a research platform
for development and evaluation of embodied visual object
recognition strategies. The platform uses a stereoscopic
peripheral-foveal camera system and a fast pan-tilt unit
to perform saliency-based visual search. This is combined
with a classification framework based on the bag-of-features
paradigm with the aim of targeting, classifying and recog-
nising objects. Interaction with the system is done via typed
commands and speech synthesis. We also report the current
classification performance of the system.

I. INTRODUCTION

Recently, there has been an increased interest in visual
object recognition in the embodied setting. One reason for
this is developments in interactive robotics for general
purpose assistance tasks. Such tasks often require the
ability to recognise objects from textual, oral or otherwise
abstract description. Object recognition could also benefit
many other applications.

Image retrieval, classification and recognition have
been studied extensively in the case of matching and in-
dexing in large image databases [1]–[5], and the methods
used are closely related to those employed by us.

Embodied visual object recognition, however, intro-
duces a “here and now” aspect not present in the database
case. As a result of this, object recognition is not a one-
shot phenomenon, but rather an active, ongoing process
involving visual search, decision-making, adaptation and
learning.

In this paper we present the hardware and software
platform, upon which we intend to further develop and
evaluate such mechanisms.

A. Motivation

Our aim is to study the cycle of attention, foveation, and
decision that forms the core of all embodied recognition
systems. In particular, we are interested in trying out
ideas inspired by the human vision system, as the human
visual system is one of the most successful embodied
recognition systems.

Human visual search is performed using a peripheral-
foveal system, using low-acuity peripheral vision for
guidance, and high-acuity foveal vision for recognition.
Foveal vision is directed by fast eye movements known as
saccades, which orient the eye toward regions of interest
in the visual field. For peripheral vision, something akin
to visual saliency [6], [7], is used to guide attention.

Pattern matching in the human brain is very rapid. From
neuroscience we know that the first stage of foveate object

Fig. 1. Robot platform (left)

recognition happens in less than 150ms [8]. This implies
that the processing has to be mainly feed-forward.

The processing hierarchy starts with only a few fea-
ture types (oriented bars and edges) and a high spatial
specificity, but for each layer the number of feature
types increases, and the spatial specificity is reduced.
This standard model [9], and variants thereof have been
implemented and used in computer vision with some
success [10]. In this paper, we will employ a more crude
(but much faster) technique known as bag-of-features
[11], [12]. Interestingly, bag-of-features can be seen as
an equivalent to using only the top level of the standard
model hierarchy.

B. The Bag-of-features Paradigm
Local invariant features such as SIFT [13] and MSER

[14], consist of a detection and a description step. The
detection step extracts local image patches in reference
frames that follow the local image structure. In the
description step, the local image patch is converted into
a descriptor vector that is robust to illumination changes
and perturbations of the reference frame.

Bag-of-features (BoF) is a collective name for tech-
niques that use local invariant features to build descriptors
for entire images, by first quantising them into visual
words and then computing histograms of visual word
occurrences.

II. SYSTEM OVERVIEW

The aim of this work is to create a platform upon
which methods for embodied visual object recognition



can be developed and evaluated. This platform should
be easy to use, yet capable of the required vision tasks.
It should also allow for relatively easy implementation
and evaluation of different methods and algorithms, while
(to some degree) allowing the developers to disregard
common issues associated with robotics and automatic
control.

A. Hardware

The robot platform constructed (dubbed “Eddie – the
Embodied”) consists of a dual camera mount atop a rigid
aluminium frame. The frame is in turn mounted on a
fast pan-tilt unit (see figure 1). The cameras used are the
Flea2 [15] model from Point Grey Research. The pan-tilt
unit is a model PTU-D46-17.5 [16] from Directed Per-
ception. The robot also has an on-board speaker system
for communication. The system is controlled by a desktop
computer via FireWire and USB.

B. Command, Control and Communication

Since the system is designed to perform both inter-
actively guided and autonomous tasks, mechanisms for
command, control and user communication have been im-
plemented. In the current implementation, user commands
are issued by typed instructions, providing commands and
feedback when needed. The system communicates with
the user by displaying images and text on a monitor, and
through speech synthesis using the eSpeak text-to-speech
engine [17].

Internal state management and control flow is achieved
through object-oriented implementation of the system
software as a cognitive agent capable of carrying out
target acquisition and classification tasks and which con-
tains internal structures for storing previous actions and
observations.

C. Visual Attention

A mechanism for visual attention is vital to any arti-
ficial cognitive system which seeks to detect, locate and
target potentially “interesting” objects in view under time
constraints. The system uses a low-acuity peripheral view
combined with a high-acuity foveal view to implement
visual search and target sampling. In the current imple-
mentation this is achieved by a combination of a static
visual saliency measure and an inhibition mechanism
which suppresses visual saliency in regions containing
previous object observations. The saliency measure used
is the incremental coding length (ICL) [7], which is
calculated for all peripheral views captured by the system.
The result of such visual search behaviour is illustrated
in figure 2.

D. Target Acquisition

Target acquisition is performed by thresholding the
modified saliency map described in section II-C to find
regions of high visual saliency that have not yet been
examined. A region of interest (ROI) is fitted to contain
the corresponding region in the left peripheral view. This
region is then matched to the right peripheral view using
block-matching combined with a KLT tracker [18].

Fig. 2. Image (left), resulting (thresholded) saliency map and resulting
visual search pattern (right)
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Fig. 3. Object map during system trial, objects represented by colour-
coded convex hull vertices in the image plane (left view, right view)

Once target position has been established in both views,
a prediction of the required centering saccade is calculated
using a manually calibrated linear parametric model.
This centering saccade is then executed, with the aim of
centering the target region in both the left and right view.
High-resolution patches of the target regions are then
captured. Vergence is achieved through offset sampling
in the images.

E. Object Classification and Recognition

In the current implementation, a fixed number (typi-
cally one to five) of high-resolution ROI pairs (left and
right) can be captured. If more than one pair is captured,
the system changes the camera position slightly between
captures and then combines all features extracted from
all the images pairs into a single set (thus “throwing” all
the features into one “bag”). This set is then classified
according to the procedure described in section III-C.

F. Object Representation and Permanence

In order to keep track of previous object sightings,
object observations are stored by the system as (non-
metric) 3D point clouds of matched feature locations
and their associated class labels. This representation is
useful when performing visual search because it allows
the system to keep track of all previously spotted objects
even when they are not currently in view. The object
representation can be visualised by projecting the convex
hull of the stored point cloud to the image plane and
superimposing it on the corresponding peripheral view as
shown in figure 3.

III. CLASSIFICATION AND RECOGNITION

Bag-of-features methods rely on matching histograms
of visual word occurences. Their use requires the con-
struction of a visual vocabulary, templates to match sam-
ples to (referred to here as prototypes) and one or several



matching criteria corresponding to some measure of sim-
ilarity. The methods used in the current implementation
to create these are described in this section.

A. Feature Extraction and Vocabulary Generation

In order to create a visual vocabulary, features must be
extracted from some set of images, and then clustered to
provide a vocabulary for sample quantisation (see section
I-B). The choice of vocabulary, as well as its size, affects
classification performance, and should ideally be tailored
to fit the data the system will encounter. In the practical
case however, this is not possible. The current aim is
therefore to fit the vocabulary to the available training
data. To create the vocabulary, SIFT features are com-
puted for all training images. A subset of approximately
105 of these is then selected and clustered using k-means,
where k = 8000. This choice is made due to memory
constraints in the current implementation.

The resulting visual vocabulary is used to quantise
all features extracted from the training images and then
create visual word histograms for prototype generation
(see section III-B).

B. Prototype construction

In order to match novel samples to the database,
templates or prototypes must be created. The aim is to
create a descriptive representation of training data, which
is also suitable for matching. The method of prototype
construction used is subject to a tradeoff between high
matching speed, requiring a very compact representation,
and the descriptive power of the prototype set. Also, the
specificity of the prototypes must be weighed against their
ability to generalise to novel images of known objects.
Additionally, it seems that different classification methods
are affected differently by these choices.

The two methods used here represent opposite ex-
tremes of the prototype construction spectrum, and are
in turn suitable for two different classification methods
(see section IV-B). The first (used in nearest class mean
(NCM) classification, see section III-C) combines all
visual word histograms obtained from training images of
a particular object into a single histogram by component-
wise summation, so that

pjk =
∑

n

tnk. (1)

Here, pjk are the elements of the prototype vector pj

describing object class l, and tnk are the elements of word
histogram tn obtained from a sample image of the same
object class. A single and unique class label Cl is then
associated with pj .

The second method (used in k-nearest neighbours
classification, see section III-C) treats all tn as unique
instances, thus in essence setting pj = tn but instead
allows multiple assignments of class labels, so that several
pj are associated with the same Cl.

In addition to this, a weighting scheme based on the
inverse document frequency (IDF) [19], [20] is computed.

This assigns a weight wk to each histogram bin in the
visual word histogram, where

wk = − ln

(
N∑

n:tnk>0 1

)
, (2)

and N is the total number of training samples (for all
classes).

In order to facilitate fast and efficient matching (as
described in section III-C), these weights are then applied
to the elements of all pj , which are then normalised to
Euclidean unit length and stacked into a matching matrix

P = {p̂w1, . . . , p̂wj}. (3)

C. Classification of Novel Images

Multiple observations of the same object tend to in-
crease the likelihood of feature detection (see section
IV-B). If multiple ROI pairs are available (see section
II-E), the concatenated set of all extracted features is used.
The resulting set of features is then converted into a query
vector, q, containing the visual word histogram of the
feature set.

Similarity, s, is calculated as the Tanimoto coefficient
[21] of the weighted query and prototype vectors, so that

sj =
qT W 2pj

||Wq|| · ||Wpj ||
, (4)

where W is a diagonal matrix, containing the weights
wk. By applying the element-wise weighting and normal-
isation to q, creating a new query vector q̂w, s can be
calculated as

s = q̂T
wP . (5)

Using these similarities the sample is classified. In
nearest class mean (NCM) classification, the query is
associated with the class label Cl corresponding to the
prototype pj having the largest sj . In k-nearest neighbour
classification, we instead perform voting among the k
largest elements of s and their corresponding Cl.

D. Embodied Object Recognition

It is important in this case to make a distinction
between classification and recognition. Classification as-
signs an object to a known category, while recognition
requires the system to handle objects which do not
correspond to any known category. Thus, for each act
of classification, a measure of certainty must be assigned
in order to distinguish between

• the correct assignment of a known class label to a
known, previously observed object

• the incorrect assignment of a known class label to
an unknown object

• the re-detection of a previously observed, but as of
yet unlabeled object.

Several such measures and mechanisms for their utilisa-
tion are currently under investigation.



NCM KNN
CCR (one pair, LOOCV) 1.000 0.997
CCR (five pairs, LOOCV) 1.000 1.000
CCR (one pair, “easy” set) 0.985 0.991
CCR (one pair, “hard” set) 0.883 0.943
CCR (five pairs, “easy” set) 0.994 1.000
CCR (five pairs, “hard” set) 0.922 0.972

TABLE I
CORRECT CLASSIFICATION RATE (CCR) IN LOOCV AND ON THE

EVALUATION SETS USING NEAREST CLASS MEAN (NCM) AND k
NEAREST NEIGHBOURS (KNN) CLASSIFICATION WITH k = 50

IV. RESULTS

The results in this section are divided into two cate-
gories. The first deals with evaluation of the prototype set,
and the second with the classification ability of the sys-
tem. In order to find out how more views would influence
classification performance, the training and evaluation sets
were structured so that they contained sequences of five
image pairs depicting the same object pose from slightly
different camera positions. These were then treated as a
single multi-view observation in the “five pairs” cases
shown in table I.

A. Prototype Evaluation

Since a good prototype set is crucial in achieving high
classification performance, the ability of the prototype
set to correctly classify samples drawn from the same
samples used to create it was evaluated using leave-one-
out cross-validation (LOOCV) [22].

The procedure used is as follows. For each training
sample tn, the corresponding prototype vector pk and the
weights wj are recalculated, disregarding contributions
from tn. The classifier is then queried using the sample
removed.

In the multi-view case, the LOOCV procedure was
modified to disregard all samples associated with a spe-
cific object pose. Results are shown in table I.

B. Classification Performance

Classification performance was evaluated on two ded-
icated evaluation sets of image pairs. An “easy” set,
collected under conditions similar to the training set;
and a “hard” set collected using a changing background,
different lighting and varying target distance. Examples
from the different sets are shown in figure 4. Results are
listed in table I.

V. CONCLUSIONS AND FUTURE WORK

We have implemented a platform for the study of
embodied visual object recognition. The system is capable
of targeting and classifying objects viewed, and commu-
nicating this to a person. Planned future developments of
the platform include incorporating a linear drive for lateral
translation, the investigation of new features for use in
matching, and the incorporation of geometric constraints
for improved classification and recognition performance.
Another important task is the investigation of adaptive
sequential recognition strategies.

Fig. 4. Examples of training and evaluation images. Rows top to bottom
show images from: training set, “easy” and “hard” evaluation sets.
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