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Abstract—This article deals with fast and accurate visualiza-
tion of pushbroom image data from airborne and spaceborne
platforms. A pushbroom sensor acquires images in a line-
scanning fashion, and this results in scattered input data that
needs to be resampled onto a uniform grid for geometrically
correct visualization. To this end, we model the anisotropic spatial
dependence structure caused by the acquisition process. Several
methods for scattered data interpolation are then adapted to
handle the induced anisotropic metric and compared for the
pushbroom image rectification problem. A trick that exploits the
semi-ordered line structure of pushbroom data to improve the
computational complexity several orders of magnitude is also
presented.

Index Terms—pushbroom, rectification, hyperspectral, inter-
polation, anisotropic, scattered data

I. INTRODUCTION

Pushbroom scanners are common in multi- and hyperspec-
tral imaging applications from satellite and airborne platforms.
A pushbroom scanner has a linear array of sensor elements
oriented perpendicular to the flight direction, see Fig. 1.
Image data is acquired in a line-by-line fashion as the carrier
platform moves forward and the footprint of each scan line
therefore depends on the position, velocity, and orientation of
the platform at the time of acquisition. Since the platform
motion and the topography of the scene typically prevent
neighboring scan lines from being parallel, a direct stacking
of scan-lines generates a geometrically distorted image, see
Fig. 2 top. To produce a geometrically correct rectified image,
as shown in Fig. 2 bottom, two problems must be solved:
(1) georeferencing and (2) scattered data interpolation. A
georeferencing algorithm assigns a world coordinate to each
acquired data point, e.g., in the standard WGS84 system [1],
[2], [3], by projecting the point down to the ground. This
can be done based on a camera model and navigation data
from an on-board INS system [4]. Accurate georereferencing
also requires a Digital Surface Model (DSM) to determine
where the back-projection of a data point intersects the ground
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Fig. 1. Top: A pushbroom camera acquires images by scanning the ground
surface in a line-wise fashion. Bottom: A hyperspectral pushbroom camera
splits the light that enters through the entrance slit into different spectral bands
using a dispersive element such as a prism.

surface. The georeferenced pushbroom data constitutes a set
of scattered or irregularly sampled points on the ground
surface (i.e. each point has a longitude, a latitude, and an
elevation). By interpolating this scattered data onto a uniform
longitude-latitude sampling grid, a geometrically correct image
is produced, see see Fig. 2 bottom.

The focus of this paper is on the scattered data inter-
polation problem. The general problem of scattered data
interpolation has received much attention in the literature
and several surveys are available [5], [6], [7]. Due to the
varying sample density, scattered data interpolation is a much
more challenging problem than interpolation of data in a
uniform grid. There is also a computational aspect that is
related to neighbor relations: in a uniform grid the nearest
sample neighbors to an arbitrary point are quickly identified,
whereas the distance to all sample points must be calculated
in an irregularly sampled data set to find the closest sample
neighbors to an arbitrary point. This difference leads to two
different schemes of scattered data interpolation considered
in this work: forward and inverse interpolation, see e.g. [8].
In a forward interpolation scheme, each sample point in the
irregular input data is spread onto the neighbor locations
in the uniform output grid. This is a fast operation as the
sample neighbors are trivially located in the uniform output
grid. The main disadvantage with forward mapping schemes
is that it is difficult to guarantee that each point in the output
grid receives any contribution, i.e., there is a risk that holes
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Fig. 2. Top: Example of an unrectified pushbroom swath over the city
of Oslo. The image consists of stacked lines acquired over time. Bottom:
Rectified version of the image in a world coordinate system.

with undefined values are obtained in the interpolated image.
Therefore, in image interpolation and resampling in general,
inverse mapping schemes are preferred to ensure that each
position in the output grid is assigned a value. An inverse
mapping means that each point in the output grid is mapped
back to the input domain where the interpolation takes place
by a weighted sum of the neighboring input samples. However,
when the input data is irregularly sampled, one is faced with
the computational problem of identifying the neighbors, as
discussed above. As pushbroom data sets typically are large,
this computational aspect becomes an issue to consider.

This work evaluates a number of different techniques for
interpolating pushbroom data to produce a rectified image.
In the forward interpolation category, the Splatting method
is evaluated [9]. This method performs the forward spreading
of values using a radial basis function such as a Gaussian
kernel. This technique has, for example, previously been used
in correction of rolling shutter video [10], which utilizes an
acquisition technique similar to the pushbroom acquisition.
In the inverse interpolation category, Nearest Neighbor (NN),
Inverse Distance Weighted (IDW), Kriging and triangulation-
based interpolation methods are included in the comparison.
NN interpolation simply uses the closest input sample as the
interpolated value. IDW, also known as Shepard’s method [11],
calculates a weighted sum of the neighboring input samples
with the weights equal to the inverse distances from the input
samples to the point to interpolate. The Kriging interpolation

similarly finds the weights by minimizing a reconstruction
error in a least-squares sense, assuming knowledge of the
spatial covariance function governing the statistical depen-
dence between samples [12], [13], which typically decays
monotonically with distance. Finally, in triangulation-based
techniques, neighbor relations in the scattered input data are
first established in a pre-processing step, e.g., using a Delaunay
triangulation [7]. For triangulated data, interpolation can be
made very efficient as the neighbor relations are given, but for
large input data sets, the triangulation itself can be expensive.
The triangulation-based technique evaluated here is the Natural
Neighbor (NAT) method [14], [7]. In contrast to the previous
inverse interpolation schemes, which weight input samples
according to the distance to the point to interpolate, NAT
uses an area-based measure to compute the weights. Other
possible interpolation methods include thin-plate splines [15]
and Non-Uniform-Rational-B-Spline (NURBS) surfaces [16].
These methods are typically used for smooth approximations
in computer graphics and Computer Aided Design applications
and require large linear equation systems to be solved, so
they are not the first choice for the pushbroom rectification
problem. Comparisons of methods for scattered data interpola-
tion have been performed for different applications other than
the pushbroom imaging one, see [17], [18] and references
therein, with mixed conclusions as to the best method to
apply. To the best of the authors’ knowledge, an evaluation
for the specific pushbroom imaging application has not been
presented previously.

There are a number of contributions of the present work.
First, the spatial dependence structure of pushbroom data is
modeled and shown to be inherently anisotropic, i.e., data
correlation is different in different directions. Second, five
methods for scattered data interpolation are extended to handle
the anisotropic nature of pushbroom data and compared for
the image rectification problem. Third, a method that utilizes
the semi-structured sampling pattern of a pushbroom sensor
to significantly speed up inverse interpolation schemes is
presented.

II. PROBLEM DESCRIPTION

The problem we consider in this work is to resample
pushbroom data onto a uniform grid to obtain a geometrically
correct rectified image. We assume that the pushbroom data
has been georeferenced so that each pushbroom sample has
an associated world coordinate in a coordinate frame for the
Earth, e.g., the standard WGS84 system [1], [2], [3]. For a
nadir looking sensor, the pushbroom samples are structured
in an approximate line pattern, see Fig. 3. However, both
the distance between points on a line and the distance be-
tween lines are non-uniform due to, among other factors,
perspective geometry and variations in carrier platform ve-
locity and attitude. The set of pushbroom points is therefore
irregular. We denote a 2D position in world coordinates by
u = (ux, uy) and the specific positions of the pushbroom
samples are enumerated by a subscript ui. For each pushbroom
point ui there is a measured radiance value z(ui). Multi-
and hyperspectral pushbroom sensors generate multi-valued
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Fig. 3. Illustration of the scattered data interpolation problem. Irregularly
spaced samples ui (black dots) are located on pushbroom lines (dashed). The
rectified image is produced by resampling onto the points in a regular output
grid (crosses).

vectors with radiance values for different wavelength bands
at each sample point. While both the spectral and spatial
dimensions can be considered when interpolating new sample
values, we focus on the spatial dimension in this work. The
rectification is then performed for one wavelength band at a
time.

The uniform output grid is user-defined. Typically, one
defines the grid as the bounding box of all, or of a subset, of
the pushbroom lines, and with a spatial spacing ∆x and ∆y of
the same magnitude as the spacing between the input samples.
The rectified image is produced by interpolating values at the
uniform grid points. We denote by ẑ(u) the interpolated value
at an arbitrary position u.

III. MODELING

Successful data interpolation relies on a certain degree of
data correlation that can be exploited to predict data values
at arbitrary locations. This section investigates and models the
dependence structure of pushbroom data in terms of the spatial
autocovariance function

ρ(∆u) = cov(z(ui), z(ui −∆u)) (1)

that describes the covariance between a pushbroom sample
and a point at a distance ∆u. It is shown that the covariance
function is both non-stationary and anisotropic, a fact that must
be considered when interpolating new sample values in the
rectified uniform grid. As we are working with georeferenced
input coordinates, the unit of ∆u is meters. For pushbroom
and remote sensing images in general, covariance is induced
by two main components:

1) Measurement covariance arises when sensor elements
integrate light from the same surface region. A pixel
footprint function (PFF) describes the region over which
a sensor element integrates light.

2) Structural autocovariance of the ground surface re-
flectance zr(u) that one ultimately is interested in imag-
ing.

While it is clear that the structural autocovariance generally
is both non-stationary and locally anisotropic depending on

Fig. 4. Components in the pixel footprint function. Left: The optical
component, fIFOV (u) is an anisotropic Gaussian function, here illustrated
with an elliptic contour line, with size σn normal to the pushbroom line, and
σt tangent to the line. Right: The motion component fM (u) is an integration
over the ground plane trajectory between input sample locations in the output
grid. The solid part of the curve corresponds to the integration of the sample
at uj .

the ground surface structure, it is shown below that the same
also holds for the measurement covariance for pushbroom
data. For multi-spectral imaging sensors, there may also be
a non-negligible covariance along the spectral dimension that
can be exploited to improve the interpolation. If the spectral
sensitivity curves, i.e., the spectral footprints, of each band are
known, the overlap between these defines a covariance in the
measured data across spectral bands. In this work, however, the
bands are treated as independent and interpolated separately.

In the sections below, we first derive a model of the pixel
footprint function. We then introduce the surface structure
model and finally combine these in a measurement model to
obtain the total spatial covariance function ρ(∆u) in (1).

A. Pixel footprint function

Each detector element in the pushbroom sensor integrates
reflected light from a surface region described by a Pixel
Footprint Function (PFF) f(u). The PFF describes the relative
contribution from each point on the ground surface to the mea-
sured sample value and it therefore integrates to 1. Note that
the PFF is the reciprocal of the Point Spread Function (PSF),
p(x), that describes how light from a point source is imaged
onto different sensor elements at positions determined by x in
the image plane. Specifically, the PFF is the reprojection of
the PSF onto the ground plane, assuming that the topography
is locally flat. It is assumed that the georeferenced coordinate
of each input data sample is located in the middle of its PFF.
Input samples with overlapping PFFs receive light from the
same ground area and will therefore be correlated.

For pushbroom sensors, the PFF is determined by an optical
component and a motion component. The optical component
is obtained directly from the sensor specification in terms of
the so-called Instantaneous Field of View (IFOV), which is the
angle subtended by each detector element in the pushbroom
sensor. This angle defines a ground-projected pixel footprint
at any given time. The IFOV may be different in the along-
track and across-track directions of the carrier platform, i.e.,
pixel footprints are generally anisotropic. For example, the
pushbroom sensor used in this work has an along-track IFOV
angle that is twice that of the across-track angle. Although the
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IFOV typically is specified as a rectangle in angular space, it
is modified by both the entrance slit and the lens of the sensor
optics, see Fig. 1, bottom, which both cause diffraction. The
diffraction pattern is described by the so-called Airy function,
which is often approximated by a Gaussian function when
describing the PSF [19]. The shape of the PFF defined by the
IFOV can therefore also be modeled by a Gaussian function:

fIFOV (u) ∝ e− 1
2u

TF−1
IFOV u, (2)

where ∝ means that the scaling factor required for fIFOV (u)
to integrate to 1 is omitted. For brevity and without loss of
generality, we also assume that the point sample we consider is
centered at the origin of the coordinate system. The potentially
anisotropic form of the PFF is modeled by defining the metric
tensor in (2) as

FIFOV = σ2
t n̂tn̂

T
t + σ2

nn̂nn̂
T
n , (3)

with different extents σt and σn in the tangential and normal
directions n̂t and n̂n of the pushbroom line respectively, see
Fig. 4, left. The parameters σt and σn have the unit meters
and they can be derived from the IFOV specification of the
pushbroom sensor and the distance to the ground.

The second component affecting the pushbroom PFF is
motion blur. This is caused by the integration time during
which the shutter remains open while the carrier platform
moves forward, and can be thought of as a function fM (u)
that is non-zero along the scan trajectory of a particular
sensor element, and that integrates to 1, see Fig. 4, right.
A zeroth order approximation of fM (u) is a straight line of
constant length l in the normal direction n̂n for all samples
ui. To obtain a tractable expression for the total PFF, we
further approximate this line with a degenerate Gaussian-
shaped function

fM (u) ∝ e− 1
2u

TF−1
M u (4)

with a metric tensor defined to have no extent in the tangent
direction so that it is only non-zero along a line

FM = 0 n̂tn̂
T
t + σ2

l n̂nn̂
T
n . (5)

The parameter σl is set so that the Gaussian function approx-
imates a box function of length l, e.g., σl = l/2. The motion
model can be extended to account for curved trajectories using
a higher order approximation to account for sideway motions
caused by turbulence. The metric tensor in (5) would then have
some extent in the tangent direction too and still be applicable
in the continued derivation below.

The total pushbroom PFF is now obtained as the IFOV
PFF convolved with the motion PFF, using the fact that the
convolution of two Gaussians yields another Gaussian:

f(u) = (fIFOV ∗ fM ) (u) ∝ e− 1
2u

TF−1u (6)

with

F = FIFOV + FM = σ2
t n̂tn̂

T
t +

(
σ2
n + σ2

l

)
n̂nn̂

T
n . (7)

Hence, the forward motion of the carrier platform effectively
stretches the footprint induced by the optics.

B. Surface structure model

The structure of the surface reflectance can be characterized
by its autocovariance function zr(u). For homogeneous re-
gions the function decays slowly and for rugged surfaces it has
a faster decay. Along structures such as roads or roof edges,
the covariance decays slowly along the structures and quickly
across. Hence, the structural autocovariance in an image is
generally both non-stationary and anisotropic. A Gaussian
model of an anisotropic surface covariance structure is

ρs(∆u) = σ2
s e

∆uTS−1∆u. (8)

In this model, σ2
s represents the general magnitude of the

variations on the ground surface. The potentially anisotropic
covariance matrix S controls the smoothness of the surface and
the autocovariance decays with spatial distance in a Gaussian-
shaped fashion. Adaptive image processing approaches that
try to adapt to the local structural autocovariance, for exam-
ple edge-preserving filtering that filters along edges but not
across them, have been suggested, e.g., steerable filters [20]
and anisotropic diffusion [21]. These ideas were adapted to
irregularly sampled data in [22] using alternating optimization
of smoothing parameters and local structure.

In this work, a variant of the surface structure modeling
method described in [22] is used. First, a structure tensor
is estimated in each output pixel, u, as the weighted outer
product of gradients:

T =
∑

uk∈N (u)

g(uk, σ)∇z(uk)∇z(uk)T . (9)

The neighborhood N (u) is a set of 7×7 neighbors determined
in the input grid, and g(u, σ) is a Gaussian decay. Let e1,
e2 be the eigenvectors and λ1 > λ2 > 0 the eigenvalues of
T respectively. A surface structure covariance matrix is then
constructed as

S = σ2
i φ(λ2)

[
I− λ1 − λ2

λ1 + λ2
e1e

T
1

]
, (10)

where σ2
i is a global scaling factor and

φ(λ) =

{
1− λ/λmax if λ ≤ λmax,
0 if λ > λmax.

(11)

The function 0 ≤ φ(λ) ≤ 1 is close to 0 when there is
much surface structure, as indicated by a large λ2, leading
to a low overall covariance. If λ2 instead is small there is at
least one direction in which the covariance should be large.
The parameter λmax indicates the edge strength in the image
above which the covariance should be zero. For the data in this
work, which is restricted to the range [0,1], λmax = 0.05 was
a good value. The factor λ1−λ2

λ1+λ2
is close to 0 for the isotropic

surface structure case λ1 ≈ λ2, leading to an isotropic S, but
at edges where λ1 >> λ2 this factor is close to 1, indicating a
strong anisotropic structure in the e1 direction along which the
covariance should be low. For reference, an isotropic surface
structure covariance is also considered in the experiments

S = σ2
i I. (12)
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C. Total pushbroom sample covariance

Using the notation introduced above, i.e., f(u) for the Pixel
Footprint Function and zr(u) for the true surface image, a
pushbroom data sample is generated from the light integrated
by a sensor element plus a noise term:

z =

∫
R2

f(u)zr(u) du + ε. (13)

The goal is to find the autocovariance function ρ(∆u) in (1)
of such a sample. By inserting (13) into (1) and simplifying
the following expression is obtained

ρ(∆u) = C e−∆uT (F+S)−1∆u + σ2
ε δ(∆u), (14)

where C is a constant that is determined by σt, σn, σl, σs and
σi as introduced in the previous sections, and σ2

ε denotes the
noise variance.

For data interpolation, it is generally sufficient to use the
normalized autocorrelation function r(∆u) = ρ(∆u)/ρ(0)
which becomes

r(∆u) =
C

C + σ2
ε︸ ︷︷ ︸

SNR

e−∆uT (F+S)−1∆u︸ ︷︷ ︸
Anisotropic decay

for ∆u 6= 0. (15)

The autocorrelation function consists of two parts: a constant
factor that is related to the Signal-To-Noise (SNR) level and
a factor that describes how the correlation decays with spatial
distance. The decay is determined by the metric tensor

M = F + S , (16)

i.e., a combination of the PFF and the ground surface structure.
The metric describes an anisotropic correlation structure that
depends on the local image edges and the current motion of
the aircraft carrying the pushbroom sensor. This result is used
in the next section to perform anisotropic interpolation of the
pushbroom data.

IV. ANISOTROPIC SCATTERED DATA INTERPOLATION

In section II it was established that pushbroom image
rectification requires an interpolation from the irregular push-
broom samples onto a uniform grid. In section III it was
furthermore established that the spatial dependence structure
of pushbroom data is inherently anisotropic. In this section,
different scattered data interpolation schemes known in the
literature are adapted to take this local anisotropy into account.
Five different methods are evaluated, one based on forward
interpolation and four based on inverse interpolation. The
pushbroom interpolation problem is illustrated in Fig. 5, where
the value at the point u in the uniform output grid is predicted
using the neighboring input samples u1, u2, . . ..

A. Anisotropic metric

To account for the fact that pushbroom data is differently
correlated in different directions, we introduce the Maha-
lanobis distance metric

dM (u,v) =

√
(u− v)

T
M−1 (u− v), (17)

Fig. 5. Samples on two consecutive pushbroom lines denoted by Lk and
Lk+1. The goal is to predict the value at u given the measured values on
the pushbroom lines u1, u2, . . .. The ellipses illustrate the anisotropic data
dependence as a contour curve of a Gaussian function which is aligned with
the corresponding pushbroom lines.

where u and v are two arbitrary points in space and M is
a metric tensor that defines a possibly anisotropic distance
measure. The interpolation methods outlined below are valid
for any choice of metric tensor, but for the pushbroom inter-
polation case we use the tensor defined in (16), which has its
main axes oriented relative to a pushbroom line, i.e., along the
normal and tangential directions n̂n and n̂t. We introduce a
shorthand notation for the distance from a pushbroom input
sample point ui to any arbitrary point u

di (u) = dMi
(ui,u) . (18)

The orientation and degree of anisotropy defined by Mi

vary between the pushbroom lines depending on the speed
and trajectory of the carrier platform. Hence, the degree of
anisotropy varies over the image. Therefore, if Mi and Mj

are different, there is also an asymmetric distance relationship
di (uj) 6= dj (ui).

B. Forward interpolation
In forward interpolation [10], also known as Splatting [9],

each input pushbroom sample is spread (or splatted) out onto
the neighborhood points in the uniform output grid. The con-
tribution from each input sample point z(ui), is accumulated
iteratively in the output grid points

y(u)← y(u) +

[
wi(u)z(ui)
wi(u)

]
, (19)

where wi(u) is a weight that depends on the distance between
the irregular sample location ui and the uniform grid location
u. Here we use the function

wi(u) =

{
e−d

2
i (u) if u ∈ NK(ui)

0 otherwise,
(20)

which splats each input sample with a Gaussian anisotropic
shape defined by the metric tensor Mi, cf. (18). To limit
the computational effort, each input sample is only splatted
onto the output points in a square neighborhood NK(ui)
parameterized by the side K, i.e., the Gaussian in (20) is
truncated. Here we set K so that at least 95% of the Gaussian
is included within the splatting kernel:

e
− K2

2σ2max < 0.05 ⇒ K >
√
−2σ2

max ln 0.05 , (21)
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where σmax is the largest value of σn and σt. After the
accumulation in (19), the interpolated value ẑ(u) is found
after normalization with the second element of y(u) =
[y1(u), y2(u)]T :

ẑ(u) = y1(u)/y2(u) . (22)

That is, the predicted value ẑ(u) is a weighted average of the
contributions of the input samples.

The advantage of the forward interpolation is that it is
computationally efficient. A main drawback is that holes
with undefined values are created in the output image if the
neighborhood NK(ui) is too small.

C. Inverse interpolation

In an inverse interpolation scheme, an interpolated value is
calculated as

ẑ(u) =
∑

ui∈N (u)

wi z (ui) , (23)

where wi represent weights, z (ui) is an input sample and
N (u) denotes a neighborhood around u. In principle, N (u)
can encompass the entire space so that all input samples
contribute to the interpolated value, but smaller localized
neighborhoods are generally chosen. In this work, the nine
or four closest input samples are typically used, see Fig. 5.
The weights wi are determined as a function of distance
(17). Without loss of generality, let us assume that we found
n input points in the neighborhood N (u) and denote them
u1, . . . ,un. Different methods have been suggested for choos-
ing the weights w1, . . . , wn in (23). In this work, the Nearest
Neighbor, Inverse Distance Weighted, Natural Neighbors, and
Kriging interpolation schemes are extended to anisotropic
interpolation and compared for the pushbroom image recti-
fication.

The inverse interpolation scheme guarantees that each point
in the output grid is assigned a predicted value. The main
disadvantage of inverse interpolation schemes for irregular
inputs is the computational complexity of determining the
neighboring input points ui ∈ N (u). This section is con-
cluded with a trick that exploits the semi-structured nature
of pushbroom data to reduce the computational workload by
many orders of magnitude. It can also be noted that inverse
interpolation schemes are trivially parallelized as the points
in the output grid are calculated independently of each other
through (23).

1) Nearest Neighbor interpolation: In NN interpolation,
only the closest input sample is considered,

min
i
di (u) , (24)

for which the weight is set to 1 in (23). Note that the
anisotropic distance from the input samples is used. Another
characteristic of the NN interpolation is that the same neighbor
will be the closest regardless of the size of the isotropic
component of the metric tensor M; only the anisotropic part
of M can yield a different neighbor.

2) Inverse Distance Weighted interpolation: In the IDW in-
terpolation, also known as Shepard’s method [11], the weights
in (23) are set to

wi =
γ

di (u)
2 , (25)

where γ is a normalization factor chosen so that
∑
wi =

1. Just as for the NN interpolation, only changes to the
anisotropic part of M give different interpolation results.
Changes to the isotropic magnitude of M will not change
the weights wi.

3) Natural Neighbors interpolation: Natural neighbors
[14], [7] (NAT) is a technique originally developed for solving
partial differential equations on irregular grids [14]. In most
inverse interpolation schemes, the weights in (23) are based on
distances. NAT instead uses an area-based measure to compute
the weights. The first step of the algorithm is to triangulate all
input samples using the Delaunay algorithm, from which then
the Voronoi tessellation is computed, as shown in Fig. 6 left.
Next, the output interpolation point u is added to the set and
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u
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u
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u
5

u
1

u
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u
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u
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u
5

u

u
1

u
2
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3

u
4
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Fig. 6. Illustration of natural neighbors interpolation. Left to right: Voronoi
cells for {ui}, Voronoi cells for {ui} ∪ u, intersection of the two.

the Voronoi tessellation is updated, as shown in Fig. 6 middle.
Finally, the intersection of the regions in the two tessellations
is used to find areas

ai = area(region(ui) ∩ region(u)) , (26)

one for each input data point, as shown in Fig. 6 right. Using
these, the weights in (23) are computed as:

wi = ai/

 ∑
uk∈N (u)

ak

 . (27)

The use of an area-based weight computation in NAT was
introduced to better handle highly irregular sampling densities
[7]. For example, having many input samples on one side
of the output sample will lead to a bias which area based
approaches automatically compensates for. As NAT relies
on an initial triangulation with a global metric, there is no
straightforward modification of the NAT method to make it
take a local anisotropic metric into account.

4) Kriging interpolation: Kriging interpolation in general
uses the covariance function ρ(ui,uj) between sample lo-
cations to derive the optimal weights in (23) in a Best
Linear Unbiased Estimator (BLUE) sense [23]. The covari-
ance between two points typically decreases with the spatial
distance so that the covariance also can be seen as a measure
of distance between points. The so-called ordinary Kriging
equation is used here for finding the interpolation weights:
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w1

...
wn

−µ

 =


ρ(u1,u1) · · · ρ(u1,un) 1

...
. . .

...
...

ρ(un,u1) · · · ρ(un,un) 1
1 · · · 1 0


−1 

ρ(u1,u)
...

ρ(un,u)
1

 (28)

The covariances between the input points ρ(ui,uj) capture the
sampling density, and the covariances with the interpolation
point ρ(ui,u) can be interpreted as distances. The additional
parameter µ is a nuisance parameter that is not used but which
is required in (28) to ensure that

∑
wi = 1. A Gaussian

covariance function that uses the anisotropic metric defined
in (18) is used here as follows:

ρ(ui,uj) = e−d
2
i (uj). (29)

D. Parameter tuning for pushbroom interpolation

To make a fair comparison of the different interpolation
methods, the parameters of each method are tuned using a
procedure described in this section. The tuned parameters
include σi which controls the surface structure covariance,
as well as σn and σt which control the pixel footprint
size. These parameters are grouped into a parameter vector
p = (σi, σn, σt). Optimal parameter values are determined
using a cross-validation scheme: For a certain choice of p, one
actual sample z(ui) is removed from the pushbroom data set.
The predicted value ẑ(ui) at this position is then interpolated
using the remaining samples in the data set. By repeating this
for many samples the interpolation accuracy can be measured.
In this work, the relative error is used as accuracy measure

ε(p) =
1

|E|
∑
i∈E

|ẑ(ui)− z(ui)|
z(ui)

, (30)

where |E| is the size of the evaluation set. Using this cross-
validation error, one can search for the parameter vector p∗

that gives the best interpolation accuracy. To find values close
to the optimal ones, a brute-force grid search in reasonable
intervals of each parameter is carried out. The final tuning is
then made using a non-linear Nelder-Mead simplex optimiza-
tion with the parameters found in the coarse search as starting
point.

The parameters {σi, σn, σt} do not have independent influ-
ences on the accuracy measure in (30). Specifically, the surface
structure component S and the pixel footprint component
F will both likely contain an isotropic part. The parameter
optimization described above may therefore choose to put the
isotropic part in S by adjusting the magnitude of σi, or in F by
adjusting the magnitudes of σn and σt, i.e., the parameter set
{σi, σn, σt} results in almost the same structural covariance
as
{√

σ2
i + a,

√
σ2
n − a,

√
σ2
t − a

}
, as long as a < σ2

n and
a < σ2

t . Note that the combined covariance M = F + S in
(16), which ultimately is used for the interpolation, remains
the same with either choice, so this becomes a problem
of parameter interpretability rather than a problem of using
the found parameters for the rectification. Nevertheless, one
should use sample points at strong surface structures for
the cross-validation in the optimization, as these carry more
information about F and S than samples on isotropic surfaces.

In practice, we do this by sorting the pixels in E , according
to their gradient strength, i.e., the trace of the structure tensor
tr(T) computed according to (9). We then use only the 10%
of pixels with the largest gradient values during parameter
tuning. When reporting evaluation scores, however, the entire
evaluation set E is used.

Finally, to compare results of isotropic and anisotropic
interpolation, parameters for purely isotropic interpolation that
do not account for surface structure of anisotropic footprints
are also optimized. For this optimization, σn and σt are set to
zero, and σi is used to define S according to (12).

V. COMPUTATIONAL SPEEDUP FOR INVERSE
INTERPOLATION OF PUSHBROOM DATA

In regular image resampling on uniform grids, the neighbors
in N (u) are immediately given by the grid structure. When
the input is irregularly sampled, a naive implementation must
compute the distance from the interpolation point u to all
input points ui to determine the neighbors in N (u). If the
number of input points is large this becomes computationally
very expensive. Below, an approach is presented that exploits
the semi-regular structure of pushbroom data to speedup the
neighbor-finding procedure. The key idea is to approximate
each line of pushbroom samples Lk in a parameterized stan-
dard line equation form

Lk : Akx+Bky + Ck = 0. (31)

The parameters Ak, Bk and Ck can be found by a least-
squares fit or simply by connecting the first and last points
on the pushbroom line. Using this parameterization, we can
efficiently

1) Identify the closest pushbroom line to u.
2) Immediately predict the closest input samples on this

line to u by assuming that the samples are equidistant
on the line.

The shortest orthogonal distance d(u, Lk) from a point u to
the line Lk is given by

d(u, Lk) =
|Akux +Bkuy + Ck|√

A2
k +B2

k

, (32)

and the closest line(s) are thus easily identified. Next, the clos-
est point on each parameterized line is also easily calculated.
This closest point will in general not coincide with an input
sample location, but as the input samples are almost evenly
distributed on the pushbroom lines, the indexes of the input
points that are closest to u can be predicted.

This trick makes it possible to quickly home in on a small
set of candidate neighbor points. Thus, instead of calculating
the distance to all input points to find the neighbors to u,
we need only calculate the distance to a handful of points.
Specifically, if we have Nlines each consisting of Nsamples in
a pushbroom data set, to interpolate one point, the straight-
forward naive implementation requires O(NlinesNsamples)
distance computations whereas the method above only requires
O(Nlines) distance computations. Since Nsamples typically
is larger than 1000 samples, the method above increases the
computational efficiency by three orders of magnitude.
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Data set 1 Data set 2

Data set 3

8.6 km

Fig. 7. Three data sets for evaluation are taken from different parts of a long
pushbroom swath over the city of Oslo. Each data set consists of the same
number of pushbroom lines.

TABLE I
SIZES OF THE INPUT PUSHBROOM DATA AND THE UNIFORM OUTPUT GRID.

Input size Output size
Data set 1 600× 1600 986× 1338
Data set 2 600× 1600 1034× 1467
Data set 3 600× 1600 3181× 2098

It is stressed that once the candidate neighbor points have
been found, the actual distances to these points are calculated
for the interpolation using their georeferenced coordinates;
the line parameterization is just used as an efficient way of
identifying a small subset of neighbor candidate points. The
parameters {Ak, Bk, Ck} are calculated for all lines only once
in a pre-computation step, and the computational effort for this
is insignificant. It should be stressed that the above procedure
works also when the samples on a pushbroom line deviate
slightly from a straight line, e.g., due to lens distortion and
small effects caused by the topography in the scene. It will
also work if the pushbroom lines cross each other or if the
ground prints of lines appear in reversed order relative to the
flight direction due to strong motions caused by, e.g., banking
or turbulence.

VI. DATA

Data used for evaluation in this work was acquired over
the city of Oslo using the hyperspectral HySpex VNIR-
1600 pushbroom sensor that is part of the FFI demonstrator
system described in [24]. Each line in the image consists
of 1600 pixels and 160 spectral bands are measured in the
visual to near-infrared wavelengths. Each sensor element has
an instantaneous field-of-view of approximately 0.18 mrad
across- and 0.36 mrad along-track, yielding an average ground
sample distance for this particular data set of about 35 cm. The
data was georeferenced using auxiliary INS and DSM data [2].
Three subsets from the 8.6 km long swath were selected for
the evaluations experiments, see Fig. 7. All three data sets
have the same input size, i.e., 600 pushbroom lines times
the 1600 samples of each line. The spatial resolution of the
rectified output images (∆x,∆y) was set to 30 × 30 cm2 in
all experiments. Table I summarizes the sizes of the input data
and the uniform output grids for the three data sets. As the
aircraft had different altitudes and velocities in different parts
of the swath, the density of the irregular input grid is varying,
and data set 3 is more sparse than the others.

VII. RESULTS

The interpolation methods described in Section IV were
implemented in C/C++, except for the NAT method for which

Method Parameter DS1 DS2 DS3 1% rise bracket
NN σi 0.90 1.20 0.96 [0.84, 0.98]

σt 0.65 0.00 0.35 [0.50, 0.76]
σn 0.00 0.00 0.00 [0.00, 0.20]

IDW σi 1.00∗ 1.00∗ 1.00∗ -
σt 1.00∗ 1.00∗ 1.00∗ -
σn 3.61 3.02 0.00 [2.26, 5.09]

Kriging σi 0.65 0.72 1.88 [0.48, 0.76]
σt 0.12 0.00 0.00 [0.00, 0.36]
σn 0.46 0.30 0.00 [0.30, 0.58]

Splatting σi 1.12 1.18 2.70 [0.95, 1.27]
σt 0.00 0.00 0.00 [0.00, 0.073]
σn 0.50 0.33 0.00 [0.31, 0.65]

TABLE II
OPTIMIZED VALUES FOR INTERPOLATION METHODS ON THE DIFFERENT

DATASETS. 1% RISE BRACKETS ARE FOUND ON DATASET 1. ∗ MEANS
THAT THE VALUE WAS SET MANUALLY.

the TriScatteredInterp-function in Matlab was used. Below,
pushbroom image rectification using the different interpolation
methods is compared in terms of accuracy, parameter stability
and computational speed.

A. Parameter tuning

The parameters obtained with the cross-validation procedure
outlined in Section IV-D are presented in Table II. The IDW
method is not sensitive to the isotropic part of the metric
tensor, as discussed in Section IV-C. For this reason, the
optimization is not stable for this method and only σn was
optimized, keeping σi and σt manually set to 1.0.

As discussed in section IV-D, there is an inherent ambiguity
in the isotropic part of the covariance. In Table II, we can see
that this has caused most of the isotropy to end up in σi.
While this has no negative effect on the resultant interpolation
quality, it is still unfortunate, as the found parameters are more
difficult to interpret. Still, the larger values of σi suggest that
the anisotropic surface component is more important to model
than the anisotropic pixel footprint function. However, σn and
σt also get significant values, indicating that the model of
an anisotropic footprint also contributes to the interpolation
accuracy. In most cases we have σn > σt, which means that
the pixel footprint is stretched in the movement direction of
the aircraft. Dataset #3 is of a different nature than datasets
#1 and #2, with the same number of samples covering a much
larger area, see Fig. 7. This makes the optimizer prefer larger
covariances for dataset #3, and as can be seen in Table II the
larger covariance is produced by a large σi.

The cost function ε(p) for the Splatting method is plotted
in Fig. 8. To investigate the stability of the parameters,
we characterize the local shape of the cost function at the
minimum ε(p∗) by checking how far we have to move in
each direction for it to rise by 1%. These rise points can
be found using the following approximative procedure: Very
close to the optimum, the cost function (30) as a function of
one of the parameters, may be approximated with a second
order Taylor expansion. Thus, we first move a small delta h
up and down from the optimum p∗ = (σ∗i , σ

∗
t , σ
∗
n), along

each parameter dimension. We then fit quadratic polynomials
to the function values and arguments along each axis. Using
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Fig. 8. Example of a grid search. The relative interpolation error is plotted
as a function of the σn and σt parameters (with σi = 0) in the Splatting
method.

the fitted polynomials, we then find the points where ε(p) has
risen 1% above the minimum. These intervals are reported in
the rightmost column in Table II. For example, the parameters
found on dataset #2 agree well with the ranges found on
dataset #1. Thus, we conclude that the found parameters
generalize well between these two sets.

B. Interpolation accuracy comparison

The average relative interpolation errors across all three
datasets for each interpolation method with optimal parameters
are plotted in Fig. 9. It is clearly seen that the NN method
has inferior interpolation accuracy. The remaining methods all
perform similarly, with only a small accuracy advantage of
the Kriging method. It can also be seen that the anisotropic
interpolation in all cases perform better than the isotropic
interpolation. Fig. 10 shows the interpolation error per dataset.
Again the NN method has the highest error while the other
methods perform similarly. Data set 3 has somewhat higher
interpolation errors due to the more irregular flight path and
larger ground sampling distances, cf. Fig. 7.

In Fig. 11, three bands in the red, green and blue wave-
lengths have been rectified to produce RGB-images for a
visual comparison between the methods. The NN method
exhibits blocking artifacts that are typical for this method.
For the remaining methods, a close examination reveals slight
differences in the degree of smoothness, but overall they
are similar. This is consistent with the interpolation accuracy
results above. In some of the rectified images, the pushbroom
line sampling pattern is visible, see for example the third and
fourth rows from the top in Fig. 11. The line patterns are most
prominent in the NN, Splatting and IDW methods, but for
Kriging the effect is almost completely removed. To further
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Fig. 9. Accuracy comparison of the interpolation methods with tuned optimal
parameters. The relative interpolation error has been averaged across all three
datasets. The suffix ISO indicates isotropic interpolation and no suffix means
anisotropic interpolation. The NN method has the lowest accuracy and the
Kriging method the highest accuracy.
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Fig. 10. Accuracy results for each of the three datasets using the different
tuned anisotropic interpolation methods.

visualize differences between the interpolation methods, all
spectral bands in the hyperspectral datasets were rectified. In
Fig. 12, the spectra in selected pixels in the evaluation set are
plotted together with the actual measured spectra. Again the
main difference is between the NN and the other methods.

C. Surface structure dependency

In order to further analyze the benefits of the anisotropic
interpolation model, we have also separated the evaluation
pixels in subsets with large and small amounts of surface
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(a) NN (b) Splatting (c) NAT (d) IDW (e) Kriging
Fig. 11. Details of the reconstruction results. Top two rows are from dataset 1, middle two rows are from dataset 2 and bottom two rows are from dataset
3. The images are best viewed in the electronic version of this article.
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Fig. 12. Interpolation for a few pixels in all spectral bands of the
hyperspectral image. Left: the pixel used for interpolation. Right: Spectral
plots for the different methods. “orig” is the actually measured spectrum and
the other curves are different interpolation results.

structure respectively. All ground truth pixels are sorted ac-
cording to their gradient strength as reflected in the trace
of the structure tensor tr(T) computed according to (9), and
the top 10% are denoted the ANISO subset. Similarly, the
lowest 10% are denoted the ISO subset. Errors for these two
subsets for dataset 2 are reported in Table III for the IDW and
Splatting methods respectively. The largest difference between
the methods using anisotropic or isotropic surface structure
model is for the ANISO subset. Similar results are obtained
for the other interpolation methods.

D. Speed comparison

Depending on the application, computational speed may
be an important factor. The interpolation methods have quite
different computational complexities and we have compared
the speed between the methods on the different datasets, see
Table IV. The numbers in this table were obtained with serial
implementations of the algorithms. The forward interpolation
scheme represented by the Splatting method is about an order
of magnitude faster than the other methods. Among the inverse

IDW ISO ANISO
10% ISO 1.29% 1.28%

10% ANISO 7.13% 6.18%

Splatting ISO ANISO
10% ISO 1.29% 1.27%

10% ANISO 6.13% 5.11%

TABLE III
COMPARISON OF ERRORS IN REGIONS WITH ISOTROPIC AND ANISOTROPIC

GROUND STRUCTURE FOR THE IDW AND SPLATTING METHODS ON
DATASET 2.

TABLE IV
METHOD TIMINGS IN SECONDS (SERIAL EXECUTION)

Dataset 1 Dataset 2 Dataset 3
Splatting 0.4 0.7 4.0

NN 5.4 6.3 26.3
IDW 5.5 6.5 27.5
NAT 21.4 25.8 141.4

Kriging 39.3 43.7 208.3

interpolation schemes, NN and IDW are the fastest. The com-
putational effort in these methods is mainly spent on finding
the closest input samples for the interpolation according to the
procedure outlined in Section V. The Kriging interpolation
requires additional computations, e.g., the matrix inverse in
(28), and it is the slowest method. The NAT method requires
a triangulation pre-processing step which is computationally
demanding.

In the inverse interpolation schemes the points in the output
grid are calculated independently of each other, cf. (23). The
implementation of these schemes, in particular NN, IDW and
Kriging, is for this reason trivial to parallelize. For example,
on a CPU with 4 cores, a speedup of a factor 3.5 was
obtained with a parallel implementation compared to the serial
implementation. Thus, these methods benefit extensively from
parallel processing architectures such as multicore CPUs or
GPUs, and may outperform the Splatting method if such
resources are available.

In summary, the Splatting method performs the interpolation
with the lowest amount of computations, but with a proper
implementation, all methods should be able to perform real-
time, for example to rectify images on-line in a carrier aircraft.

VIII. DISCUSSION

The image rectification problem addressed in this work is
required for visualization of pushbroom data and for fusing re-
sults derived from such data with other imaging or geographic
information. A key contribution is the modeling of the spatial
dependence structure of pushbroom data in terms of the spatial
covariance function. The covariance function involves two
generally anisotropic and spatially non-stationary components:
one that depends on the special properties of the pushbroom
data acquisition and one that depends on the imaged surface
structure itself. Based on this dependence model, five different
interpolation methods for scattered spatial data are compared
to interpolate the pushbroom samples at positions in a uniform
grid.
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In terms of interpolation results, the Nearest Neighbor
method is inferior to the other interpolation methods, as
can be expected due to its simplicity. The Kriging method
consistently performs the best and has fewer visual striping
artifacts, but the remaining methods are also viable from
a practical view. Furthermore, the anisotropic interpolation
schemes consistently yield better results than their isotropic
counterparts. From a practical perspective, it is interesting
to look at the computational performance of the different
algorithms. In a straightforward implementation on a serial
processing unit, the Splatting method has a clear advantage.
With the trick to utilize the semi-structured sampling pattern of
the pushbroom sensor, inverse interpolation schemes become
feasible from a computational view, albeit still not as fast as the
Splatting method. The inverse interpolation schemes have the
attractive property of guaranteeing that there are no holes with
undefined values in the rectified image. Moreover, the inverse
interpolation schemes benefit trivially from parallel compu-
tational architectures, as each output pixel can be computed
independently. With such resources available, inverse schemes
could overtake the Splatting method.

A limitation of the current work, and a subject of future
work is how to make the ground structure covariance estima-
tion fully automatic. In this work we employ the approach
suggested in [22], which uses neighborhoods of constant size,
and thus implicitly assumes a constant sample density. In
e.g. our dataset 3, where the samples are considerably more
sparse, and irregular than in the other two, we had to adjust
the neighborhood size manually, i.e. the σ parameter in (9).

A second limitation is that the footprint component of the
covariance function is assumed to have constant magnitude
(we only change its orientation), the reason being that more
investigations are required of how to determine the parameters
in the theoretical covariance model in (14) and to let it adapt
from pixel to pixel. Through some approximations, e.g., a
locally flat terrain around a pushbroom sample and a locally
linear flight path, the pixel footprint function is modeled
with an anisotropic Gaussian shape in this work. In recent
work [25], the pixel footprint for each pushbroom sample
was estimated using a Monte Carlo ray tracing method which
takes the continuous flight path measured by the on-board
INS system and a Digital Surface Model (DSM) into account.
Thousands of rays are sent to build up a non-parametric
representation of the distribution of ground points that con-
tribute to the pushbroom sample under consideration. Though
computationally very demanding, the resulting distribution
could be used for interpolation using a forward interpolation
Splatting scheme.

Here we have only performed experiments with data ac-
quired using a pushbroom sensor, but it may also be relevant
for other types of sensors. Rolling shutter images acquired
during motion need to be rectified and interpolated in order to
be visualized correctly [26], [10] and any method used in this
paper could be used for this, as long as there exists a mapping
for all the pixels.

IX. CONCLUSIONS

Different scattered data interpolation methods for the recti-
fication of pushbroom images have been compared. A model
of the pushbroom image acquisition process reveals an in-
herently anisotropic spatial data dependence structure that
should be taken into account in the interpolation, in addition
to an anisotropic surface model. This is supported by the
experimental results, where consistent gains in accuracy were
observed when adding anisotropic modeling, compared to the
isotropic case. The anisotropic interpolation models presented
here strikes a good balance between efficiency and accuracy,
as it results in interpolation methods that can run at interactive
speeds. Further gains in accuracy may be obtained with more
sophisticated models, but at the expense of more demanding
computations. To conclude with a recommendation of method
choice, the Inverse Distance Weighted method strikes a good
balance between accuracy and practical usability. The Kriging
method is superior in terms of quality at the expense of a
higher computational complexity, and the Splatting method
could be the method of choice if computational resources are
scarce.
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