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Abstract. The motion field from image sequences of a dynamic 3D
scene is in general piecewise continuous. Since two neighbouring regions
may have completely different motions, motion estimation at the discon-
tinuities is problematic. In particular spatial averaging of motion vectors
is inappropriate at such positions. We avoid this problem by channel
encoding brightness change constraint equations (BCCE) for each spa-
tial position into a channel matrix. By spatial averaging of this channel
representation and subsequently decoding we are able to estimate all sig-
nificantly different motions occurring at the discontinuity, as well as their
covariances. This paper extends and improves this multiple motion esti-
mation scheme by locally selecting the appropriate scale for the spatial
averaging.

1 Introduction

The motion field from image sequences of a dynamic 3D scene is in general piece-
wise continuous. Since two neighbouring regions may have completely different
motions, motion estimation at the discontinuities is problematic. In particular
this means that linear estimation of motion parameters in regions containing
a boundary is inappropriate. Furthermore, effects such as shadows and trans-
parency can result in there actually being several valid motions at a single image
location [1].

The problem of smoothing across edges can be solved to some extent by doing
motion estimation in a small neighbourhood, and then applying edge preserving
filtering, or robust estimation techniques to the resultant motion field. This will
reduce noise, and eliminate outliers in the initial measurements, but the required
size of the local region will vary considerably due to the aperture problem (the
motion in an intrinsic-1D neighbourhood is ambiguous, see e.g. [1, 2]). Further-
more we will still run into problems if the local region contains several valid
motions, as in the case of transparency and thin elongated objects such as tree
branches.

In order to make the initial linear estimation region even smaller, one could
instead replace the initial motion estimation step with a motion constraint es-
timation step. A popular motion constraint is the brightness change constraint



equation (BCCE), which relates spatial and temporal derivatives (fx, fy, ft) of
the signal f , with the local image plane motion

[
u v
]T

ufx(x, y) + vfy(x, y) + ft(x, y) = 0 . (1)

The BCC-equation is based on the assumption of constant intensity, and can be
derived from a first order Taylor expansion of a signal undergoing an infinitesimal
translation. Since (1) is valid also in regions where the aperture problem is
present, it can be correctly estimated using much smaller spatial windows. By
clustering BCCEs in the u–v plane within a local region we can then estimate
several local image plane motions. Examples of this approach are e.g. [1, 3], where
the EM algorithm has been used to do the clustering.

The BCCE is actually an incorrect motion model in a number of situations: 1)
if the illumination changes, 2) at the occlusion boundary when the background is
non-constant, 3) if two motions are present, as is the case at e.g. moving shadow
boundaries and reflections.

We have previously [4] developed a clustering technique which can auto-
matically reject most of the incorrect motion constraints, and estimate several
solutions to a system of constraints in a local neighbourhood, by encoding mo-
tion constraint estimates in channel matrices, performing spatial averaging of
the matrix elements, and then decoding. Averaging the channel matrices adds
the assumption that the motion is locally constant.

There have been several other attempts to determine multiple motions, e.g. [5–
8]. For a discussion of the Fourier properties of multiple motions see [9]. Often
some type of filter bank is used where the filter outputs are either combined
into a multiple motion likelihood function or used as separate constraints in an
over-determined system of equations. In the presented approach we use simple
derivative filters to yield the constraint equation that is input into our estimation
scheme.

1.1 Organisation of paper

This paper is organised as follows: In section 2, we describe the channel repre-
sentation of motion constraints, and conversion to and from it. In section 3, we
describe how the channel representation can be used to estimate optical flow,
and demonstrate the behaviour of the algorithm using the well known “Hamburg
taxi”, and a synthetic sequence. In section 4 we introduce an algorithm which
locally adapts the size of the region in which motion is estimated, and in section
5 we compare this method to least-squares optical flow using the “flower garden”
sequence.

2 Channel representation

Channel representation [10–12] is a technique to represent single or multiple
statements with associated confidences in a uniform manner. Channel represen-
tation has applications in learning, clustering and edge-preserving filtering [10].



In the channel representation, a measurement u, and its confidence r are rep-
resented as a vector Φ of K channel values Φk. The channel values are computed
by passing the measurement u through a set of shifted kernel functions g(u−k),
and weighting the result with the confidence3 r, i.e. Φk(u, r) = rg(u − k). Av-
eraging in the channel representation followed by a local decoding is a way to
estimate the modes of the PDF p(u) [10].

Common kernel choices are cos2, B-spline, and Gaussian kernels. In this
paper we will use Gaussians, since decoding of a Gaussian channel vector allows
recovery of both mode location and standard deviation.
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Fig. 1. Example of channel histograms with sampling distance ∆u = 0.1. a) and b)
Encoding of points with σ = ∆u and σ = 1.5∆u, c) and d) Encoding of lines with
σ = ∆u and σ = 1.5∆u. Decoded mode locations are visualised as crosses, and the
covariances as ellipses.

2.1 Encoding of Points

When encoding a point
[
u v
]T the channel value Φkl at each grid point

[
k l
]T

is obtained by application of a Gaussian kernel function:

Φkl(u, v, r) = rg(d, σ) = re−0.5(d/σ)2 for d2 = (u − k)2 + (v − l)2 (2)

We only discuss the fully isotropic kernel here. Such an encoding of 2D variables
is realised more efficiently as the outer product of the 1D channel vectors for the
two components, u and v.

For several points the combined channel representation is simply given by
the averaged channel matrix. An example with four thus encoded points is given
in figure 1a and 1b for different kernel widths σ. Observe that there is an in-
terference between two points if they are too close to each other. The number
of channels, their distance and the standard deviation of the used kernel thus
limits how many points we can represent simultaneously.

3 If no confidence is available, we simply set r = 1.



2.2 Encoding of Lines

Often an image measurement does not give the exact location of the parame-
ter we want to estimate, but only determines that it lies somewhere in a one-
dimensional subspace. We assume that such a linear constraint is given either in
standard, or in normalised form:

a x + b y + c = 0 or x cos φ + y sinφ − ρ = 0 , (3)

with [cos φ, sin φ, −ρ] = 1√
a2+b2

[
a b c

]
. All points (x, y) which satisfy (3) lie on

the line. The distance of a specific grid point (k, l) to the line is then given by
d = |k cos φ + l sin φ − ρ|. Channel values are again obtained by applying the
Gaussian kernel to the distance:

Φk,l(ρ, φ, r) = rg(d, σ) = re−0.5(d/σ)2 for d2 = k cos φ + l sin φ − ρ . (4)

Each channel value encodes the likelihood that the motion has the value of the
corresponding grid point. An example with four thus encoded lines is given in
figure 1c and 1d for different σ.

2.3 Point Decoding

In the decoding step we want to extract the position of local peaks in the channel
matrix. First we determine local maxima with grid point accuracy at (k, l). Then
we model the channel values in a small neighbourhood (e.g. 3×3 or 5×5) around
the local maximum using a 2D Gaussian with centre position s, amplitude r and
covariance matrix C:

g(p − s, r,C) = r exp
(−0.5(p − s)T C−1(p − s)

)
(5)

where p =
[
x y
]T denotes local grid point coordinates. We can express the

covariance matrix and its inverse explicitly as:

C =
[

σ2
x σxy

σxy σ2
y

]
and C−1 =

1
σ2

xσ2
y − σ2

xy

[
σ2

y −σxy

−σxy σ2
x

]
. (6)

For each point in the decoding neighbourhood we thus obtain one constraint
Φp = g(p − s). After taking the logarithm this constraint becomes:

ln g(p − s) = ln r − (x − sx)2σ2
y − 2(x − sx)(y − sy)σxy + (y − sy)2σ2

x

2(σ2
2σ2

y − σ2
xy)

. (7)



This can be written as the scalar product between a known vector a and an
unknown parameter vector m with:

a = 0.5
[
1 2x 2y −x2 −y2 −2xy

]T
, (8)

m =
1

σ2
xσ2

y − σ2
xy




2 ln r(σ2
xσ2

y − σ2
xy) − s2

xσ2
y + 2sxsyσxy − s2

yσ2
x

sxσ2
y − syσxy

syσ2
x − sxσxy

σ2
y

σ2
x

−σxy


 (9)

Stacking the constraints for each pixel on top of each other we obtain a least-
squares system: Am = lnΦ. The solution is obtained using the pseudo-inverse:

m = (AT A)−1AT lnΦ . (10)

We recognise the inverse covariance as:

C̃−1 =
[
m4 m6

m6 m5

]
thus C̃ =

1
m4m5 − m2

6

[
m5 −m6

−m6 m4

]
. (11)

From (9) we find the position and peak amplitude to be given by:[
s̃x s̃y

]T = C̃
[
m2 m3

]T ; r̃ = exp(0.5(m1 + m4s
2
x + m5s

2
y + 2m6sxsy)) . (12)

The final solution is obtained by adding the centre grid point offset
[
ũ ṽ
]

=[
k l
]
+
[
s̃x s̃y

]
.

The expectation of the estimated covariance matrix is the sum of the noise
covariance C̃n and that of the encoding kernel Cb = diag(σ2, σ2). Hence we can
compute the covariance matrix of our estimated result to be: C̃n = C̃ − Cb.
Also note that the estimated amplitude r̃ encodes the peak likelihood and thus
directly serves as a certainty measure.

In order to determine to what extent the aperture problem persists for the
considered solution we can define the quotient of the eigenvalues of the covariance
matrix as a simple measure. Let λ1 ≥ λ2 be the eigenvalues of C̃, then we define:

ra = λ2/λ1 . (13)

To summarise: for each local peak in the channel matrix, the decoding extracts
the mode location (ũ, ṽ), the amplitude r̃, the covariance C̃, and an aperture
measure ra.

2.4 Multiple decodings

The above described decoding scheme tends to give several similar solutions if
the local channel matrix structure is elongated, i.e. if ra from (13) is small. Thus
we also do a postprocessing which removes multiple solutions. As a first step, we



disregard solutions with a Mahalanobis distance larger than 1 from the initial
grid point, i.e. [

s̃x s̃y

]
C̃−1

[
s̃x s̃y

]T
< 1 . (14)

Additionally, we check if multiple solutions are within each other’s Mahalanobis
distance, and if so, we keep the one which has the largest aperture measure ra.

The thus estimated peak locations and associated covariance matrices are
shown in figure 1. For isolated points the covariance vanishes, i.e. we have per-
fect reconstruction. Increasing the kernel size σ leads to stronger interference as
can be seen in figure 1b. However the elongated shape of the covariance matrix
correctly captures this interference. For linear constraints we find that the inter-
sections are correctly found, see figure 1c. Observe that the angle between the
lines determines the covariance in the reconstructed point, for 90◦ we should have
an isotropic covariance. However for small values of σ we find a slight anisotropy
caused by quantisation effects. For larger σ (figure 1d) this effect disappears.

2.5 Line Decoding

In cases where the point decoding fails, i.e. when the decoded covariance matrix
has a zero, or negative determinant, we revert to decoding a line instead. We
do this by constraining the inverse covariance matrix to be singular. The singu-
larity is enforced by eigenvalue decomposition on C̃−1, and setting the smallest
eigenvalue to zero.[

m4 m6

m6 m5

]
= λ1e1eT

1 + λ2e2eT
2 ⇒ C̃−1 = λ1e1eT

1 =
[

τ2
x τxτy

τxτy τ2
y

]
. (15)

For a singular matrix the peak position
[
s̃x s̃y

]T is not well defined. Instead we

compute the minimum norm solution, cf. (12), of C̃−1
[
s̃x s̃y

]T =
[
m2 m3

]T :[
s̃x

s̃y

]
=

(τxm2 + τym3)
τ2
x + τ2

y

[
τx

τy

]
. (16)

Finally, the covariance is approximated by:

C̃ = 1/λ1(e1eT
1 + 10 000e2eT

2 ) . (17)

Note that the factor 10 000 is quite arbitrary. It is just a convenient approxima-
tion of the infinity, such that the accuracy of the orientation of C̃ is retained.

3 Optical Flow

We now apply the presented framework to the computation of image motion.
From the assumption of conserved intensity the standard optical flow constraint
equation is obtained as:

ufx(x, y) + vfy(x, y) + ft(x, y) = 0 . (18)



Here fx, fy, and ft denote the signal derivatives along space and time dimensions,
and [u, v]T the motion. As there is only one equation with two unknowns, the
solution is constrained to lie on a line in the parameter space. This inherent
ambiguity is often referred to as the aperture problem. We encode this linear
constraint as described in section 2.2, and obtain a blurred line constraint at
each spatial position.

To obtain a unique solution some form of spatio-temporal smoothness is
usually required. Here we simply assume the motion in each layer to be constant
in a spatial neighbourhood. The channel matrix for such a neighbourhood is then
obtained by averaging the individual matrices. Instead of a standard average it is
desirable to give more weight to the central pixel. This is readily achieved by the
use of an averaging filter g(x, y) such as a Gaussian or binomial. Furthermore we
might want to utilise a certainty w(x, y) at each pixel. The gradient magnitude
is a possible choice. In any way this certainty will be zero outside the image thus
reducing border effects. The integrated channel matrix is given by a normalised
average:

Φ′
kl =

g ∗ (w · Φkl)
g ∗ w

(19)

where ∗ denotes convolution. We use the well known “Hamburg taxi” sequence
(figure 2) to demonstrate the algorithm. Two thus computed channel matrices
are shown in figure 2b and 2c for the locations indicated in figure 2a. Note that
the averaged channel matrix corresponds to a sampled likelihood function with:

p(u, v|f) '
∑
x,y

g(x, y)w(x, y) exp
(
− (u fx + v fy + ft)2

2σ2(f2
x + f2

y )

)
. (20)

(All derivatives above have an implicit spatial coordinate argument.) This can
easily be derived from (3) and (4). Compare this likelihood to the standard
least-squares likelihood function [13]:

p(u, v|f) ' exp

(
−1
2σ2

∑
x,y

g(x, y)w(x, y)(u fx + v fy + ft)2
)

. (21)

These two likelihoods are illustrated in figure 2c and 2d for an area where a
moving car is occluded by a tree. We observe that (20) clearly distinguishes the
two motions while (21) averages them. The summation in (20) can be thought of
as a voting mechanism which makes the approach very robust to outliers, similar
to a generalised Hough transform. Note that when there is only one solution and
no outliers the expectation values of (20) and (21) coincide.

Points where more than one solution is obtained are indicated in figure 2e.
The outlines of two cars are clearly visible. There are no multiple motions around
the bright car as its slow movement can not be separated from that of the
background in this case (σ = 0.2∆u). The certainty of the dominant estimate
is shown in figure 2f, this also drops slightly around the brighter car. Finally
we show the first and second estimated motion in figure 2g and 2h respectively.
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Fig. 2. Optical flow example. a) frame 25 with marked positions A and B. b) and c)
show channel matrices at positions A and B respectively. d) gives the LS likelihood
(21) at point B. e) shows the pixels where more than one solution is obtained, f) shows
the confidence in the first estimate and g) and h) show the first and second solutions
as vector plots.

Around the cars their movements are captured in the less dominant second
solution.

It is possible to extract multiple motions at motion discontinuities. This is
illustrated on a synthetic sequence where all four quadrants move in different
directions, an example frame is given in figure 3a. The number of solutions is
shown in figure 3b; At the centre we get up to four estimates and at the other
discontinuities we obtain two solutions. The vector plot (figure 3c) illustrates
that the motions are correctly estimated. The amplitude of the dominant peak
drops near the discontinuities as the energy is distributed to several peaks, see
3d.

a b c d

Fig. 3. Multiple motions at discontinuities. a) example image, b) number of solutions
(range [0 4]), c) vector plot and d) confidence (peak amplitude) in the first estimate.
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Fig. 4. Helicopter sequence. Left to right: input frame, Gradient magnitude, Thresh-
olded gradient magnitude, thresholded ra map (overlaid on image).

4 Scale Selection for Optical Flow Estimation

The “Hamburg taxi” sequence is quite convenient in the sense that it does not
contain elongated structures, and thus no serious aperture problems exist. In
general however we may need to integrate information over quite a large region
in order to get rid of aperture problems. If a local region doesn’t suffer from
aperture problems, however it is not desirable to use a too large estimation
region. In fact, increasing the estimation region reduces the spatial localisation
accuracy of the estimated motion. This is known as the uncertainty principle [2].
In order to keep the spatial localisation accuracy, and at the same time adapt the
size of the estimation region, we compute a low-pass pyramid for each channel.

Figure 4a shows a frame from a more difficult sequence. In this sequence,
the car is moving forward, and the camera is translating upwards and to the
left, to compensate for the car motion. Figure 4b shows the gradient magnitude
fm =

√
f2

x + f2
y , and figure 4c indicates regions where the magnitude is so small

(fm < 0.005) that the BCCE constraints are unreliable due to low SNR. For
such regions, we don’t provide any constraint at all, instead we set the channel
matrix to all zeros. Figure 4d indicates regions where an optical flow estimation
according to section 3 (using a 21-tap binomial filter to average the channel
matrices) resulted in a dominant motion with a very low aperture measure (ra <
0.01).

Both types of problem regions (those indicated in figure 4c and 4d) have to be
dealt with in some way. For the regions in figure 4c we could either extrapolate
motion estimates from neighbouring regions, as is typically done in dense optical
flow techniques, or we could leave the motion undefined, and leave it to a yet-
to-be-specified post-processing algorithm to infer the correct motion. For the
regions indicated in figure 4d we have valid BCCE constraints, but we have
failed to resolve the aperture problem, and thus need to perform the estimation
in a larger neighbourhood. This is the topic of this section.

First we generate a pyramid as follows:

1. Encode the BCCE constraints as channel matrices in each pixel.



Fig. 5. Example of channel matrix behaviour under blurring. Left: initial constraint
line. Second to sixth images show channel matrices from successive scales in the pyra-
mid.

2. Perform an initial spatial average, e.g. with a 15-tap binomial filter.
3. Average again using a 4-tap binomial filter.
4. Subsample to obtain the next coarser scale in the pyramid.
5. Repeat 3 and 4 until sufficiently many scales are obtained.

Figure 5 demonstrates how channel matrices at a motion discontinuity be-
have under blurring. Here we can see how the aperture problem is dealt with
at increasingly coarser scales. The first three scales all produce very elongated
solutions, indicating aperture problem or near aperture problem uncertainty. the
dominant modes at the fourth and fifth scales however have more concentrated
covariance matrices, and are thus good descriptions of the motion in the region.
This example motivates the following scale selection algorithm:

1. Decode at finest scale
2. For all decodings with an aperture measure below a given threshold:
3. Replace with decoding at coarser scale if within Mahalanobis distance, and

better wrt. aperture measure.
4. Go back to 2.

This algorithm is demonstrated in figure 6. Here we can see that initial es-
timates made in a relatively small region (15-tap binomial) can be improved by
replacing estimates with low aperture measures. However, the method fails on
very elongated structures, such as e.g. the road line at the bottom of the image.
The reason for this is that the number of votes for the same motion constraint
is so high, that the estimates at the end of the line fails to change the shape of
the covariance matrix significantly. This clearly indicates that a better aperture
measure would be desirable.

5 Experiments

We now demonstrate the difference in behaviour between the described algo-
rithm and the least-squares optical flow algorithm of Lucas and Kanade [14].
We compute optical flow by solving a system of BCCEs in each local neighbour-
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Fig. 6. Estimated motion. a) Central input frame b) Magnitude of motion estimate at
scale 1 c) Magnitude of motion estimate after integrating scales 1–5. d) Chosen scale
(brighter means higher scale, black means no estimate).

a b c d

Fig. 7. Comparison with linear optical flow on the “flower garden” sequence. a) centre
input frame (No. 5), b) magnitude of estimated motion, c) magnitude overlaid on input
frame, d) result from least-squares method.

hood:

W


 | |

fx fy

| |




︸ ︷︷ ︸
A

[
u
v

]
= W


 |

ft

|




︸ ︷︷ ︸
b

⇒
[
u
v

]
= (AT WA)−1AT Wb . (22)

Here W is a diagonal matrix containing the spatial weights in the neighbourhood.
Figure 7 shows a comparison of the channel matrix method and the least-

squares flow method (22). Figure 7a shows the centre input frame, and in 7b we
have depicted the magnitude (mainly contains the horizontal component) of the
estimated motion field using the channel matrix method. We used 3 × 3 Sobel
derivative filters, but blurred the input frames using a 9-tap binomial to increase
the spatial support of the derivatives. We have used a channel representation with
25×25 channels with ∆u = 0.35, and σ =1.3∆u. The initial smoothing was done
using a 61-tap binomial filter, and the rest of the pyramid was built using 4-tap
filters. The motion magnitude is overlaid on the central input frame in figure 7c,
to illustrate the localisation of the result. As can be seen, the localisation of the
tree edges are quite good when there is structure behind the tree. Higher up,
however we see that the motion of the tree spills over onto the background as
well.

The result for the least-squares flow method is shown in figure 7d using the
same derivative filter responses as input. Again we used a spatial neighbourhood



of a 61-tap binomial filter to solve for (u, v). As can be seen, the edges are
significantly more blurred, and the least-squares flow gives erroneous motions at
the same places as the channel matrix, (see e.g. the bright patches at the bottom
right of the image, and on the upper right part of the tree trunk). This indicates
that these errors are due to erroneous BCCEs, and not to the motion estimation
step. By using better derivative filters, e.g. Sharr filters [15], or by switching to
a different motion constraint estimation we should thus be able to improve the
results.

6 Concluding remarks

We have presented a framework for encoding local motion constraints in a repre-
sentation where averaging yields robust estimation. We wish to emphasise that
the main purpose of this paper was to demonstrate the framework, and not to
suggest a final motion estimation method. The channel representation frame-
work allows the BCCE constraint to be replaced, e.g. by a phase based [16], or
3D-orientation constraint. Furthermore, we can easily combine both measure-
ments that yield motion constraints and full motion estimates (as obtained from
e.g. feature matching methods) by encoding them using the line encoding and
the point encoding respectively.

For integration of estimates at different scales, the results are somewhat dis-
appointing, since only minor improvements compared to the single scale method
are obtained. Better results could probably be obtained by instead letting the
covariance of the initial estimates guide the shape of the estimation region at
coarser scales.
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