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Abstract

The majority of consumer quality cameras sold today

have CMOS sensors with rolling shutters. In a rolling-

shutter camera, images are read out row by row, and thus

each row is exposed during a different time interval. A

rolling-shutter exposure causes geometric image distortions

when either the camera or the scene is moving, and this

causes state-of-the-art structure and motion algorithms to

fail. We demonstrate a novel method for solving the struc-

ture and motion problem for rolling-shutter video. The

method relies on exploiting the continuity of the camera mo-

tion, both between frames, and across a frame. We demon-

strate the effectiveness of our method by controlled experi-

ments on real video sequences. We show, both visually and

quantitatively, that our method outperforms standard struc-

ture and motion, and is more accurate and efficient than a

two-step approach, doing image rectification and structure

and motion.

1. Introduction

Estimation of structure and motion (SaM) from image

sequences, is one of the key problems in computer vision

where research has reached a high level of maturity [14].

Applications of SaM include ego-motion estimation [7], au-

tomatic acquisition of 3D models from images [15], and

augmented reality [17].

Unfortunately, state-of-the-art algorithms for SaM tend

to fail on many new cameras because they assume that each

image is captured at a single time instance. This assump-

tion holds for cameras with a global-shutter CCD sensor

or a fast mechanical shutter (e.g. DSLRs). However, in re-

cent years an increasing number of camera manufacturers

have switched to CMOS sensors, and instead of capturing

the image with a global-shutter trigger, most CMOS sensors

scan the image row by row. This is referred to as having a

rolling shutter (RS) [11, 12]. A rolling-shutter readout gives

a better fill-factor on the chip, but leads to geometric image

distortions if the camera or the scene is non-static.

Nowadays rolling-shutter sensors are found in cameras

ranging from high end professional cameras (e.g. the cin-

ematic high resolution RED cameras) to nearly all new

consumer cameras, including video-capture enabled DLSR

cameras. Nearly all mobile phones have cameras with

rolling shutters, both for stills (due to the absence of an me-

chanical shutter) and for video.

In this paper we introduce a method that estimates struc-

ture and motion from rolling-shutter video with previously

unseen accuracy. The method is based on an initial rectifi-

cation of interest point trajectories [21], and in contrast to

earlier work [1, 17], it requires no special initialisation of

the 3D structure.

1.1. Related Work

Geyer et al. [12] estimate rolling-shutter SaM on syn-

thetic data under the assumption of fronto-parallel motion,

and using a linearised screw motion. Motion under rolling

shutter from known structure is studied in [2]. Structure

and motion on a stereo rig where one of the cameras has a

rolling shutter is studied in [3].

Ait-Aider et al. [1] solved the perspective-n-point [9]

problem for rolling-shutter cameras where the camera pose,

and linear camera motion is estimated across one frame

only. However, we found that without the use of markers

and known geometry (as in [1]), the achieved robustness is

insufficient in practice.

Klein et al. [17] have ported their augmented reality soft-

ware PTAM (parallel tracking and mapping) to the CMOS

camera of the iPhone 3G. They compensate for rolling-

shutter artifacts by assuming a known 3D structure. Using

this model, they estimate the velocity of the camera and cor-

rect the image points assuming a constant velocity across

the frame.

Neither [1] nor [17] address the problem of how to esti-

mate an initial 3D structure using an RS camera. In [17] the

system is initialised by imaging a planar scene, for which a

homography is iteratively refined over a number of frames.

After initialisation, a 3D structure is then allowed to sta-

bilise itself over time. The system relies on the initialisation
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being sufficiently accurate, as all subsequent RS corrections

assume that the 3D structure is correct. In contrast, we are

able to estimate an initial 3D structure by explicitly mod-

elling the RS geometry.

One part of our framework is similar to that of stabilising

rolling-shutter video, where a successful approach has been

to neglect the translation component of the camera motion,

and only correct for camera rotations [10, 21].

1.2. Contributions

The contributions of this paper are:

• We introduce a method for estimating the structure and

motion from rolling-shutter video without any a-priori

known 3D structure. Our new method handles any type

of motion and an arbitrary number of images.

• We do a thorough comparison of three algorithms on

real rolling-shutter video data. The tested methods are

(1) Our rolling-shutter aware SaM, (2) global-shutter

SaM (i.e. not rolling-shutter aware), and (3) off-the-

shelf rolling-shutter image rectification followed by

global-shutter SaM.

2. Rolling-shutter image rectification

Since images and videos captured with a moving rolling-

shutter camera will suffer from geometric distortions, it is

often desirable to rectify and correct these. In recent years,

several rolling-shutter rectification methods have been de-

veloped. One of the more successful ones is the global

affine distortion model of Cho and Hong [8]. This has re-

cently been extended by Baker et al. [4] to use different

models across several horizontal stripes, yielding a local

affine model. Another approach is to model the distortion

using a rotational model [10, 21] of the camera motion.

We have chosen to use the rotational model for two rea-

sons: (1) it models the actual camera motion and (2) it has

been shown to perform better than others in a recent evalu-

ation [21]. Even though the translational component of the

camera motion is neglected, the model has been shown to

work well if a short frame interval is used [21]. The method

assumes the distortions arise from camera motion in a rigid

scene.

2.1. Camera model

Using the pinhole camera model, the relationship be-

tween a 3D point, X, and its projection in the image, x,

can be expressed as

x = K[R|d]X, (1)

if the camera has a global shutter (or is stationary). x is

given in homogeneous coordinates, K is a 5DOF upper tri-

angular 3 × 3 intrinsic camera matrix, R is the camera ro-

tation and d is the camera translation [14].

If the moving camera instead makes use of a rolling shut-

ter, the model becomes:

x = K[R(t)|d(t)]X, (2)

where t represents time and is proportional to the image

row.

Since most rolling-shutter artifacts arise due to camera

rotation, the model can be simplified to a pure rotation about

the camera center [21]:

x = KR(t)X. (3)

2.2. Camera motion estimation

By assuming that the camera has a smooth motion, the

rotations can be parametrised with a linear interpolating

spline where a number of knots, called key-rotations, are

placed one for each frame. Intermediate rotations are inter-

polated using SLERP (Special Linear intERPolation) [23].

The frame interval used for estimating the camera motion is

set short to ensure small translations.

The key-rotations are represented as a three element axis

angle vector, and are estimated using iterative optimisation

with a rigid scene assumption. The (symmetric) image-

plane residuals of a set of corresponding image points are

used for the minimisation [21].

In order to calculate the length of the spline between the

last row of one frame, and the first row of the consecutive

frame (the inter-frame delay), read out time and frame-rate

must be known. The frame-rate is given by the video and

the read out time is calibrated as in [21].

2.3. Rectification

Once the sequence of rotations has been found, we rec-

tify the images by moving each row to a common coordinate

system. If xd is a distorted image point it is mapped to its

rectified position xr by:

xr = KR
T (t)K−1

xd (4)

where R(t) is the camera rotation from the position it had

when it was imaging the first row in the camera, to the posi-

tion when it was imaging the row where point xd is located.

Since all pixels within a row were acquired at the same time,

they share the same transformation. A new, rectified image

is created by applying (4) to all image pixels.

3. Structure and motion

The structure and motion of a rolling-shutter camera can

be estimated in several ways, where the most naive ap-

proach is to ignore the fact that the camera has a rolling

shutter, i.e. using global-shutter SaM. A second approach

is to apply global-shutter SaM on rectified images. Finally,

as we suggest, rectification, structure, and motion are esti-

mated jointly.



3.1. Point correspondences and outlier rejection

The first step in most SaM schemes is to find a set of

corresponding points between the images. Usually, this is

achieved by first extracting descriptors and then matching

them. This method is standard if the images are captured

with large baseline and under varying illumination. In this

paper, the image data is captured at high frame-rate (30 fps)

and has therefore small relative viewpoint and illumination

changes. In this situation, a point tracking method is both

more efficient and more accurate. The applied point tracker

minimises the L2-norm between square patches in the two

images. The search is done with a standard gradient descent

approach, which is known as the KLT-tracker [19]. Candi-

date points are selected using FAST [22].

Most of the methods that deal with outlier rejection in

global-shutter SaM build on the assumption that the im-

age has been taken at one time instance. When this is not

the case, as in rolling-shutter images, they fail to a varying

degree. We propose to use a more local approach which

is achieved by re-tracking the tracked points back from

the current to the previous image, and rejecting correspon-

dences where the deviation in initial and resulting position

is larger than a certain threshold [5].

3.2. Global­shutter SaM

With global-shutter SaM we refer to the process of re-

constructing scene structure and camera poses from images

where the whole image is exposed during the same time in-

terval.

We assume having access to the camera or a similar cam-

era and that the focus mechanism does not change the in-

trinsic parameters too much. In this case, the lens distortion

and the intrinsic camera parameters can be estimated by us-

ing the method of Zhang [26].

A widely used approach to do global-shutter SaM is to

first find an initial geometry for a small set of views, e.g.

using the approach by Nistér [20], and use this as an initial-

isation for a bundle adjustment procedure.

In Nistér’s approach, the essential matrix and thus the

relative pose between two views are determined for a mini-

mal set of five point correspondences. With the relative pose

we estimate the 3D position of the 5 points, and with the

perspective-3-point algorithm [13] the points are projected

into a third camera. The closed-form three view solver is

used inside a robust estimator framework, e.g. RANSAC

[9]. This approach has been shown to be one of the best per-

forming ones when a calibrated camera is used [6]. When

the camera poses are estimated we apply an optimal trian-

gulation scheme [16] to generate the 3D points.

The initialisation step is followed by a bundle adjustment

scheme where camera views and geometry are successively

added to the reconstruction until all views are incorporated

and a final reconstruction is achieved. The camera views

are added by using the perspective-n-points algorithm [14],

where both the 3D points and the corresponding 2D image

points are used to estimate the new camera pose. When

adding a set of new views, new point correspondences ap-

pear and from these we can add more points to the geome-

try by triangulation. After each set of new camera views is

added, the current camera poses and 3D points are adjusted

to minimise the reprojection error using a bundle adjust-

ment solver [25]. The number of camera views added be-

tween each bundle adjustment optimisation step is chosen

so that the convergence of the optimisation is not compro-

mised.

3.3. Rolling­shutter SaM

Rectified rolling-shutter images can be used together

with a global-shutter SaM procedure to perform reconstruc-

tion. The advantage is that existing methods for recon-

struction and for rectification (e.g. the rotation method men-

tioned above or the Deshaker software [24]) can be used

off-the-shelf.

A drawback of combining both methods as black-boxes

is that both need point correspondences by point tracking or

by feature matching, and that these comparably expensive

algorithms must be run twice. The rectification step also

resamples the input image resulting in potential aliasing or

blurring. Since the rectification step transforms the input

image, the lens distortion correction in the reconstruction

phase cannot be done correctly.

We therefore propose to combine the methods such that

the point detection and tracking is only done once, and such

that the lens distortion is compensated correctly. The pro-

cedure can be divided into a number of steps:

1. Find initial camera poses and structure by:

(a) Tracking interest points for three or more views

(b) Estimate camera rotations and rectify points for

the views

(c) Estimate an essential matrix and then the relative

poses for 3 of the views (with RANSAC)

(d) Triangulate points

2. Track interest points for a number of consecutive views

3. Rectify the newly tracked points

4. Find new camera poses with perspective-n-point

5. Triangulate new points

6. Perform bundle adjustment

7. If more cameras, then go to 2

The methods used in steps 1 (b)-(c) and 3-5 are the ones

described in section 3.2. Steps 2-5 are performed for all

new views in the sequence.



Figure 1. Tripod with pencil marker. This is the actual setup used

for data collection.

Since we are correcting for lens distortions, special care

has to be taken in the rectification step. In the lens correc-

tion step, points within the same row in the original image

may be transformed to different rows. As the transforma-

tion depends on the unrectified image rows, we thus need

to define the times tn and t′
n

to be proportional to these.

The cost function for estimating the rotations in [10] is now

changed so it depends on both these versions of the points:

J =

N∑

n=1

d(x̂n,Hx̂
′

n
)2 + d(x̂′

n
,H−1

x̂n)2 (5)

where H = KR(tn)RT (t′
n
)K−1 (6)

and d(x,x′)2 = (x1/x3 − x′

1
/x′

3
)2 + (x2/x3 − x′

2
/x′

3
)2 .
(7)

N is the number of used points in one image, and x̂n ↔ x̂
′

n

are corresponding points which have been lens-corrected.

This cost function is used in the iterative optimisation to

estimate the camera rotation. The points are rectified with

these rotations, which are then used to get the global pose

and structure.

4. Experimental evaluation

For evaluation, we collected data by moving the camera

by hand along a near linear path and then returning it to the

starting position. In order to find the starting position again,

we used a tripod, equipped with a pen marker to define the

common starting and stopping point. The setup is shown

in figure 1 and frames from each of the 4 different scenes

are shown in figure 2. These scenes are used to evaluate

three different methods. The first method is global-shutter

SaM (described in section 3.2) used on the original data,

the second method is global-shutter SaM used on rectified

images from the Deshaker software, and the last method is

our own, described in section 3.3.

4.1. Experimental setup

All image data is collected using an iPhone 4, which has

a camera capable of capturing HD video (1280 × 720) at

30 frames per second. The iPhone was calibrated using the

Scene 1 Scene 2

Scene 3 Scene 4

Figure 2. Sample frames from the four different scenes used in the

evaluation.

OpenCV implementation of Zhang’s method [26], and our

implementation is configured to use 5 intrinsic parameters

and 4 parameters for the lens distortion.

As mentioned in section 2.2 rolling-shutter cameras dif-

fer in readout time, and in order to get an accurate motion

estimation one has to account for the readout time of the

current camera. The readout time is approximated by a cal-

ibration step using a flashing LED, as described in [12, 21].

The readout time estimated for the iPhone 4 was 31.98 ms.

The KLT tracker [19] used is the implementation found

in OpenCV. The track-re-track threshold is set to 0.05 pixel,

in order to eliminate as many outliers as possible. For the

relative pose estimation, a large enough baseline is created

by picking 3 images that are 8 images apart and this is done

for 500 iterations within a RANSAC framework.

The bundle adjustment solver used in this paper is the

implementation by Lourakis [18]. It is semi sparse in the

sense that it implements the Schur complement but not the

sparse Cholesky decomposition, which is quite suitable for

the amount of views and the view-overlap that is present in

the video data. We run the bundle adjustment optimisation

on the whole system after 10 new camera views were added.

Adding fewer camera views in-between every bundle step

did not improve the result for any of the evaluated methods

on our data.

Deshaker was used with a rolling shutter amount of

97.11% while motion smoothness and maximal correction

limits were set to their lowest values. This disables the sta-

bilisation but still corrects for rolling shutter. Other settings

were set to be most precise and most robust, together with

edge filling to remove black borders.

4.2. Results

The reconstruction results for the four different scenes

are presented in three different ways. In figures 3-6 we vi-

sually show the camera trajectories. The second evaluation



Scene #1 #2 #3 #4

GS SaM 0.3636 0.0070 0.9855 0.9677

Deshaker 0.0540 0.0063 0.1000 0.9218

Our 0.0650 0.0052 0.0583 0.0286

Table 1. Distance between the first and last camera view.

Scene #1 #2 #3 #4

GS SaM 4.33 4.02 55.64 312.68

Deshaker 3.50 3.28 2.90 3.49

Our 3.53 3.14 2.93 3.11

Table 2. Mean reprojection error in pixels.

measure is shown in table 1, where the distance between

the first and the last camera view is presented. The distance

is normalised with the distance to the camera view furthest

away from the starting position for each scene. This camera

view is determined by visually inspecting the sequences. In

the ideal case start and end view should coincide, thus the

best score is the lowest. The mean reprojection error after

bundle adjustment (in pixels) for all views is the last evalu-

ation measure and is shown in table 2.

The results for the global-shutter SaM on scene #1 show

large drift, especially at the turning point where the rolling-

shutter artifacts are larger. The camera motion in the scene

is quite smooth, and the Deshaker method and our method

handles the scene very well, as can be seen in table 1 and 2.

Scene #2 has good texture and a well defined 3D struc-

ture and is the most well conditioned scene of the four. Parts

of the scene are tracked through the whole sequence, result-

ing in that even the global-shutter SaM method can recover

and find the starting position. Our method is able to pro-

duce slightly better result on both the distance measurement

in table 1 and the mean reprojection error in table 2.

Scene #3 is more difficult, and the global-shutter SaM

breaks down near the turning point. The Deshaker method

handles things better, but is not able to produce as accurate

results as our method, which is significantly closer to the

starting point with the last camera view (see Table 1).

In Scene #4, both the global-shutter SaM and the De-

shaker method break down and the only one which succeeds

is our method. This is the most difficult scene of the four

due to a more complex camera motion resulting in larger

rolling-shutter artifacts.

5. Concluding remarks

In this paper, we have demonstrated a structure and mo-

tion scheme for rolling-shutter video that works for gen-

eral camera motions and any number of camera views. It

is clearly superior to the naive approach of applying a SaM

method directly on the images, which for many cases breaks

Global-shutter SaM

Deshaker and global-shutter SaM

Our method

Figure 3. Results for scene #1. Images show estimated structure as

grey dots, and all estimated cameras, coloured from green to red.

down. We have further showed that our method in general

gives more robust and accurate results than doing SaM on

images rectified with an off-the-shelf product such as De-

shaker. This is due to both a superior rectification model,

and the ability to more accurately incorporate information

such as lens distortion. Our method also eliminates the need

for multiple point detection and tracking steps, and the need

to resample the input images, making it more efficient com-

pared to the Deshaker approach.

Estimating structure and motion on rolling-shutter im-

ages is often a much more ill-conditioned problem than for

global-shutter images. This is clearly visible in both stabil-

ity and mean reprojection error when compared to similar



Global-shutter SaM

Deshaker and global-shutter SaM

Our method

Figure 4. Results for scene #2. Images show estimated structure as

grey dots, and all estimated cameras, coloured from green to red.

global-shutter data.

A natural continuation of this work would be to develop a

bundle adjustment solver for rolling-shutter cameras, where

the presented result could serve as a good initialisation.
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