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Abstract. In this work we examine in detail the use of optimisation
algorithms on deformable template matching problems. We start with
the examination of simple, direct-search methods and move on to more
complicated evolutionary approaches. Our goal is twofold: first, evaluate
a number of methods examined under different template matching set-
tings and introduce the use of certain, novel evolutionary optimisation
algorithms to computer vision, and second, explore and analyse any addi-
tional advantages of using a hybrid approach over existing methods. We
show that in computer vision tasks, evolutionary strategies provide very
good choices for optimisation. Our experiments have also indicated that
we can improve the convergence speed and results of existing algorithms
by using a hybrid approach.

1 Introduction

Computer vision tasks such as object recognition [1], template matching [2], reg-
istration [3], tracking [4] and classification [5] usually involve a very important
optimisation stage where we seek to optimise some objective function, corre-
sponding to matching between model and image features or bringing two images
into agreement. This stage requires a good algorithm that is able to find the op-
timum value within some time limit (often in real-time) and within some short
distance from the global solution.

Traditionally, such tasks have been tackled using local, deterministic algo-
rithms, such as the simplex method [6], Gauss-Newton [7] or its extension by
[8,9] and other derivative-based methods [7]. Such algorithms, although usually
improve on the solution relatively fast, need to be intialised near the proximity
of the global optimum, otherwise they may get stuck inside local optima. In
this work, we examine the simplex and the pattern search methods, due to their
simplicity, ubiquity and tractability.

In recent years, a wide selection of global, stochastic optimisation algorithms
have been introduced, the effectiveness of which, has ensured their use in com-
puter vision applications. Their main advantage is that they are able to find

* This work has been carried out partially at University College London and at
Link6ping university under the DIPLECS project.
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the optimum value without the need for good initialisation, but on the other
hand require considerable parameter adjustment, which in some cases is not an
intuitive or straightforward process. In addition they tend to be slow, since they
require a higher number of function evaluations (NFEs).

This paper is organised as follows: in section 2 we present a selection of
traditional local, algorithms, followed by the global approaches in section 3. In
section 4 we explain our test methodology on the different datasets, including
a set of 2-D test functions and real-image data of varying complexity. Section 5
includes an analysis of our experimental results for each algorithm, followed by
an introduction to hybrid optimisation. We conclude with section 6.

2 Local methods

We consider two local optimisation methods that are well known and used in
computer vision and many other scientific fields. These are the downhill simplex
and the pattern search methods. A simplex is a polytope of N + 1 vertices in NV
dimensions, which is allowed to take a series of steps, most notably the refiection,
where the vertex with the worst function value is projected through the opposite
face of the simplex to a hopefully better point. The simplex may also expand or
contract or change its direction by rotation when no more improvements can be
made. Simplex evaluations do not require calculation of function derivatives but
the simplex must be initalised with N + 1 points. This can be rather costly, but
it still remains a very good solution when we need something working quickly
for a problem with small computational overhead. We introduced two small yet
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Fig. 1. Common test scenarios: Simple scene with constant background (a), moderate
scene with background model available (b) and complex scene without background
model (c). Their respective translation error surfaces are shown in (d), (e) and (f).
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significant modifications to the basic algorithm [6], in order to deal with local
minima. The first was the ability for the simplex to restart by generating N
random unit vectors at distance A from the current minimum, whenever its
progress stalled. Furthermore, we gradually reduced the distance X\ based on the
number of function evaluations using a “cooling” schedule similar to Simulated
Annealing [10].

Pattern search algorithms [11] conduct a series of exploratory moves around
the current point, sampling the objective function in search of a new point (¢rial
point) with a lower function value. The set of neighbourhood points sampled at
every iteration is called a mesh, which is formed by adding the current point to
a scalar multiple of a fixed set of vectors called the pattern and which itself is
independent of the objective function. If the algorithm finds a new point in the
mesh that has a lower function value than the current point, then the new point
becomes the current point at the next step of the algorithm.

3 Global methods

In this section we introduce certain novel optimisation methods, specifically dif-
ferential evolution and SOMA, together with a more traditional, generic Genetic
Algorithm. Our aim is to determine whether or not stochastic, global algorithms
are more effective in overcoming the typical convergence shortcomings associated
with the aforementioned local methods, but also if these two new approaches are
better suited than traditional genetic algorithms to computer vision problems.

A genetic algorithm (GA) [12] belongs to a particular class of optimisation
methods based on the principles of evolutionary biology. Almost all GAs follow
the basic stages of: initialisation, selection, reproduction (crossover, mutation)
and termination. GAs have been applied to the solution of a variety of problems
in computer vision, such as feature selection [13], face detection [14] and object
recognition [15]. Additionally, they have been shown [16] to perform well in
problems involving large search spaces due to their ability in locating good-
enough solutions very early in the optimisation process.

Differential evolution (DE) [17] is an evolutionary population-based optimi-
sation algorithm that is capable of handling non-differentiable, nonlinear and
multi-modal objective functions, with any mixture of discrete, integer and con-
tinuous parameters. DE works by adding the weighted difference between two
randomly chosen population vectors to a third vector and the fitness result is

l [Simplex [P. Search [GA [DE [SOMA ‘
Sphere 26, 3.09E-5 [81, 0 4600, 1.62E-5 [1600, 6.44E-5 [1302, 9.5E-5
Rosenbrock |70, 8.09E-5 |89, 0 10%, 1.1E-2  [2800, 6.59E-5 |10%, 1.34E-2
Griewank’s [10%, 7.93E-3][10%, 7.39E-3(8300, 4.85E-5/2100, 9.24E-5(10%, 7.4E-3
Rastrigin’s |516, 2.28E-5|81, 0 10%, 6.45E-4 [2300, 9.92E-5 |4570, 1.57E-5
Camel-back|30, 3.0E-5 |169, 3.0E-5 |10%, 4.9E-4  [1900, 1.0E-4 [2651, 0

Table 1. Comparative results from the 2-D test functions using all the algorithms.
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compared with an individual from the current population. In this way, no sep-
arate probability distribution is required for the perturbation step and DE is
completely self-organising. DE has been used successfully in a variety of engi-
neering tasks.

Finally, we examine the Self-Organizing Migrating Algorithm or SOMA, a
stochastic optimization algorithm that is modelled on the social behaviour of
co-operating intelligent individuals and was chosen because of its proven ability
to converge towards the global optimum [18]. SOMA maintains a population of
candidate solutions. In every iteration, the whole population is evaluated and
the individual with the highest fitness (or lower error value) is designated as
the leader. The remaining individuals will “migrate” towards the leader, that is,
travel in the solution space at the direction of the fittest individual.

4 Experimental domain

Our task now is to compare these different strategies against a set of 2-D, analytic
functions and real-image data. The aim is to determine the general properties
of each of the optimisation algorithms and understand some details about their
parameter settings. We may then use this information and apply the same al-
gorithms in a template matching problem and see how they compare in more
realistic circumstances.

4.1 2-D test functions

These functions are designed to test against universal properties of optimisation
algorithms and give us an overall understanding of each method’s strengths
and weaknesses and possible parameter choices, before moving on to template
matching specific datasets and experimentation. The original inspiration was
the work of [19], but with a few modifications, which include: the sphere model,
f(z;) = 22, a smooth, unimodal, symmetric, convex function used to measure
the general efficiency of an optimisation algorithm.

Rosenbrock’s function, f(z;) = Y[(1 — 2;)? + 100(x;11 — 2?)?], which has
a single global minimum inside a long, parabolic-shaped flat valley. Algorithms
that are not able to discover good directions underperform in this problem by
oscillating around the minimum.

The siz-hump camel-back function, f(z,y) = (4—2.12% + x—;)xz +ay+(—4+
49%)y? which has a wide and approximately flat plateau and a number of local
minima. In addition, it has two, equally important global minima. Unless an
algorithm is equipped to handle variable step sizes, then it is likely to get stuck
in one of the flat regions.

Rastrigin’s function f(z;) = 10n + Y (#? — 10cos(27z;)) and the slightly

2
more difficult Griewank’s function f(x) = Y 565 — HCOS(\%) + 1. Both have
a cosine modulation part that simulates the effects of noise (multiple modes),
and are designed to test whether an algorithm can consistently jump out of local

minima.
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4.2 Real-image template matching

In this section we propose more detailed experiments relevant to computer vision
by examining deformable template matching, since it is a generic scenario that
might be applied to many different areas in the field. Template matching can
be expressed as the task of searching for the parameters £ of a transformation
T that will bring the model template F{y into agreement with an image I. The
transformation T, for 2-D problems, is usually an affine transformation with 6
parameters. In mathematical terms this is defined as a minimisation problem:

mEinSZ Zx,yg(l(xvy)aTFO(xvy))v (1)

where g(.,.) is some dissimilarity metric and the sum is over all the features
in the template, in this case pixels. When ¢ is chosen as the sum of squared
differences (SSD) dissimilarity metric, (1) produces specific error surfaces which
have been examined in previous work by [20] with well known properties. For
ease of analysis and visualisation we consider the transformation parameters as
independent with the following parameterisation: 7' = SRU, + D, that is a 2-D
translation D, anisotropic scaling S and 1-D rotation R and shear U,.

Of particular interest to us is the translation transform, because it contains
the majority of problems for optimisation algorithms. This is due to the fact
that, in general, a change in translation will move the model away from the
object and on to the background region where unknown data and thus more
noisy peaks in the error surface exist. Furthermore, the translation surface may
vary depending on the type of template model F;; and scene image I we use. For
example, if we consider the object of interest in front of a constant background
(see Fig. 1(a)), then the translation space (assuming all other transformation
parameters are optimally set) is a simple convex surface (Fig. 1(d)). This is
considered to be a relatively easy scenario of a computer vision optimisation
problem and it is mostly encountered in controlled environments (e.g. assembly
line visual inspection, medical image registration and so on).

A second possibility, is for the scene image I background to be substantially
more complex (see Fig. 1(b)) with non-trivial structure and noise existent. In
this case, our template model F;; may be more elaborate also, composed of a full
foreground and background model. As such, we either have to know what the
background is [21], build a very simple model [20], or have a statistical model
of what it is expected to be like [22]. The result will be a translation error sur-
face as in (Fig. 1(e)), which constitutes a moderate optimisation problem, with
most global algorithms and a number of local methods under good initialisation,
expected to converge to the correct minimum.

Finally, we have the hardest case, where considerable structure and noise exist
in the scene image background, but a model of the latter is not available (see Fig.
1(c)). The optimisation difficulty in this scenario is apparent in the complexity of
the produced 2-D translation error surface (Fig. 1(f)), and all local optimisation
methods not initialised in close proximity to the global minimum are expected
to fail, while most global methods will converge with great difficulty and after
many iterations.
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Regarding the remaining error spaces, we would like to draw attention to
the irregularities of the 2-D scale space previously examined in [23]. Finally,
the rotation and shear spaces can be easily minimised, even though for the
rotation space there may be a number of local minima at angle intervals of
+7/2, depending on the rotation symmetrical properties of the object.

5 Experiments: methods and results

We now present the experimental methods for each dataset, the algorithm con-
figurations and the comparative results from which we aim to draw certain con-
clusions about the fitness and efficiency of each strategy in relation to the typical
computer vision scenario.

5.1 Set 1: 2-D test functions

We used the total NFEs as a general and independent, quantitative measurement
for comparing different algorithms. Convergence was defined as a recovered error
minimum no greater than 7 = 10~ of the known global solution, and inside the
allocated optimisation budget (1000 NFEs for local methods and 10000 NFEs for
global methods). Additionally, we tried to use similar initialisation criteria for
every method, in order to make intra-category comparison easier. For stochastic
approaches, we carried out 5 test runs per function and averaged the results.

The initialisation settings for each method where: Simplex initial triangle
[(5,5),(5,0),(-5,-5)]; Pattern Search starting point (4,5) and polling of the mesh
points at each iteration using the positivebasis2N [11] method; GA population
generated from U([-5,5]) and using a stochastic uniform selection and scattered
cross-over reproduction functions [12]; DE population limit=100, maximum it-
erations=100, F=0.8, and CR=0.5 [17]. The BestlBin strategy was also cho-
sen and the algorithm was initialised inside the soft boundaries [-5,5]; Finally,
for SOMA step=0.11, pathLength=2, prt=0.1, migrations=50 and population-
size=10, which approximates to 10000NFEs. The best strategy, was the all-to-
one randomly [18] and the algorithm was initialised inside the hard boundary
[-5,5]. The combined output for all methods is shown in Table 1. The first num-
ber in each column corresponds to the average NFEs for this method, while the
second is the absolute difference between the global and recovered minima. The
bold figures represent the best performing algorithm for each function.

As we can see, the Simplex performs rather well with very low required
NFEs. It can also cope well with flat region uncertainties due to its expand-
ing/contracting nature, and negotiate moderately noisy surfaces (Rastrigin’s)
albeit with a high NFEs. This is not the case however when numerous local min-
ima exist (Griewank’s) even if the available NFEs are increased. The pattern
search method requires more NFEs than the Simplex indicating that it is not so
efficient nor can it discover good directions. It did however find the exact loca-
tion of the global minimum in most cases and managed to deal with moderate
noise much more efficiently than the Simplex. Regarding flat regions, its fixed
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mesh expansion and contraction factors were not very adequate in cases where
there was no information about the current function estimate. The GA is the
worst algorithm and fails to converge below the 10~* threshold for NFEs=10000.
Nevertheless, it can cope well with noise the majority of times and thus it is best
suited for difficult problems with inexpensive function cost where a high NFEs
would be justified. DE is the best across most functions and is generally more
efficient than both GA and SOMA. It does also succeed in solving Griewank’s
function (80% of times), which as we have already seen is particularly problem-
atic for all optimisaiton algorithms so far. Finally, SOMA performs somewhere
between GA and DE, is quite efficient for simple test functions and can deal
with a moderate amount of noise (not Griewank’s function though), also allow-
ing for flat surface uncertainty with a varying step length when improvement
stalls. However, it is not good in determining good search directions since it was
not able to converge in the Rosenbrock’s function, although it did come close.

What these tests have demonstrated is that the reducing-step restarting Sim-
plex and the DE algorithms were the best performing from the local and global
methods respectively. Before we can draw any broader conclusions however, we
need to perform more rigorous tests on real-image data.

5.2 Set 2: Real-image template matching

We shall further analyse the fitness of each of the examined optimisation algo-
rithms by performing more detailed tests with the 3 real-image datasets previ-
ously seen (easy, moderate and hard) using the objective function in (1). We
define convergence in this context as the ability to recover a model configuration
within some Euclidean distance threshold from the known optimum. We could
have also used the minimum value of (1) to determine convergence, but in this
case and especially when using a SSD dissimilarity metric, it is quite possible to
find an invalid model configuration with an error value that is lower or equal to
the global minimum, as discussed in [23]. As such, the threshold boundaries were
defined as follows: translation t,,¢, = 5, scale sg,s, = 0.1, rotation § = 100,
and shear ¢ = 5°. Any configuration within these limits from the known global

| [ [Simplex[P. Search| GA | DE [SOMA]

Convergence % 2 12 0 100 100
Dataset 1| NFEs 1060 476 - 3915 | 2551
Minimum 2.945 1.365 - 0.3213] 0.3265
Convergence % 2 3 11 96 61
Dataset 2|NFEs 476 0* 446 889 1416
Minimum 0.09 0.0915 |0.08815(0.0799| 0.0865
Convergence % 1 4 63 61 97
Dataset 3|NFEs 1194 862 4603 | 11483 | 4070
Minimum 0.03806| 0.0389 |0.0273]0.0301 |0.0252

Table 2. Comparative results from the 3 datasets using all the algorithms.
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minimum will be considered a valid solution and convergence will be deemed as
successful. The same values have been used across all the 3 datasets. We can
now define a number of quantitative measures such as the global minimum of a
converged test run; the time to convergence, that is how many iterations before
the optimisation reached the convergence thresholds and the convergence per-
centage, that is the number of times the optimisation converged inside the set
threshold.

In all the following tests, we used a maximum of 2000 and 20000 NFEs for
the local and global optimisation methods respectively, and each method was
allowed to perform 100 separate tests, the results of which were averaged. None
of the algorithms was initialised close to the ground truth solution, but instead
and in order to eliminate any bias, they were started randomly within the 6 co-
efficient domains. In more detail, we used the following settings for each method:
Simplex algorithm with random initial 7x6 simplex within the boundaries [1-
50, 1-50, 0.5-1, 0.5-1, 1-20, 1-20], step size A=[20, 20, 2, 2, 50, 20] and cooling
rate r=0.9; Pattern search initial randomly generated population in the range
[0-100, 0-100, 0.5-1.5, 0.5-1.5, 0-50, 0-10]. Poll method = positive Basis2N, initial
mesh size=30, rotate and scale mesh, expansion factor=2 and contraction fac-
tor=0.5; GA 200 generations and 100 populations. Initial population function
U([0—100], [0—100], [0—1],[0—1],[0—=50], [0 —10]); DE populations=100, max-
imum iterations=200, F=0.8, CR=0.5, strategy=Best1Bin. Soft boundaries=[1-
100, 1-100, 0.5-2, 0.5-2, 0-100, 0-50]. Finally SOMA step=0.5, pathLength=1.5,
prt=0.1, migrations=100, popsize=50. Hard boundaries=[1-100, 1-100, 0.5-2,
0.5-2, (-180)-180, (-50)-50]. These settings were kept fixed throughout all the
datasets.

Dataset 1 - MRI image: The first test data consist of an MRI scan of
a human brain in front of a black background (Fig. 1(a)). A template of the
object was subjected to a 2-D affine transform with: (¢,,t,) = 65, 68; (s4,8,) =
0.925,1.078; 8 = —25 and ¢ = —5.5826. The SSD error between the optimal
template and the scene, including minor interpolation and approximation errors,
is 6.6689. After 100 experimental runs with each algorithm, we obtained the
results in rows 2-4 of Table 2.

It is clear that both DE and SOMA have the best performance, with all
their test runs converging inside the threshold. DE uses only about 20% of its
optimisation budget to achieve convergence on average, but SOMA is the clear
winner with approximately 1400 less NFEs required for comparable results. Next
we have the genetic algorithm which very suprisingly did not manage to converge

Dataset 1 Dataset 2 Dataset 3
Convergence % (+%) 86% (-14%)  |41% (-33%) 81% (-16.5%)
Hybrid SSD @ 6000 NFEs (+%) |0.4275 (-65%) [0.0868 (-24%) ]0.02661 (-22%)
SOMA SSD @ 6000 NFEs 1.215 0.1138 0.03419
SOMA SSD @ 20000 NFEs (£%)[0.3265 (—73%)|0.08659 (—24%)|0.02523 (—26%)

Table 3. The results of the hybrid and SOMA tests at 6000 and 20000 NFEs.
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in any of the 100 tests but instead converged inside one of the many pronounced
local minima of the rotation parameter 6 (due to the symmetry of the human
brain scan), while having successfully identified the other parameters.

From the local methods, due to the absence of good initialisation, we ex-
pect much lower convergence rates than the global methods. Compared between
themselves, the pattern search search can converge many more times and at
around half the NFEs than the simplex requires.

Dataset 2 - CMU PIE data: The second installment of tests was carried
out in a real image sample (see Fig. 1(b)) from the CMU PIE database [21],
with a complex background but which is given as a separate image. This is
a more difficult scenario than previously and we expect a lower convergence
rate across all the methods. In this occasion, the ground truth is located at
[82,52,1.0786,1.1475,10°, —4.8991°] with an SSD error of 0.1885. After 100 test
runs for each optimisation algorithm, we obtain the results in rows 5-7 of Table
2. As expected, we see an overall drop in the recognition results with DE being
the best performing method, while at the same time displaying convergence
behaviour reminiscent of a local method; that is, converging in under 900 NFEs.
The rest of the algorithms perform rather poorly, with SOMA at 61% and GA
at a much lower 11%. Furthermore, all methods find a good minimum at <0.1,
which is lower than the known solution, since they can effectively overcome any
inherent interpolation and approximation errors. We also note that in the case
of the pattern search algorithm, the only 3 cases that succeeded in converging
correctly, were the ones that randomly initialised inside the basin of attraction.

Dataset 3 - Real image data without a background model: Finally
we arrive to the hardest case; A real image with a complex background, but
without any model of the latter (see Fig. 1(c) and (f)). Due to the increased
difficulty associated with this particular dataset, it is expected that the overall
optimisation performance will be further reduced. The optimal SSD solution
in this case is [106,59,0.9048,1.0444,12.02°,0°] = 0.0488. If we use the same
optimisation settings as we did previously, we get the following results after 100
test runs (Table 2 rows 8-10). SOMA performs very well with a 97% convergence
ratio, with the GA coming second at 63% and DE not particularly efficient at
61%. We also see that it takes DE many more iterations in order to converge,
whereas SOMA and GA on average reach the global minimum around 2.5 times
faster. Despite that, all the global methods reached approximately the same
minimum error. Both the local methods managed to converge fast and towards
a very good solution but for only a limited number of cases, most probably due
to the absence of good starting points.

In conclusion we may say that both DE and SOMA perform consistently
well in all the 3 cases, with an expected performance penalty associated with
the increased difficulty of each dataset, and both reach approximately the same
minimum at the end of their allocated time budget. Where they differ however,
is in the time they require for initial convergence, with SOMA being the clear
winner since it manages to approximate the correct solution much earlier than
DE. This makes SOMA ideal for the hybrid approach later on. As far as the GA
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is concerned, we have seen that it can reach an equally good minimum error,
just like SOMA and DE, when and if it converges successfully. Nevertheless, it
has the tendency to get stuck in pronounced local minima in all but the simplest
datasets, which consequently reduces its effectiveness on template matching-
based object recognition. The two local methods, simplex and pattern search,
can converge very fast and nearly at the same minimum whenever they can reach
its proximity. We can therefore use either one for the hybrid approach next.

5.3 Hybrid approach

The hybrid approach is essentially the combination of a global, stochastic algo-
rithm (in this case SOMA) designed to get us close to the basin of attraction
as early as possible from a random, distant location on the error surface, and
a local method (Simplex), whose purpose is to rapidly refine the good recov-
ered solution, much faster and more efficiently than the global method alone
can. The only additional issue with using a hybrid method, is how to determine
when is the best time to switch between methods. One possibility, is to use a
number of concurrent criteria to decide when we are close to the switch point.
The first such criterion, could be a proximity threshold such as the Euclidean
distance previously used to determine convergence. Another could be the ob-
served relative gain of each successful iteration. When the gain is below some
predetermined value, we can assume that the global algorithm has near-stalled
and switch to the local method. Finally, a third criterion might be the relative
change of each parameter at every iteration. Alternatively, we may opt to use a
fixed NFE-related threshold, based on the information we have about the opti-
misation behaviour of SOMA. If for example we revisit Table 2 we can see that
on average and across all 3 datasets, SOMA requires between 1500-4000 NFEs
to reach the minimum error threshold. We can therefore use this prior knowledge
and set SOMA to run at a fixed number of 4000 NFEs. Such a number will most
likely ensure that the simplex switch is performed when we are near the solution.

The only settings that we altered since the previous test runs are: SOMA
migrations=20, popsize=50 ~ 4000 NFEs; Simplex 2000 NFEs, initial 7x6
simplex that includes as a vertex V; the optimum recovered solution from the

Hybrid vs SOMA converged test runs - Dataset 1 Hybrid vs SOMA converged test runs - Dataset 2 Hybrid vs SOMA converged test runs — Dataset 3
0. 0.

-~ -SOMA -~ -SOMA -~ -SOMA
—— Hybrid SOMA part —— Hybrid SOMA part
Hybrid Simplex part Hybrid Simplex part|

—— Hybrid SOMA part
Hybrid Simplex part

SSD error
SSD error

15 2 0 05 1 15 2

Fig. 2. Plots comparing the hybrid approach and the SOMA method for the 3 datasets.
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SOMA run and 6 random vertices Vo_7 generated at a distance d=[5,5,0.1,10,5]
from V;. Note, this is the Euclidean distance threshold from earlier. We carried
out 100 test runs of the hybrid method for each of the 3 datasets and we present
the results on Table 3. The second row shows the convergence rate of the hybrid
method. The percentage differences (+%) in this row are in relation to the
original SOMA results (column 7 of Table 2). The next two rows show the
average SSD error of the 100 hybrid runs and the original 100 SOMA runs at
6000 NFEs. The percentage differences of row 3 are in relation to the results in
row 4. Finally, the last row shows the average SSD error of the original 100 SOMA
runs at the maximum 20000 NFEs, with a percentage difference in relation to the
results in row 4. We see that the convergence ratio of the hybrid, is only around
15-30% lower than the original tests, but the error is between 20-65% lower than
the SOMA-only approach for the same NFEs. In fact, the error values are quite
close to the original recovered minima using the full 20000 NFEs. This can also
be seen in the iteration plots in Fig. 2, where we can observe the secondary drop
of the local method, which always manages to refine the optimisation further
(i.e. there is no stall at the switch point), indicating that on average we have
chosen good switch points and that the local method can converge faster that
the global method for the same number of iterations.

We may therefore say that by using a hybrid approach, it is possible to
obtain results that are very close to a global algorithm-only solution, but at
a considerably reduced NFEs cost. In that sense, a hybrid optimiser might be
useful in situations where we are faced with a costly objective function but a
good initialisation for a local-only method is not available. With the application
of the hybrid method we may still use a global algorithm for initialisation, while
avoiding the increased NFEs overhead.

6 Conclusion

In this paper we have examined the suitability of a number of different optimi-
sation methods (both novel and traditional) for the task of template matching.
We have tested against a series of 2-D, analytic functions designed to highlight
the generic properties of each optimisation method, followed by three realistic
datasets of progressive difficulty, commonly encountered in computer vision. Our
results show that the novel methods outperform the traditional approaches in
all cases, and we hope that this work serves as a first step into introducing
these novel methods to the computer vision community and establishing them
as better alternatives to the methods currently being used. Finally we argue
that a hybrid combination of a global and local methods can produce equally
good results in a fraction of the time required by a global method alone. We
demonstrate this to some degree, with a number of additional experiments.
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