API for C Implementation of Blob Detection
Algorithm

Per-FErik Forssén
Computer Vision Laboratory, Department of Electrical Engineering

Link6ping University, SE-581 83 Link&ping, Sweden

April 16, 2004

1 Introduction

This document is a documentation of the C implementation of a blob detection algorithm
described in chapter 7 of [1].

All source code files in the package are listed in section 2. For all . c-source files (except
the application program) there is also a corresponding .h file, which should be include-d
by the application using the methods in this file.

The implementation contains the example application blobdemo_ppm, which reads an
RGB image in PPM format, and writes a new PPM file with the found blobs painted on
a green background.

The perhaps most interesting function is the function extract_blobs contained in file
extract_blobs.c. Its arguments are described in table 7. Basically it takes a pointer to
an image, and some algorithm parameters as input, and outputs detected blobs in three
lists of blob properties.

If you find this document too brief, please have a look at the example program
blobdemo_ppm.c in section 3, for an example of how to use the API.

2 List of Files
e blobdemo _ppm.c

This is the application program. It is listed in section 3 .

Usage: blobdemo_ppm <image.ppm> <blobs.ppm> [<regions.ppm>] [<dmax>]
The program reads an RGB image in the PPM format and outputs a new PPM-file
with the found blobs painted on a green background. The optional out argument
regions.ppm is a visualisation of the regions used to compute the blobs. The
optional parameter dmax controls the colour sensitivity. Default is dmax=0. 16.

e extract_blobs.c
This file contains methods that encapsulate much of the details in blob extraction.
See tables 6 and 7 for a list of methods.

file and time.c
This file contains routines for managing file IO, and execution timers. See table 8
for a list of methods.

image buffer.c

Methods for buffer and ibuffer data types. A buffer or an ibuffer is a container
for a 3D array, typically an image.

For easy switching between double and float precision of floating point numbers,
the data type fpnum is declared as either double or float in image buffer.h. On
a 64-bit architecture, the double option is actually faster.

Fields and methods of the buffer data type are listed in tables 1 and 2.

Fields and methods of the ibuffer data type are listed in tables 3 and 4.

merge _blobs.c
Methods to merge and clean up a list of blobs. See table 9.

pnmio.cC
This file contains a set of functions for reading and writing pnm file headers. Table
5 lists the methods. The actual data in the file should be read or written using an
fread call. See the file file_and_time.c for an example of how to use the methods
in pnmio.c.

region_image.c
Methods to build a region image, and to compute moments from the region image.
See table 10.

sbinfilt.c

This file implements the non-linear filter that is used to build the clustering pyramid.
The methods are listed in table 11. See [1] for details of the algorithm.

visualise.c
This file contains routines for blob visualisation. I.e. the code that generates an
image with ellipses representing the blobs. See table 12 for a list of methods.

Field | Type | Description

rows | int Number of rows in array

cols | int Number of columns in array

ndim | int Number of fields in array, e.g. 3 for an RGB image
data | fpnum | Pointer to floating point data.

Table 1: The buffer data type

Method | Return type | Argument description
buffer new | buffer int rows, int cols, int ndims: These define
the size of the buffer to allocate.
buffer pdims buffer bf: The buffer to print dimension info of
to stdout.
buffer free buffer bf: A buffer to be released.

Table 2: Methods for the buffer data type

Field | Type | Description

rows | int | Number of rows in array

cols | int | Number of columns in array

ndim | int | Number of fields in array, e.g. 3 for an RGB image
data | int Pointer to integer data.

Table 3: The ibuffer data type

Method | Return type | Argument description
ibuffer new | buffer int rows, int cols, int ndims: These define
the size of the ibuffer to allocate.
ibuffer pdims ibuffer bf: The ibuffer to print dimension info
of to stdout.
ibuffer free ibuffer bf: An ibuffer to be released.

Table 4: Methods for the ibuffer data type

Method | Return type | Argument list

pnm_readhead char #*name Filename

int *format Location to store image type tag
int *height Location to store image height
int *width Location to store image width

pnm_writehead | FILE * char *name Filename

int format Tag for desired format
int height Height of image

int width Width of image

pnm_close FILE *xf Handle of file to close

Table 5: Methods in the pnmio.c file

Method

Argument list

number_of_scales

Return type
int

Calculate number of scales required to build an
octave pyramid of an image.
buffer *bf_image Input image

imk pyramid new

buffer *x

Create a pyramid and insert input image at scale
0.
buffer *bf_image Input image

imc_pyramid new

ibuffer *x

Create a certainty pyramid and insert input cer-
tainty at scale 0.
ibuffer *bf_imc Input certainty image

set_to_ones

Set an ibuffer to all ones. The input is assumed
to be of size M x N x 1.
ibuffer *bf_image The input array.

sbinfilt_pyramid

Generate a clustering pyramid by successive filter-
ing of bl_imk and bl_imc.

buffer *xbl_imk Image pyramid

ibuffer *xbl_imc Certainty pyramid

int nsc Number of scales

fpnum dmax Maximum allowed property distance
fpnum cmin Weighted fraction of pixels reqired for
c=1.

int roi_side2 —2x2,4—4x4,6 —>6x%x6...
int miter Number of M-estimation steps to fol-
low.

make_label_image

Generate a label image from a clustering pyramid.
buffer **bl_result List of 4 result arrays
buffer *xbl_imk Input image pyramid

ibuffer *xbl_imc Input certainty pyramid

int nsc Number of scales

int lowsc Scale to stop assigning new labels at
fpnum dmax Maximum allowed property distance

merge_and_cleanup

Merge blobs and clean up blob list.

buffer **bl_result List of 4 result arrays
buffer *bf mvecl Moment vector list

buffer *bf _pvecl Property vector list

ibuffer *bf_cscl Detection scales

ibuffer *bf_cntl Overlap count list

fpnum minc Merger threshold

int amin Minimum required area

fpnum dmax Maximum allowed property distance

Table 6: Methods in extract_blobs.c part 1.

Method

Return type

Argument list

extract_blobs

Method

Encapsulated blob feature extraction algorithm.
buffer *bf_image Input image

ibuffer *bf _cert Input certainty

buffer *xbl_lout List of 4 result arrays

fpnum dmax Maximum allowed property distance
fpnum cmin Weighted fraction of pixels reqired for
c=1.

int roi side2 —2x%x2,4—4x4,6 —6X%X6...
int miter Number of M-estimation steps to fol-
low.

int lowsc Scale to stop assigning new labels at
fpnum minc Merger threshold

int amin Minimum required area

Table 7: Methods in extract_blobs.c part 2.

Return type

Argument list

write_time_diff

Write difference between two clock_t structs to
standard output.

char *strg Message preceeding time text
clock_t tO Start time

clock_t t1 End time

read_pnm file

Read a file from disk using PNMIO. See also file
pnmio.c

char *fname Name of file to read

char *pname Name of program (for error message)
buffer *xbf_image Place to store resultant image
buffer

int ssfl Subsample image if non-zero

dump_to_file

Dump a buffer to file in ascii form suitable to be
read as an .m file in MATLAB.

FILE *out_fid open file stream

char *vname string containing variable name
buffer *bf _var array holding data

idump_to_file

Dump an ibuffer to file in ascii form suitable to
be read as an .m file in MATLAB.

FILE *out_fid open file stream

char *vname string containing variable name
ibuffer *bf_var array holding data

Table 8 Methods in file_and_time.c

Method

Return type

Argument list

merge_blobs

This method merges two blobs

fpnum *mvecl Moment vector for blob 1
fpnum *mvec2 Moment vector for blob 2
fpnum *mvecn Output moment vector
fpnum *pvecl Property vector for blob 1
fpnum *pvec2 Property vector for blob 2
fpnum *pvecn Output property vector
int ndim Number of property dimensions

bloblist merge_cnt

int

Old merge function. Returns number of merged
regions

buffer *bf_mvecO Input moment vectors
buffer *bf_pvecO Input property vectors
buffer *bf mvecn Output moment vectors
buffer *bf _pvecn Output property vectors
ibuffer *bf_out_ind Index pointer list

ibuffer *bf_cntl Overlap count list

fpnum minc Merger threshold

bloblist merge cnt2

int

New merge function. More expensive, but better.
Returns number of merged regions

buffer *bf mvecO Input moment vectors
buffer *bf _pvecO Input property vectors
buffer *bf mvecn Output moment vectors
buffer *bf_pvecn Output property vectors
ibuffer *bf_out_ind Index pointer list

ibuffer *bf_cntl Overlap count list

fpnum minc Merger threshold

fpnum dmax2 Squared max property distance

bloblist mark_invalid

int

Discard blobs with detI < 0 or a < @i, by set-
ting their area to zero, and out_ind [k]=0
buffer *bf mvec Moment vectors

ibuffer *bf_out_ind Array of index pointers
int amin Minimum required area

bloblist_compact

Remove holes in bloblists after
bloblist_merge_cnt

buffer *bf mvecn Input moment vectors

buffer *bf_pvecn Input property vectors
ibuffer *bf_cscn Input detection scales

buffer *bf mvecm Output moment vectors
buffer *bf _pvecm Output property vectors
ibuffer *bf_cscm Output detection scales
ibuffer *bf_out_ind Index pointer list

Table 9: Methods in merge_blobs.c

Method

Return type

Argument list

propagate_regions

int

ibuffer bf labeliml Input label image (Y x X)
ibuffer bf_labelim2 Output label image

(Y x X)

buffer bf_imk Property image (Y x X x D)
ibuffer bf_imc Confidence image (Y x X)
buffer bf pvec Prototype list (D x N)

fpnum dmax2 Squared max property distance
Returns number of new seeds (for later allocation
by find new_seeds)

find new_seeds

ibuffer *bf labelimil Input label image (Y x X)
buffer *bf_imk Property image (Y x X x D)
ibuffer *bf_imc Confidence image (Y x X)
buffer *bf _pvecl Input prototype list (D x N)
buffer *bf pvec2 Output prototype list

(D X Nyew)

int regions Length of pvecl

int new_seeds Number of new seeds (as found by
propagate regions)

propagate_regions_cnt

ibuffer *bf labeliml Input label image
(Y/2 x X/2)

ibuffer *bf_labelim2 Output label image
(Y x X)

buffer *bf_imk Property image (Y x X x D)
ibuffer *bf_imc Confidence image (Y x X)
buffer *bf _pvec Prototype list (D x N)
ibuffer *bf_cntl Boundary count list

fpnum dmax2 Squared max property distance

compute_moments

ibuffer *bf labelim Label image (Y x X)
buffer *bf_image RGB image (Y x X x D)
buffer *bf _pvec Output property averages
buffer *bf_mvec Output moments

labelim_compact

Loop over label image and replace old labels
with new that are compatible with bf mvec and
bf _pvec lists.

ibuffer *bf labelim Label image to modify
(Y x X)

ibuffer *bf_out_ind Compaction list (1 x V)

Table 10: Methods in region_image.c

Method | Return type

Argumentlist

binfilt2d

sbinfilt2d

Method

int *

int order Allocates space and returns an array
containing an outer product of two binomial filters
of given order.

buffer *bf im0 Input image buffer

ibuffer *bf_icO Input confidence map

buffer *bf_iml Location of result image
ibuffer *bf_icl Location of result confidence
fpnum dmax2 Squared max property (colour) dis-
tance

fpnum cmin Weighted fraction of pixels reqired for
c=1

int roi_side2 —2x2,4—4x4,6 —>6x%x6...
int miter Number of M-estimation steps to fol-
low.

Table 11: Methods in sbinfilt.c

Return type

Argument list

buffer_paint

eigendec

draw_ellipses

draw_regions

Fill an image buffer with a given colour.

buffer *bf Buffer to paint in

fpnum *pvec Property vector (i.e. colour)
Decompose a symmetric positive semidefinite 2 x 2
matrix into its eigensystem

fpnum *I Input inertia matrix elements stacked
row-wise

fpnum *D Eigenvalue list

fpnum *E Eigenvector matrix elements stacked
column-wise

Paint a list of blobs as ellipses, sorted with the
smallest ellipse on top.

buffer *bf_img Background image to paint in
buffer *bf mvec Moment vector list

buffer *bf_pvec Property vector list

Paint regions with their average colours.

buffer *bf_img Background image to paint in
ibuffer *bf _labelim Region label image
buffer *bf_pvec Property vector list

Table 12: Methods in visualise.c.

3 Example application

/*

¥ File: blobdemo_ppm.c

x% Usage: blobdemo_ppm <infile.ppm> <outfile.ppm> [<dmax>]
*x% (c) April 2004 Per-Erik Forssen

*/

int main(int argc,char *argv([]) {

fpnum pvec_green[] = {0.0,1.0,0.0}; /* Background colour */
buffer *bf_image,*bf_mvec,*bf_pvec,*bf_blobimage,*bf_rimage;
buffer **xbl_lout;

ibuffer *bf_cert,*xbf_csc,*bf_labelim;

int regionfl=0;

fpnum testnum;

/* Parameters for the algorithm */

fpnum dmax=0.16; /* Maximum colour distance */

fpnum cmin=0.5; /* Area threshold for pyramid generation */

fpnum minc=0.5; /* Merger threshold */

int roi=0; /* Side of spatial window (or O for 12 pixel roi) */
int miter=5; /* Number of m-estimation steps */

int lowsc=2; /* Finest scale to detect blobs in */

int amin=20; /* Min required area */

int ssfl=0; /* Subsample image if set */

if ((arge<3) || (arge>5)) {
fprintf (stderr,"ERROR: At least two filenames should be supplied.\n");
fprintf (stderr,"Usage: %s <infile.ppm> <outfile.ppm> [<outfile2.ppm>] [<dmax>]\n",ar
exit(1);

}

if (arge==4) {
testnum=strtod(argv[3], (char **)NULL);
if (testnum>0) {
dmax=testnum; /* Third arg was dmax */
} else {
regionfl=1; /* Third arg was fname */
+
}

if (arge==5) {
regionfl=1; /% Third arg was fname */
dmax=strtod(argv[4], (char **)NULL);

read_pnm_file(argv[1],argv[0],&bf_image,ssfl);
/* Create certainty mask */
bf_cert=ibuffer_new(bf_image->rows,bf_image->cols,bf_image->ndim);

set_to_ones(bf_cert);

/* Allocate array of result pointers */
bl_lout=(buffer **)calloc(4,sizeof (buffer *));

/* Call the blob extraction function */
extract_blobs(bf_image,bf_cert,bl_lout,dmax,cmin,roi,miter,lowsc,minc,amin);

/* Extract results */

bf_mvec = bl_lout[0];
bf_pvec = bl_lout[1];
bf_csc = (ibuffer *)bl_lout[2];
bf_labelim = (ibuffer *)bl_lout[3];

/* Create an empty green image */
bf_blobimage = buffer_new(bf_image->rows,bf_image->cols,bf_image->ndim);
buffer_paint (bf_blobimage,pvec_green);

/* Visualise blobs in the green image */
draw_ellipses(bf_blobimage,bf_mvec,bf_pvec);

/* Store result as a file */
write_pnm_file(argv[2],argv[0],bf_blobimage);

if (regionfl) {
/* Create an empty green image */
bf_rimage = buffer_new(bf_image->rows,bf_image->cols,bf_image->ndim);
buffer_paint (bf_rimage,pvec_green);

/* Visualise regions in the green image */
draw_regions(bf_rimage,bf_labelim,bf_pvec);

/* Store result as a file */

write_pnm_file(argv[3],argv[0],bf_rimage);
buffer_free(bf_rimage) ;

/* Free memory */
free(bl_lout);

10

buffer_free(bf_image) ;
ibuffer_free(bf_cert);
buffer_free(bf_blobimage) ;
buffer_free(bf_mvec);
buffer_free(bf_pvec);
ibuffer_free(bf_csc);
ibuffer_free(bf_labelim);
return(0) ;

References
[1] Per-Erik Forssén. Low and Medium Level Vision using Channel Representations. PhD

thesis, Linkoping University, Sweden, SE-581 83 Linkoping, Sweden, March 2004.
Dissertation No 858, ISBN 91-7373-876-X.

11

