Attentional Masking for Pre-trained Deep Networks

IROS 2017

Marcus Wallenberg and Per-Erik Forssén
Computer Vision Laboratory
Department of Electrical Engineering
Linköping University
Attention for robots

A: SLP projector (unused)
B: RGB camera (unused)
C: NIR camera (unused)
D: Right wide-angle camera
E: Left wide-angle camera
F: SLP diffusor (unused)
Attention for robots

I. Robot demo

This clip shows our robot sequentially attending to four targets and recognizing them, using the proposed attentional masking to select the object of interest.
Attention for robots

Left camera

Right camera

• What is the robot looking at?
Attention for robots

• What is the robot looking at?
 This is an ill-posed classification problem.
 Attention is the missing constraint
Attentional masking

Image data

Attention mask

DNN

“bird”
Attentional masking

Image data

Attention mask

DNN

“motorbike”
Attentional masking

Image data

Attention mask

DNN

“car”
Attentional masking

Image data

Attention mask

DNN

“bottle”
Attentional masking

Image data

DNN

“bottle”

Attention mask

Also called region proposals
Attentional masking

• Q0: How can we apply attention in a CNN framework?

• A0: Select a region of interest bounding box (a rectangle)

• Then show the network only the bounding box contents

• Q1: Can we do better?
Classical classification network

- Input
- Fixed-size input
- Feature extractor
- Fixed-size feature map

Resampling

CNN

Feature map

Flattening

FC layers

“horse”

Classifier
Modified classification network

(Spatial pyramid pooling (SPP) He et al. ECCV14)

(Structure from Convolutional feature masking, Dai et al. CVPR'15)
Where to apply attentional modulation?

1. Input Masking
 - e.g. R-CNN
 - Girshik et al. CVPR14

2. Early masking
 - Walther et al. Neural Networks06

3. CFM
 - Dai et al. CVPR15

Feature map

Spatial pyramid pooling (SPP)
- He et al. ECCV14

Flattening

FC layers

“horse”
Input masking

- Mask: (Input, contour)
- Input: (No masking)
- Output: (Input, bounding box)
Mask and blend

(Walther & Koch, Neural Networks 2006)
Convolutional Feature Masking

Convolutional feature masking (CFM)

Spatial pyramid pooling (SPP)

Flattening

(J. Dai, K. He, and J. Sun, CVPR 2015)
Multi-layer, continuous valued masking (MC-CFM)

• Idea: Apply mask at all convolutional levels, and only to some degree, like Walther and Koch did:

\[R(x, y) = \mu R_M(x, y) + (1 - \mu) R_0(x, y) \]

• We now get another parameter \(\mu \), one for each layer in the network.
Training and Evaluation

• We want to decouple accuracy of attention masks from the performance of the masking procedures.

• For this reason we want to start with “perfect” masks that we can distort in a controlled way.
Mask perturbation

- To test sensitivity to mask errors, we grow and shrink the mask using the signed distance transform.

$t_d=0.75$
$t_d=1.0$
$t_d=1.25$
Training and Evaluation

• Main network is VGG-F (similar to AlexNet, 5 conv, 3 fc)
 Pre-trained on ImageNet

• A subset of 11 PASCAL-S classes with high co-occurrence are used:
 horse, cup, chair, dog, bird, tree, bottle, motorbike, bicycle, car and person

• Classification FC layers are trained on PASCAL-Context (excluding masks, and PASCAL-S)

• Mask blend weights are trained using NLSQ on top 1 % of co-occurrences (”crowded” scenes)

• Evaluation uses the remainder of PASCAL-S containing our classes.
Attentional masking under co-occurrence

Results on PASCAL-S dataset, co-occurrence
Attentional masking w/o co-occurrence

Results on PASCAL-S dataset, single object
Results on robot with co-occurrence
Summary

• The choice of attentional masking matters!

• By using multi-level masking we can reduce error rates substantially compared to using input masking

• On our robot 4% vs 17%

• On PASCAL-S 28% vs 35%