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Abstract

Epipolar geometry is the geometry situation of two
cameras depicting the same scene. For un-calibrated
cameras epipolar geometry is compactly described
by the fundamental matrix. Estimation of the fun-
damental matrix is trivial if we have a set of cor-
responding points in the two images. Correspond-
ing points are often found using e.g. the Harris in-
terest point detector, but there are several advan-
tages with using richer features instead. In this
paper we will use blob features. Blobs are homo-
geneous regions which are compactly described by
their colour, area, centroid and inertia matrix. Us-
ing blobs to establish correspondences is fast, and
the extra information besides position, allows us to
reject false matches more accurately.

1 Introduction

Epipolar geometry is the geometry situation of two
cameras depicting the same scene. For a thorough
description of epipolar geometry, see [3]. For un-
calibrated cameras epipolar geometry is compactly
described by the fundamental matrix F. A point
x =

(
x1 x2 1

)T in image 1, and the correspond-

ing point x′ =
(
x′

1 x′
2 1

)T in image 2 are related
through the fundamental matrix as

x
′T Fx = 0 . (1)

If we know F, we can search for points x′, corre-
sponding to x along its epipolar line l

x
′T l = 0 where l = Fx . (2)

Thus F can be used as a constraint on the cor-
respondences. Once we have a set of correspon-
dences, we can use triangulation [2] to compute
disparities. With more knowledge about the cam-
eras, we could then use these to compute distances
to objects.

Computation of the fundamental matrix is pos-
sible using point correspondences alone, provided

that not one of the following two degenerate cases
is present

1. all scene points lie on a plane

2. The camera motion between the two cameras
is a pure rotation.

Whenever either of these situations occur, F is not
well defined, and we must instead estimate a ho-
mography H, that relates corresponding points di-
rectly

hx′ = Hx and gx = H−1x′ . (3)

Most work on epipolar geometry has involved
correspondences between points, lines or conics [3],
but recently work has started on using richer fea-
tures, such as affine invariant features [4, 5].

2 Blobs

We will make use of blob features extracted using
a clustering pyramid built using robust estimation
in local image regions [1]. The current implemen-
tation processes 360 × 288 video frames at a rate
of 1 sec/frame on a Intel P3 CPU at 697 MHz,
and produces relatively robust and repeatable fea-
tures. Each extracted blob is represented by its
colour pk, area ak, centroid mk, and inertia ma-
trix Ik. I.e. each blob is a 4-tuple

Bk = 〈pk, ak,mk, Ik〉 .

Since an inertia matrix is symmetric, it has 3 de-
grees of freedom, and we have a total of 3 + 1 +
2 + 3 = 9 parameters for each blob.

The blob estimation has two main parameters:
a colour distance threshold dmax, and a propa-
gation threshold cmin for the clustering pyramid.
For all experiments in this paper we have used
dmax = 0.16 (RGB values in interval [0, 1]) and
cmin = 0.5.

The number of blobs in an image depends heav-
ily on image content, we typically get between 25
and 500 blobs in each image. Figure 1 shows an
example where 91 blobs have been found.



Figure 1: Detected blobs in an aerial image.

3 Colour constraint

We will use a voting scheme to find an initial set
of correspondences between the two images. A po-
tential correspondence Bi ↔ B′

j can quickly be dis-
carded by making use of the colour parameter of
the blobs. Thus we compute the colour distances
of all blobs in image 1 and all blobs in image 2,
and use them to define a correspondence matrix
M. We set Mij = 1 whenever ||pi − p′

j || < dmax

and 0 otherwise. Note that dmax is the same pa-
rameter as used in the blob estimation stage. If
this is the optimal choice is at present unclear,
but clearly the two should be related. Typically
M will have a density of about 15%, and thus this
simple operation does a good job at reducing the
correspondence search space.

4 Initial correspondences

Any pair of points in image 1 can be mapped to
any pair in image 2 using a similarity transform. In
homogeneous coordinates, a similarity transform
looks like this

x′ =
(

sR t
0 1

)
x . (4)

We now generate blob pairs in both images,
by joining together spatially adjacent blobs. Each
blob gets to form ordered pairs with its three near-
est neighbours. Thus, if we had N1 and N2 blobs
in the two images, we now have 3N1 and 3N2

blob pairs. We will now try to find correspon-
dences of such blob pairs, i.e. 〈Bi,Bk〉 ↔

〈B′
j ,B′

l

〉
.

For each such correspondence, we first check if the

colours match, using M (see section 3). This ex-
cludes most candidates. For the correspondences
that match, we then calculate the similarity map-
ping (4). We then project both blobs in the pair
through the mapping, and compute their shape
distance

dij =
||Ii − s2RI′jR

T ||
||Ii + s2RI′jR

T || . (5)

Both distances are summed and added in a new
correspondence matrix M̃ according to

M̃ij + e−(d2
ij+d2

kl)/σ2
s 7→ M̃ij (6)

M̃kl + e−(d2
ij+d2

kl)/σ2
s 7→ M̃kl (7)

where σs is a soft shape distance threshold.
This implements a soft voting scheme, where

very few constraints on the image structure have
been imposed. A set of potential candidate corre-
spondences Bi ↔ B′

j are now extracted from M̃ by
requiring that the position M̃ij should be a maxi-
mum along both row i and column j. The result of
this operation for a pair of aerial images is shown
in figure 2. Note that most correspondences are
correct, but that there are also a few outliers.

5 RANSAC outlier rejection

We now improve the quality of correspondences us-
ing outlier rejection with RANSAC [3]. We draw
a random subset of the correspondences (4 for ho-
mography estimation, and 8 for fundamental ma-
trix estimation), and estimate the applicable map-
ping (F or H). We then verify all correspondences
that are valid according to M (see section 3) with
respect to spatial projection error. For a homogra-
phy H, the spatial projection error is determined
by

Dij = ||mi − m̃j || + ||m̃i − mj || (8)

where

h

(
m̃i

1

)
= H

(
mi

1

)
, h

(
m̃j

1

)
= H−1

(
mj

1

)
.

(9)
For the fundamental matrix F the projection

error is the distance between each point and the
epipolar line l, generated by the corresponding point

Dij =
|m′T

i l′j |√
l
′2
j,1 + l

′2
j,2

+
|mT

j li|√
l2i,1 + l2i,2

. (10)

A correspondence is considered valid if the spa-
tial projection error Dij is a minimum along both
row i and column j in the projection error matrix



Figure 2: Raw correspondences found using vot-
ing.

D, and furthermore is smaller than some threshold
smax.

For each random subset of correspondences, we
use the number of correspondences as a measure of
how good the generated mapping was, and choose
the one with most correspondences as the correct
one.

The decision on how many random samples to
draw is made according to

N =
log(1 − m)

log(1 − (1 − ε)K)
(11)

where K is the number of samples needed for the
estimation of F or H, and m is the required proba-
bility of picking an inlier only sample (set to 0.99).
ε is the probability of picking an outlier correspon-
dence [3]. For the method in section 4 it is safe to
set ε = 0.2. For estimation of F we need K = 8
samples, which gives us N = 25, and for H we
need K = 4 samples, and get N = 9.

The result of applying this RANSAC scheme on
the initial correspondences in figure 2 is shown in
figure 3 for a homography estimation. The blob at
the top of the upper figure is still to be considered
an unfortunate correspondence. It has the right
colour, and the right position, but the shape of
the corresponding blob is clearly wrong.

Figure 3: Refined correspondences found using
RANSAC and a homography constraint.

6 Mapping an ellipse through
a homography

For a homography it is possible to further con-
strain which correspondences are allowed as in-
liers by mapping the ellipse shape through the ho-
mography, and rejecting the correspondence if the
shape distance (5) is above a threshold.

We will now derive a homography transforma-
tion of an ellipse. Note that even though an ellipse
mapped through a homography is a new ellipse,



this mapping is merely approximately correct for
regions which are not elliptical. An ellipse in image
1, is the set of points x in homogeneous coordinates
fulfilling the relation

xT Gx ≤ 0 , G =
(

A −Am
−mT A mT Am − 1

)

(12)
where A = 1

4I
−1 [1]. In the coordinate system of

x′, where hx = H−1x′, this becomes

1
h2

x
′T H−T GH−1x′ ≤ 0 (13)

which gives us a new matrix of the form

1
h2

H−T GH−1 =
1
h2

(
C d
dT e

)
(14)

We now identify the result of (13) as a new ellipse
expression

x
′T

(
B −Bn

−nT B nT Bn − 1

)
x′ ≤ 0 . (15)

This allows us to identify n and 1/h2 as

n = −C−1d ,
1
h2

= nT Cn − e (16)

and B as

B =
1

nT Cn − e
C . (17)

Finally, the mapped ellipse shape can be found as
Ĩ = 1

4B
−1. This mapping of blob shapes through

the homography is illustrated in figure 4.

7 Discussion

The results presented in this paper are quite pre-
liminary. We have not yet tried the fundamen-
tal matrix estimation on sufficiently non-planar
scenes. While the fundamental matrix constraint
appears to help eliminating outliers in the scenes
shown in figures 1-4, the resultant matrix F is quite
unstable, indicating that the scene structure is too
close to the degenerate plane case (see section 1).

8 Acknowledgements

The work presented in this paper has been per-
formed within the VISCOS project (VISion in COg-
nitive Systems), and is funded by SSF, which is
gratefully acknowledged.

Figure 4: Blob shapes projected through the ho-
mography. Original blob shapes are black ellipses,
projected shapes are white.

References

[1] Per-Erik Forssén. Low and Medium Level Vi-
sion using Channel Representations. PhD the-
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