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ABSTRACT

This paper advocates the use of overlapping bins in his-
togram creation. It is shown how conventional histogram
creation has an inherent quantisation that cause errors much
like those in sampling with insufficient band limitation. The
use of overlapping bins is shown to be the deterministic
equivalent to dithering. Two applications of soft histograms
are shown: Improved peak localisation in an estimated prob-
ability density function (PDF) without requiring more sam-
ples, and accurate estimation of image rotation.

1. INTRODUCTION

The purpose of a histogram is to estimate how the values of
a variable is distributed across a certain range, i.e. to esti-
mate a probability density function (PDF). The most com-
mon use of histograms in image analysis is estimation of the
intensity distribution.

When computing a conventional histogram, the range of
values for the data is separated into a set of disjointbins. For
each bin one counts the number of samples that fall into its
range. If we call the bin centresmk, and the bin distance
(and bin width)d, the histogram value for bin numberk can
be written as:

hk =
N∑

n=1

Hk(sn) where (1)

Hk(sn) =

{
1 if |sn −mk| < d/2
0 otherwise

Heresn are samples of the variable under study, andN
is the number of samples of this variable. The histogram
creation procedure can be seen as an initial quantisation
of the samplessn, followed by a summation. Unless the
variable under study is already quantised (as is normally
the case for image intensities), the histogram creation in-
troduces an effect similar to aliasing. We can see this by
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viewing the histogram creation as a band limitation of the
PDF, followed by a sampling. The equivalent of a band-
limitation function isHk(s), which corresponds to asinc()
in the Fourier domain.

The fact that the above described histogram creation in
some sense violates the sampling theorem limits the uses
of a histogram. The purpose of this paper is to describe a
method to generate more useful histograms, and to illustrate
some ways they can be put to use.

2. DITHERING

Since the histogram creation process contains an inherent
quantisation, it could probably benefit fromdithering [1].
Dithering is the process of adding a small amount of noise
(with certain characteristics) to a signal prior to the quanti-
sation. Dithering is commonly used in image reproduction
with a small number of available intensities or colours, as
well as in quality improvement of digital audio [2].

The initial probability for a sample to fall into a certain
bin is 1 inside the bin interval (see figure 1, left). However,
if we add triangular noise, orTPDF noise1 (see figure 1,
right) we end up withstochastic bins, with PDFs that are
smooth, and slightly overlapping (see figure 1, centre).
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Fig. 1. Stochastic bins.
Left: Estimated PDFs of bins1 . . . 3.

Centre: PDFs with noise added before quantisation.
Right: Estimated PDF of added noise.

1TPDF noise is designed to de-correlate the power spectrum of the
quantisation error and that of the signal [2]. It can be generated by summa-
tion of two uniformly distributed random variables.



3. OVERLAPPING BINS

It is interesting to note that the shape of the stochastic bins
in figure 1 shows a strong resemblance to thecos2() en-
velope functions used in thechannel representation[3, 4].
However, they are not quite identical. The theoretical shape
of the PDF is that of a rectangular PDF convolved with a tri-
angular one, and this shape can be represented using piece-
wise second order polynomials. They are however of simi-
lar shape, and are both spatially limited.

In quantisation we are usually forced to choose one bin,
due to the compact representations of numbers. For such
situations, changing the bins into stochastic bins is a good
idea, since on the average we will get overlapping bins, and
thus reduced amount of “aliasing”.

However, since we are now creating histograms, we
could just as well generate deterministic, but overlapping
bins. For this purpose we will employ the channel represen-
tation, and compute what is calledsoft histograms.
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Fig. 2. Overlapping “bins”.

Instead of letting each sample fall into one of the bins,
we will allow it to fall into two or more neighbouring bins,
but only partially (see figure 2). Using the same notation as
in equation 1, the histogram value for bin (or rather channel)
numberk is now written as:

hk =
N∑

n=1

ψk(sn) where (2)

ψk(sn) =

{
cos2

(
ω
d (sn −mk)

)
if |sn −mk| < πd

2ω

0 otherwise

The parameterω is called thechannel overlap, and con-
trols the correlation between the bins. Figure 2 shows the
case ofω = π/2. In practise values ofω = π/q where
q = 2, 3, 4 . . . should be used, since these will result in
constant sums of the contributions.

This approach falls into the class ofkernel density es-
timators[5, 6] developed in the late 50’s and early 60’s by
Rosenblatt and Parzen. Parzen prescribes a general kernel
function instead of the rectangular functionHk(s) in equa-
tion 1.

Note that, contrary to the conventional approach we have
not destroyed any information when lettingsn fall into two
bins. We can see this by reconstructing the samplesn from
two non-zeroψk(sn) contributions. If the two bins with
non-zero contributions are denotedk, andk + 1, the dif-
ference between their contributions, whenω = π/2 can be
written as:

ψk(sn) − ψk+1(sn) = cos
(π
d

(sn −mk)
)

using the fact thatmk+1 = mk +w, and the well known
relationcos(2α) = cos2(α) − sin2(α). The sample value
can thus be reconstructed as:

sn = mk +
d

π
arccos(ψk(sn) − ψk+1(sn)) (3)

As soon as we start to use more than one sample in equa-
tion 2 however, there is no way back.

If we already have computed a full conventional his-
togram, with binsh1, h2, . . . hK , and corresponding bin cen-
tresm1,m2, . . .mK , it can easily be converted into a soft
histogram with binsc1, c2, . . . cL, according to:

cl =
K∑

k=1

hkψl(mk) (4)

That is, we compute the value of each envelope function,
ψl(x), once for each bin in the conventional histogram, and
multiply the result with the number of times this bin was
visited. This is normally much faster than a full soft his-
togram computation, since the number of bins in the full
histogram,K, usually is much smaller than the number of
samples,N . If we ensure thatK is significantly larger than
L, the quantisation effects in the original histogram will be
negligible.

4. ALIASING IN CONVENTIONAL HISTOGRAMS

Figure 3 illustrates the “aliasing effect” of conventional his-
togram computation. Both graphs show10 superimposed
histograms (with50 bins each) that only differ in construc-
tion by a displacement. As can be seen, the soft histogram
varies smoothly with the bin-centre displacement, while con-
ventional histograms exhibit abrupt jumps in the bin values.
This effect is quite similar to what happens during sampling
with insufficient band-limitation.
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Fig. 3. Comparison of conventional and soft histograms.
Left: Image histogram with 256 bins.

Centre: 10 superimposed soft histograms with50 bins
each.

Right: 10 superimposed conventional histograms
with 50 bins each.



The extent of the aliasing effects depend highly on the
characteristics of the underlying distribution. Cases where
the effect is either smaller or more severe than shown in
figure 3 are easy to find.

5. FINDING PEAKS IN A SOFT HISTOGRAM

In many applications it is of interest to know at which values
we have local peaks in a distribution. Due to the aliasing-
like effects in conventional histograms, a local peak in the
histogram does not necessarily correspond to a peak in the
distribution. Provided that we have detected a peak,mk, in
the histogram, we can only say that it islikely that the PDF
peak lies somewhere in the range[mk − d/2,mk + d/2].
If we were using conventional histograms, we would have
to reduce the bin sizes and increase the number of samples
in order to improve the accuracy, something which is not
always possible.

With soft histograms however, the location of the peaks
can be found with an accuracy that is higher than the bin
distance. The bin distance only limits how close two peaks
may be. If they are too close they will tend to interfere, and
eventually their average will be found instead.

In order to find local peaks, we have to consider at least
three consecutive bin values. We can find the peak by mod-
elling a local interval of the PDF as a second order polyno-
mial:

h = l1s
2 + l2s+ l3 (5)

The coefficientsl1, l2 andl3 can be expressed as product
sums of three consecutive bin values. The local peak can
be found as the zero crossing of the derivative, i.e.m =
−l2/2l1. If we limit our search to bin triplets where the
middle bin is larger than its neighbours, we know that this
is a maximum.

Figure 4 illustrates the application of this peak detection
scheme to soft histograms with13, 25, 50, and100 bins
respectively. Note how the peaks nears = 215 are seen as
one peak in the first histogram, and gradually change into
three peaks in the last one.

The accuracy of the result is of course highly dependent
on the number of samples,N . Given the same set of sam-
ples, the accuracy should however always be at least as good
as that of a conventional histogram.

6. SOFT HISTOGRAMS OF VECTOR FIELDS

An other application of soft histograms is detection of im-
age rotation. This can be done using a property that is equiv-
ariant with rotation, such as local orientation [7, 8], or the
DIV symmetry features [7, 9]. In this paper we will illus-
trate the method using soft histograms of local orientation,
but DIV features work just as well.
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Fig. 4. Detection of histogram peaks using soft histograms.
Top: Detected peaks plotted in a 256-bin histogram.

Bottom: Soft histograms used.
13, 25, 50, and100 bins respectively.

We can construct a soft histogram (withK bins) of the
double-angle local orientationfeature [7]zn = mne

iϕn as
follows:

hk =
N∑

n=1

mnψk(ϕn) where (6)

ψk(ϕn) =

{
cos2

(
ω
d (ϕn − αk)

)
if adist(ϕn − αk) < πd

2ω

0 otherwise
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Fig. 5. Modular channels.

That is, we weight the contribution from each orienta-
tion value,ϕn, with the local orientation magnitudemn.
Since the angleϕn only assumes values in the range[0, 2π[,
we specify our bin distances as:

d =
2π
K

and our bin centres asαk = d(k − 1)

Note that sinceϕn is a modular variable, we have re-
placed the absolute distance in equation 2 with the angular
distance. This implies that the first, and the last channels are
neighbours (see figure 5).

If we have two such orientation histograms from two
images that differ only by a rotation, we can compute this
rotation from the phase of the discrete Fourier transforms of
the two histograms, as described in [10]. Note that finding
the correct rotation of the histogram, only means that we
have found the image rotation moduloπ, due to the dou-
ble angle nature of local orientation. Full360◦ rotation can
however be found using soft histograms of the DIV operator
described in [9].

7. EXPERIMENTS

As input feature to the soft histograms we will use local ori-
entation vectors computed from the orientation tensors de-
scribed in [8]. The tensor estimation uses9 one-dimensional
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Fig. 6. Soft histograms of local orientation.
Left to right: Intensity images, Local orientation magni-
tudes|z|, and soft histograms of two rotations of an image.
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Fig. 7. Errors in estimation of rotation angle (radians).
Rotation estimation using conventional histograms (left)
and soft histograms (right). Single image errors (dotted)
and average (solid). Note the different scalings of the axes.

filters oriented along the horizontal and vertical axes, all
with a spatial extent of9 pixels.

From the orientation tensors, we compute a complex
valued double angle imagez(x) as follows:

z(x) = t11 − t22 + i2t12

Wheretij are the components of the2 × 2 tensor. This
expression is equivalent to(λ1 − λ2)ẑ1 whereλ1 ≥ λ2

are the two eigenvalues, and̂z1 = ei2ϕ is a double angle
representation of the principal subspace.

To evaluate the performance of the alignment procedure,
we will now compute local orientation of an image, and the
same image rotated varying amounts about the origin. We
then use all orientation responses for whichx2 +y2 = r2 <
90 to compute modular soft histograms according to equa-
tion 6 (see figure 6). We will use an overlap ofω = π/3,
and vary the number of soft binsK.

As a performance measure, we will use the absolute es-
timation error averaged over45 different rotations in the
range(−π/2, π/2), and6 different image regions. The re-
sult is compared with conventional histograms in the dia-

grams of figure 7. As can be seen, the accuracy is between
20 and100 times better for the same number of bins.

An interesting observation is that the error is very small
for soft histograms with just3 bins. This is because the bins
used span the entire range of the rotation angle, resulting in
a histogram that only contains one single frequency com-
ponent. For more realistic situations this kind of bins will
not be useful, since they require an almost exact correspon-
dence between the two images to match.

8. REFERENCES

[1] R. M. Gray, “Dithered quantizers,”IEEE Transactions
on Information Theory, vol. 39, no. 3, pp. 805–812,
1993.

[2] C. M. Hicks, “The application of dither and noise-
shaping to nyquist-rate digital audio: an introduc-
tion.,” Technical report, Communications and Signal
Processing Group, Cambridge University, UK, 1995.

[3] G. H. Granlund, “The complexity of vision,”Signal
Processing, vol. 74, no. 1, pp. 101–126, April 1999,
Invited paper.

[4] K. Nordberg, G. Granlund, and H. Knutsson, “Repre-
sentation and Learning of Invariance,” inProceedings
of IEEE International Conference on Image Process-
ing, Austin, Texas, November 1994, IEEE.

[5] M. Rosenblatt, “Remarks on some nonparametric esti-
mates of a density function,”Annals of Mathematical
Statistics, vol. 27, pp. 642–669, 1956.

[6] E. Parzen, “On estimation of probability density func-
tion and mode,” Annals of Mathematical Statistics,
vol. 33, pp. 1065–1076, 1962.

[7] G. H. Granlund and H. Knutsson,Signal Processing
for Computer Vision, Kluwer Academic Publishers,
1995, ISBN 0-7923-9530-1.

[8] G. Farneb̈ack, “Spatial Domain Methods for Orienta-
tion and Velocity Estimation,” Lic. Thesis LiU-Tek-
Lic-1999:13, Dept. EE, Link̈oping University, SE-581
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