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Abstract. This article describes an essential step towards what is called
a view centered representation of the low-level structure in an image. In-
stead of representing low-level structure (lines and edges) in one compact
feature map, we will separate structural information into several feature
maps, each signifying features at a characteristic phase, in a specific scale.
By characteristic phase we mean the phases 0, π, and ±π/2, correspond-
ing to bright, and dark lines, and edges between different intensity levels,
or colours. A lateral inhibition mechanism selects the strongest feature
within each local region of scale represented. The scale representation is
limited to maps one octave apart, but can be interpolated to provide a
continous representation. The resultant image representation is sparse,
and thus well suited for further processing, such as pattern detection.

Keywords: sparse coding, image representation, view centered repre-
sentation, edge detection, scale hierarchy, characteristic phase

1 Introduction

From neuroscience we know that biological vision systems interpret visual stimuli
by separation of image features into several retinotopic maps [5]. These maps
encode highly specific information such as colour, structure (lines and edges),
motion, and several high-level features not yet fully understood. This feature
separation is in sharp contrast to what many machine vision applications do
when they synthesize image features into objects. We have earlier discussed
these two approaches, which are called view centered, and object centered image
representations [8]. This report describes an attempt to move one step further
towards a view centered representation of low level properties.

As we move upwards in the interpretation hierarchy in biological vision sys-
tems, the cells within each feature map tend to be increasingly selective, and
consequently the high level maps tend to employ more sparse representations
[3]. There are several good reasons why biological systems employ sparse repre-
sentations, many of which could also apply to machine vision systems.

Sparse coding tends to minimize the activity within an over-complete feature
set, whilst maintaining the information conveyed by the features. This leads to
representations in which pattern recognition, template storage, and matching are
made easier [3]. Compared to compact representations, sparse features convey



more information when they are active, and contrary to how it might appear,
the amount of computation will not be increased significantly, since only the
active features need to be considered.

Most feature generation procedures employ filtering in some form. The out-
puts from these filters tell quantitatively more about the filters used than the
structures they were meant to detect. We can get rid of this excessive load of
data, by allowing only certain phases of output from the filters to propagate
further. These characteristic phases have the property that they give invariant
structural information rather than all the phase components of a filter response.

The feature maps we generate describe image structure in a specific scale,
and at a specific phase. The distance between the different scales is one octave
(i.e. each map has half the center frequency of the previous one.) The phases we
detect are those near the characteristic phases1 0, π, and ±π/2. Thus, for each
scale, we will have three resultant feature maps (see figure 1).
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Fig. 1. Scale hierarchies.

This approach touches the field of scale-space analysis pioneered by Witkin
[1]. See [2] for a recent overview. Our approach to scale space analysis is some-
what similar to that of Reisfield [4]. Reisfield has defined what he calls a Con-
strained Phase Congruency Transform (CPCT), that maps a pixel position and
an orientation to an energy value, a scale, and a symmetry phase (0, π, ±π/2,
or none). We will instead map each image position, at a given scale, to three
complex numbers, one for each of the characteristic phases. The argument of the
complex numbers indicates the dominant orientation of the local image region
at the given scale, and the magnitude indicates the local signal energy when the
phase is near the desired one. As we move away from the characteristic phase, the
magnitude will go to zero. This representation will result in a number of complex
valued images that are quite sparse, and thus suitable for pattern detection.

1 We will define the concept of characteristic phase in a following section.



2 Phase from Line and Edge Filters

For signals containing multiple frequencies, the phase is ambiguous, but we can
always define the local phase of a signal, as the phase of the signal in a narrow
frequency range.

The local phase can be computed from the ratio between a band-pass filter
(even, denoted fe) and it’s quadrature complement (odd, denoted fo). These two
filters are usually combined into a complex valued quadrature filter, f = fe+ ifo
[6]. The real and imaginary parts of a quadrature filter correspond to line, and
edge detecting filters respectively. The local phase can now be computed as the
argument of the filter response, q(x), or if we use the two real-valued filters
separately, as the four quadrant inverse tangent; arctan(qo(x), qe(x)).

To construct the quadrature pair, we start with a discretized lognormal filter
function, defined in the frequency domain.

Ri(ρ) =

e−
ln2(ρ/ρi)

ln 2 if ρ > 0
0 otherwise

(1)

The parameter ρi determines the peak of the lognorm function, and is called
the center frequency of the filter. We now construct the even and odd filters
as the real and imaginary parts of an inverse discrete Fourier transform of this
filter.2

fe,i(x) = Re(IDFT{Ri(ρ)}) (2)
fo,i(x) = Im(IDFT{Ri(ρ)}) (3)

We write a filtering of a sampled signal, s(x), with a discrete filter fk(x) as
qk(x) = (s ∗ fk)(x), giving the response signal the same indices as the filter that
produced it.

3 Characteristic Phase

By characteristic phase we mean phases that are consistent over a range of scales,
and thus characterize the local image region. In practise this only happens at
local magnitude peaks of the responses from the even, and odd filters.3 In other
words, the characteristic phases are always one of 0, π, and ±π/2.

Only some occurrences of these phases are consistent over scale though (see
figure 2). First, we can note that band-pass filtering always causes ringings in
2 Note that there are other ways to obtain spatial filters from frequency descriptions

that, in many ways produce better filters [7].
3 A peak in the even response will always correspond to a zero crossing in the odd

response, and vice versa, due to the quadrature constraint.
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Fig. 2. Line and edge filter responses in 1D.
Top: A one-dimensional signal.

Center: Line responses at ρi = π/2 (solid), and π/4 and π/8 (dashed)
Bottom: Edge responses at ρi = π/2 (solid), and π/4 and π/8 (dashed)

the response. For isolated line and edge events this will mean one extra mag-
nitude peak (with the opposite sign) at each side of the peak corresponding to
the event. These extra peaks will move when we change frequency bands, and
consequently they do not correspond to characteristic phases. Second, we can
note that each line event will produce one magnitude peak in the line response,
and two peaks in the edge response. The peaks in the edge response, however,
are not consistent over scale. Instead they will move as we change frequency
bands. This phenomenon can be used to sort out the desired peaks.

4 Extracting Characteristic Phase in 1D

Starting from the line and edge filter responses at scale i, qe,i, and qo,i, we now
define three phase channels:

p1,i = max(0, qe,i) (4)
p2,i = max(0,−qe,i) (5)
p3,i = abs(qo,i) (6)

That is, we let p1,i constitute the positive part of the line filter response,
corresponding to 0 phase, p2,i, the negative part, corresponding to π phase, and
p3,i the magnitude of the edge filter response, corresponding to ±π/2 phase.

Phase invariance over scale can be expressed by requiring that the signal at
the next lower octave has the same phase:

p1,i = max(0, qe,i · qe,i−1/ai−1) ·max(0, sign(qe,i)) (7)
p2,i = max(0, qe,i · qe,i−1/ai−1) ·max(0, sign(−qe,i)) (8)
p3,i = max(0, qo,i · qo,i−1/ai−1) (9)



The first max operation in the equations above will set the magnitude to
zero whenever the filter at the next scale has a different sign. This operation
will reduce the effect of the ringings from the filters. In order to keep the mag-
nitude near the characteristic phases proportional to the local signal energy, we
have normalized the product with the signal energy at the next lower octave
ai−1 =

√
q2
e,i−1 + q2

o,i−1. The result of this operation can be viewed as a phase
description at a scale in between the two used. These channels are compared
with the original ones in figure 3.
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Fig. 3. Consistent phase in 1D. (ρi = π/4)
p1,i, p2,i, p3,i according to equations 4-6 (dashed), and equations 7-9 (solid)

We will now further constrain the phase channels in such a way that only
responses consistent over scale are kept. We do this by inhibiting the phase
channels with the complementary response in the third lower octave:

c1,i = max(0, p1,i − α abs(qo,i−2)) (10)
c2,i = max(0, p2,i − α abs(qo,i−2)) (11)
c3,i = max(0, p3,i − α abs(qe,i−2)) (12)

We have chosen an amount of inhibition α = 2, and the base scale, ρi = π/4.
With these values we sucessfully remove the edge responses at the line event, and
a the same time keep the rate of change in the resultant signal below the Nyquist
frequency. The resultant characteristic phase channels will have a magnitude
corresponding to the energy at scale i, near the corresponding phase. These
channels are compared with the original ones in figure 4.
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Fig. 4. Phase channels in 1D. (ρi = π/4, α = 2)
p1,i, p2,i, p3,i according to equations 4-6 (dashed), and equations 10-12 (solid).



As we can see, this operation manages to produce channels that indicate lines
and edges without any unwanted extra responses. An important aspect of this
operation is that it results in a gradual transition between the description of a
signal as a line or an edge. If we continuously increase the thickness of a line,
it will gradually turn into a bar that will be represented as two edges.4 This
phenomenon is illustrated in figure 5.
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Fig. 5. Transition between line and edge description. (ρi = π/4)
Top: Signal Center: c1,i phase channel Bottom: c3,i phase channel.

5 Local Orientation Information

The filters we employ in 2D will be the extension of the lognorm filter function
(equation 1) to 2D [6]:

Fki(u) = Ri(ρ) Dk(û) (13)

Where

Dk(û) =

{
(û · n̂k)2 if u · n̂k > 0
0 otherwise

(14)

We will use four filters, with directions n̂1 = ( 0 1 )t, n̂2 = (
√

0.5
√

0.5 )t,
n̂3 = ( 1 0 )t, and n̂4 = (

√
0.5 −

√
0.5 )t. These directions have angles that are

uniformly distributed modulo π. Due to this, and the fact that the angular
function decreases as cos2 ϕ, the sum of the filter-response magnitudes will be
orientation invariant [6].
4 Note that the fact that both the line, and the edge statements are low near the

fourth event (positions 105 to 125) does not mean that this event will be lost. The
final representation will also include other scales of filters, which will describe these
events better.



Just like in the 1D case, we will perform the filtering in the spatial domain:

(fe,ki ∗ pki)(x) ≈ Re(IDFT{Fki(u)}) (15)
(fo,ki ∗ pki)(x) ≈ Im(IDFT{Fki(u)}) (16)

Here we have used a filter optimization technique [7] to separate the lognorm
quadrature filters into two approximately one-dimensional components. The fil-
ter pki(x), is a smoothing filter in a direction orthogonal to n̂k, while fe,ki(x),
and fo,ki(x) constitute a 1D lognorm quadrature pair in the n̂k direction.

Using the responses from the four quadrature filters, we can construct a local
orientation image. This is a complex valued image, in which the magnitude
of each complex number indicates the signal energy when the neighbourhood
is locally one-dimensional, and the argument of the numbers denote the local
orientation, in the double angle representation [6].

z(x) =
∑
k

aki(n̂k1 + in̂k2)2 = a1i(x)− a3i(x) + i(a2i(x)− a4i(x)) (17)

where aki(x), the signal energy, is defined as aki =
√
q2
e,ki + q2

o,ki.

6 Extracting Characteristic Phase in 2D

To illustrate characteristic phase in 2D, we need a new test pattern. We will use
the 1D signal from figure 5, rotated around the origin (see figure 6). The image
has also been degraded with a small amount of Gaussian noise. The signal to
noise ratio is 10 dB.
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Fig. 6. A 2D test pattern. (10 dB SNR)

When extracting characteristic phases in 2D we will make use of the same
observation as the local orientation representation does: Since visual stimuli can



locally be approximated by a simple signal in the dominant orientation [6], we
can define the local phase as the phase of the dominant signal component.

To deal with characteristic phases in the dominant signal direction, we first
synthesize responses from a filter in a direction, n̂z, compatible with the local
orientation.5

n̂z = ( Re(
√
z) Im(

√
z) )t (18)

The filters will be weighted according to the value of the scalar product
between the filter direction, and this orientation compatible direction.

wk = n̂tkn̂z (19)

Thus, in each scale we synthesize one odd, and one even response projection
as:

qe,i =
∑
k

qe,i,k abs(wk) (20)

qo,i =
∑
k

qo,i,kwk (21)

This will change the sign of the odd responses when the directions differ
more than π, but since the even filters are symmetric, they should always have a
positive weight. In accordance with our findings in the 1D study (equations 7-9,
10-12), we now compute three phase channels, c1,i, c2,i, and c3,i, in each scale.

The characteristic phase channels are shown in figure 7.6 As we can see, the
channels exhibit a smooth transition from describing the white regions in the
test pattern (see figure 6) as lines, and as two edges. Also note that the phase
statements actually give the phase in the dominant orientation, and not in the
filter directions, as was the case for CPCT [4].

7 Local Orientation and Characteristic Phase

An orientation image can be be gated with a phase channel, cn(x), in the fol-
lowing way:

zg(x) =

0 if cn(x) = 0
cn(x) · z(x)
‖z(x)‖

otherwise
(22)

5 Since the local orientation, z, is represented with a double angle argument, we could
just as well have chosen the opposite direction. Which one of these we choose does
not really matter, as long as we are consistent.

6 The magnitude of lines this thin can be difficult to reproduce in print. However, the
magnitudes in this plot should vary just like in figure 5.



Fig. 7. Characteristic phase channels in 2D. (ρi = π/4)
Left to right: Characteristic phase channels c1,i, c2,i, and c3,i, according to equations
10-12 (α = 2).

We now do this for each of the characteristic phase statements c1,i(x), c2,i(x),
and c3,i(x), in each scale. The magnitude of the result is shown in figure 8. Notice
for instance how the bridge near the center of the image changes from being
described by two edges, to being described as a bright line, as we move through
scale space.

8 Concluding Remarks

The strategy of this approach for low-level representation is to provide sparse,
and reliable statements as much as possible, rather than to provide statements
in all points.

Traditionally, the trend has been to combine or merge descriptive components
as much as possible; mainly to reduce storage and computation. As the demands
on performance are increasing it is no longer clear why components signifying
different phenomena should be mixed. An edge is something separating two
regions with different properties, and a line is something entirely different.

The use of sparse data representations in computation leads to a mild increase
in data volume for separate representations, compared to combined representa-
tions.

Although the representation is given in discrete scales, this can be viewed
as a conventional sampling, although in scale space, which allows interpolation
between these discrete scales, with the usual restrictions imposed by the sampling
theorem. The requirement of a good interpolation between scales determines the
optimal relative bandwidth of filters to use.
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Fig. 8. Sparse feature hierarchy. (ρi = {π/2, π/4, π/8, π/16})
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