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Abstract

In this thesis a new type of representation for medium level vision operations is
explored. We focus on representations that are sparse and monopolar. The word
sparse signifies that information in the feature sets used is not necessarily present
at all points. On the contrary, most features will be inactive. The word monopolar
signifies that all features have the same sign, e.g. are either positive or zero. A zero
feature value denotes “no information”, and for non-zero values, the magnitude
signifies the relevance.

A sparse scale-space representation of local image structure (lines and edges)
is developed.

A method known as the channel representation is used to generate sparse
representations, and its ability to deal with multiple hypotheses is described. It is
also shown how these hypotheses can be extracted in a robust manner.

The connection of soft histograms (i.e. histograms with overlapping bins) to
the channel representation, as well as to the use of dithering in relaxation of quan-
tisation errors is shown. The use of soft histograms for estimation of unknown
probability density functions (PDF), and estimation of image rotation are demon-
strated.

The advantage with the use of sparse, monopolar representations in associative
learning is demonstrated.

Finally we show how sparse, monopolar representations can be used to speed
up and improve template matching.
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Chapter 1

Introduction

1.1 Motivation

The work presented in this thesis has been performed within the WITAS1 project
[11, 25]. The goal of the WITAS project is, according to the project web page
[62]:

. . . to demonstrate, before the end of the year 2003, an airborne com-
puter system that is able to make rational decisions about the continued
operation of the aircraft, based on various sources of knowledge includ-
ing pre-stored geographical knowledge, knowledge obtained from vision
sensors, and knowledge communicated to it by radio.

In other words, the goal is to build an autonomous Unmanned Aerial Vehicle
(UAV), that is able to deal with visual input. This thesis will focus on a small
subset of computer vision for autonomous systems. Computer vision is usually
described using a three level model:

• The first level, low-level vision is concerned with obtaining descriptions of
image properties in local regions. This usually means description of colour,
lines and edges, motion, as well as methods for noise attenuation.

• The next level, medium-level vision makes use of the features computed at
the low level. Medium-level vision has traditionally involved techniques such
as joining line segments into object boundaries, clustering, and computation
of depth from stereo image pairs. Processing at this level also includes more
complex tasks, such as the estimation of ego motion, i.e. the apparent motion
of a camera as estimated from a sequence of camera images.

• Finally, high-level vision involves using the information from the lower levels
to perform abstract reasoning about scenes, planning etc.

1WITAS stands for the Wallenberg laboratory for research on Information Technology and
Autonomous Systems.



2 Introduction

The WITAS project involves all three levels, but as the title of this thesis
suggests, we will mainly deal with medium-level vision. More specifically we will
deal with medium-level methods using sparse, monopolar representations. The
word sparse signifies that information in the feature sets used is not necessarily
present at all points. On the contrary, most features will be inactive. The word
monopolar signifies that all features have the same sign, e.g. are either positive or
zero. A zero feature value denotes “no information”, and for non-zero values, the
magnitude signifies the relevance.

An other property of the sparse data we will use is that it is locally continuous.
This means that it is possible (and indeed quite likely) that two adjacent state-
ments are true at the same time. This bears resemblance to fuzzy logic, where
several statements can be simultaneously true, to different degrees. For example,
the statements “the water is warm”, and “the water is hot” may both be true to
different degrees, depending on the actual water temperature.

1.2 Overview

The thesis starts with a brief look at the best autonomous vision systems there
are today—biological. Chapter 2 contains a description of some aspects of what
is known about biological vision today.

Chapter 3 contains a method to obtain a sparse scale-space representation of
low-level image structure. The method is focused on obtaining reliable statements
in a limited number of points, rather than statements at all positions. This kind
of representation is well suited to instance based learning.

Chapter 4 contains a description of how compact variables may be transformed
into the channel representation [21, 47, 7, 3], a sparse representation developed
for computer vision applications at the Computer Vision laboratory. This chapter
also describes how the value or values represented in a channel value vector can
be retrieved.

Chapter 5 describes an application of the channel representation called soft
histograms. It also describes how soft histograms (and other histogram techniques
with overlapping bins) can be used to detect peaks in a PDF in a much more
accurate and robust manner than what is possible with the same data using con-
ventional histograms. Finally a method to estimate image rotation using soft
histograms of a local orientation feature is demonstrated.

Chapter 6 contains various experiments and ideas concerning associative learn-
ing using the associative networks [22] developed at the Computer Vision labora-
tory.

Finally, chapter 7 contains a description of sparse template matching. Sparse
template matching is a novel technique that makes use of sparse data to speed
up and improve template matching. The method is evaluated on data with vary-
ing degrees of sparsity, and compared with the commonly used Sum of Squared
Difference (SSD) method.
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1.3 Contributions

We will now list what is believed to be the novel contributions of this thesis.

• A scale-space representation of lines and edges is implemented and described
in chapter 3. This chapter is basically an extended version of the conference
paper “Sparse feature maps in a scale hierarchy” [16].

• A framework for channel encoding and local reconstruction of scalar values
is presented in chapter 4.

• A demonstration of the connection between dithering and overlapping bins
in histogram creation is given in chapter 5.

• Applications of soft histograms (i.e. histograms with overlapping bins) in
the field of image analysis are demonstrated in chapter 5. The applications
are: accurate peak detection in a PDF estimated with overlapping bins,
and a fast method to estimate image rotation using DFT coefficients of soft
histograms.

• A feature selection mechanism for associative learning and aspects of learning
rules for associative learning are presented in chapter 6.

• A novel technique that makes use of sparse, monopolar data to speed up and
improve template matching is presented in chapter 7.

1.4 Notations

The mathematical notations used in this thesis should resemble those most com-
monly in use in the engineering community. There are however cases where there
are several common styles, and thus this section has been added to avoid confusion.

The following notations are used for mathematical entities:

s Scalars (lowercase letters in italics)
u Vectors (lowercase letters in boldface)
z Complex numbers (lowercase letters in italics bold)
C Matrices (uppercase letters in boldface)
s(x) Functions (lowercase letters)



4 Introduction

The following notations are used for mathematical operations:

At Matrix and vector transpose
bxc The floor operation
〈x |y 〉 The scalar product
arg z Argument of a complex number
conjz Complex conjugate
|z| Absolute value of real or complex numbers
‖z‖ Matrix or vector norm
(s ∗ fk)(x) Convolution
adist(ϕ1 − ϕ2) Angular distance of cyclic variables



Chapter 2

Biological vision systems

2.1 Introduction

Many important problems in computer vision still await robust and reliable so-
lutions. Most animals, and many insects are much better at dealing with visual
input than the most sophisticated machine vision systems. Since biological and
mechanical systems use different kinds of “hardware”, there are of course several
important differences, but there is still much to be gained by adopting some of the
design principles that biological vision systems adhere to.

This chapter gives a short description of some aspects of biological image in-
terpretation that are likely to be useful in machine vision as well. We will attempt
to make use of several of the principles mentioned here in the rest of this thesis.

2.2 System principles

When we view vision as a sense for robots and other real-time perception systems,
the parallels with biological vision at the system level become obvious. Since an
autonomous robot is in direct interaction with the environment, it is faced with
many of the problems that biological vision systems have dealt with successfully
for millions of years.

2.2.1 The world as an outside memory

Traditionally much effort in machine vision has been devoted to methods for find-
ing detailed reconstructions of the external world [6]. As pointed out by e.g.
O’Regan [49] there is really no need for a system that interacts with the external
world to perform such a reconstruction, since the world is continually “out there”.
He uses the neat metaphor “the world as an outside memory” to explain why. By
focusing your eyes at something in the external world, instead of examining your
internal model, you will probably get more accurate and up-to-date information
as well.
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2.2.2 Active vision

If we do not need a detailed reconstruction, then what should the goal of machine
vision be? The answer to this question in the fairly recent paradigm of active vision
is that the goal should be generation of actions. In that way the goal depends on
the situation, and on the problem we are faced with.

Consider the following situation: A helicopter is situated above a road, and
equipped with a camera. From the helicopter we want to find out information
about a car on the road below. When looking at the car through our sensor, we
obtain a blurred image at low resolution. If the image is not good enough, we
could simply move closer, or change the zoom of the camera. The distance to the
car can be obtained if we have several images of the car from different views. If
we want several views, we do not actually need several cameras, we could simply
move the helicopter, and obtain shots from other locations.

The key idea behind active vision is that an agent in the external world has
the ability to actively extract information from the external world by means of its
actions. This ability to act can, if properly used, simplify many of the problems
in vision, for instance the correspondence problem [6].

2.2.3 Vision and learning

As machine vision systems become increasingly complex, the need to specify their
behaviour without explicit programming becomes increasingly apparent.

If a system is supposed to act in an un-restricted environment, it needs to be
able to behave in accordance with the current surroundings. The system thus has
to be flexible, and needs to be able to generate context dependent responses. This
leads to a very large number of possible behaviours that are difficult or impossible
to specify explicitly. Such context dependent responses are preferably learned by
subjecting the system to the situations, and apply percept-response association
[24].

By using learning, we are able to define what our system should do, not how
it should do it. And finally, a system that is able to learn, is able to adapt to
changes, and to act in novel situations that the programmer did not foresee.

2.3 Information representation

We will now have a look at how biological systems represent visual information.
This is by no means an exhaustive presentation, it should merely be seen as back-
ground, and motivation for the representations chosen in the following chapters of
this thesis.

2.3.1 Low level biological vision operations

Mammalian vision systems receive their inputs through light sensitive cells called
rods (those mammals capable of colour vision have an additional class of light
sensitive cells called cones). The signals from these cells are processed by bipolar
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and amacrine cells, and later by ganglion cells, which propagate the information
from the retina to a region of the thalamus known as LGN.

One important kind of ganglion cells are the M-type cells. They are present in
all mammals, and perform a differentiation of responses from two bipolar cells. The
bipolar cells integrate responses from light sensitive cells in receptive fields that
are approximately circular, with weights that decrease with the distance from the
centre. The combined operation of bipolar and ganglion cells is usually modelled as
a Difference of Gaussian, DoG, computation. That is, each response is computed
as a difference between two Gaussian filtered versions of the input. Typically one
of the bipolar cells has a significantly more concentrated support than the other.
The extreme case in the fovea is one light detecting cell per bipolar cell. The
differentiation results in two main types of M-type ganglion, or centre-surround
cells. One kind produces a response if the centre of the receptive field is brighter
than the surrounding region, and the other kind works in the opposite manner
[60].

The ganglion cell responses from the left and right eyes are collected and mod-
ulated in LGN, and further sent to the primary visual cortex, or V1, where they
are arranged in left and right visual fields [4]. In V1, responses that resemble
Gabor type wavelets are computed in a wide range of scales.

From an evolutionary point of view, these computations must gain the organism
an advantage. One such advantage is, as we shall see in chapter 7, that they aid
product sum matching.

2.3.2 Monopolar signals

Information processing cells in the brain exhibit either bipolar or monopolar re-
sponses. One rare example of bipolar detectors is the hair cells in semicircular
canals of the vestibular system1. These cells hyperpolarise when the head rotates
one way, and depolarise when it is rotated the other way [32].

Interestingly there seem to be no truly bipolar detectors at any stage of the
visual system. Even the bipolar cells of the retina are monopolar in their responses
despite their name. The disadvantage with a monopolar detector compared to a
bipolar one is that it can only respond to one aspect of an event. For instance do
the retinal bipolar cells respond to either bright, or dark regions. There thus are
twice as many retinal bipolar cells, as there could have been if they had had bipolar
responses. However, a bipolar detector has to produce a maintained discharge at
the equilibrium (in-between the bright, and dark levels for the retinal bipolar cells).
This results in bipolar detectors being much more sensitive to disturbances [32].
In chapter 6 we will make use of monopolar representations in associative learning.

Although the use of monopolar signals is widespread in biological vision sys-
tems, it is rarely found in machine vision. It has however been suggested in [20].

1The vestibular system coordinates the orientation of the head.
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2.3.3 View centred representations

Biological vision systems interpret visual stimuli by generation of image features in
several retinotopic maps [4]. These maps encode highly specific information such
as colour, structure (lines and edges), motion, and several high-level features not
yet fully understood. An object in the field of view is represented by connections
between the simultaneously active features in all of the feature maps. This is
called a view centred representation [21], and is an object representation which
is distributed across all the feature maps, or views. Perceptual experiments are
consistent with the notion that biological vision systems use multiple such view
representations to represent three-dimensional objects [8].

In sharp contrast, many machine vision applications synthesise image features
into compact object representations that are independent of the views from which
they are viewed. This approach is called an object centred representation [21],
and is also what is used by the human mind in abstract reasoning, and in spoken
language. In chapter 3 we will generate feature maps of structural information,
that can be used to form a view centered object representation.

2.3.4 Local vs distributed coding

There are three main ways to represent a system state using a number of signals.
Consider the following simple example given by Thorpe [59]: We have a stimulus
that can consist of a horizontal or a vertical bar, and the bar can be either white,
black, or absent (see figure 2.1). For simplicity we assume that the signals are
binary, i.e. either active or inactive.

Nothing

Local
Coding

Semi−Local
Coding

Distributed
Coding

? ? ?V H W BW
 &

 H

B
 &

 V

B
 &

 H

W
 &

 V

Figure 2.1: Local, semi-local, and distributed coding.
Figure adapted from [59].

One way to represent the state is to assign one signal to each system state.
This is called a local coding in the figure. One big advantage with local coding is
that the system can deal with several hypotheses at once. In the example in the
figure, two active responses would mean that there was two bars present in the
scene. An other way is to assign one output for each state of the two properties:
orientation and colour. This is called semi-local coding in the figure. As we move
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away from a completely local coding, the ability to deal with several hypotheses
gradually disappears. For instance, if we had one vertical, and one horizontal bar,
we could deal with them separately using semi-local coding only if they had the
same colour.

The third variant in the figure is to assign one stimulus pattern to each system
state. In this representation the number of output signals is minimised, and the
representation of a given system state is distributed across the whole range of
signals, hence the name distributed coding. Since this variant also succeeds at
minimising the number of output signals, it is also called compact coding.

If we view “minimum number of signals” as our goal, we will arrive at a compact
coding scheme that is equivalent to data compression.

2.3.5 Sparse signals

In data compression the information in each signal is maximised. But we could
also envision an other optimisation goal: maximisation of the information content
in the active nodes only (see figure 2.2). Something similar to this seems to happen
at the lower levels of visual processing in mammals [13]. The result of this kind
of optimisation on visual input is a representation that is sparse, i.e. most signals
are inactive. This is similar to the local, and semi-local coding examples in the
previous section.

Minimum number
of units

Compact Coding

of active units
Minimum number

Sparse Coding

Figure 2.2: Compact vs. sparse coding.
Figure adapted from [13].

As we move upwards in the interpretation hierarchy in biological vision systems,
from cone cells, via centre-surround cells to the simple and complex cells in the
visual cortex, the feature maps tend to employ increasingly sparse representations
[13].

There are several good reasons why biological systems employ sparse represen-
tations, many of which could also apply to machine vision systems. For biological
vision, one advantage is that the amount of signalling is kept at a low rate, and
this is a good thing, since signalling wastes energy. Sparse coding also leads to
representations in which pattern recognition, template storage, and matching are
made easier [13, 40]. Compared to compact representations, sparse features convey
more information when they are active, and contrary to how it might appear, the
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amount of computation will not be increased significantly, since only the active
features need to be considered.



Chapter 3

Lines and edges in scale
space

3.1 Background

Biological vision systems are capable of instance recognition in a manner that is
vastly superior to current machine vision systems. Perceptual experiments [49, 8]
are consistent with the idea that they accomplish this feat by remembering a
sparse set of features for a few views of each object, and are able to interpolate
between these (see discussion in chapter 2). What features biological systems
use is currently not certain, but we have a few clues. The fact that difference of
Gaussians, and Gabor-type wavelets have a correspondence to the first two levels
of processing in biological vision systems is widely known [4]. There is however no
general agreement on how to proceed from these simple descriptors, toward more
descriptive and more sparse features.

One way might be to detect various kinds of image symmetries such as circles,
star-patterns, and divergences (such as corners) as was done in [34]. Two very
simple kinds of symmetries are lines and edges1, and in this chapter we will see
how extraction of lines and edges can be made more selective, in a manner that
is locally continuous both in scale and spatially. Another important difference
between our approach and others is that we keep different kinds of events separate
instead of combining them into one compact feature map.

3.1.1 Classical edge detection

The fact that discontinuities in images convey important information has been
known and used for a long time in image processing. One early example that is
still widely used are the Sobel edge filters [56]. Another common example is the
Canny edge detector [9] that produces visually pleasing binary images. The goal
of edge detecting algorithms in image processing is usually to obtain useful input

1To be strict, an edge is better described as an anti-symmetry.
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to segmentation algorithms [58], and for this purpose, the ideal step edge detection
that the Canny edge detector performs is in general insufficient [53], since a step
edge is just one of the events that can divide the areas of a physical scene. Since
our goal is quite different (we want a sparse scene description that can aid instance
recognition), we will discuss conventional edge detection no further.

3.1.2 Phase-gating

The use of characteristic phase as a descriptive image feature originates from the
idea of phase-gating, originally mentioned in a thesis by Haglund [27]. Phase-gating
is a postulate that states that an estimate from an arbitrary operator is valid only
in particular places, where the relevance of the estimate is high [27]. Haglund
used this idea to obtain an estimate of size, by only using the even quadrature
component when estimating frequency, i.e. he only propagated frequency estimates
near 0 and π phase.

3.1.3 Phase congruency

Mach bands are illusory peaks and valleys in illumination that humans, and other
biological vision systems perceive near certain intensity profiles, such as ramp
edges (see figure 3.1). Morrone et. al. have observed that these illusory lines, as
well as perception of actual lines and edges, occur at positions where the sum of
Fourier components above a given threshold have a corresponding peak [44]. They
also note that the sum of the squared output of even and odd symmetric filters
always peaks at these positions, which they refer to as points of phase congruency.

Figure 3.1: Mach bands near a ramp edge.
Top-left: Image intensity profile
Bottom-left: Perceived image intensity Right: Image

This observation has lead to the invention of phase congruency feature detectors
[37]. At points of phase congruency, the phase is spatially stable over scale. This
is a desirable property for a robust feature. However, phase congruency does
not tell us which kind of feature we have detected; is it a line, or an edge? For
this reason, phase congruency detection has been augmented by Reisfeld to allow
discrimination between line, and edge events [54]. Reisfeld has devised what he
calls a Constrained Phase Congruency Detector (CPCT for short), that maps a
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pixel position and an orientation to an energy value, a scale, and a symmetry
phase (0, ±π/2 or π). This approach is however not quite suitable for us, since
the map produced is of a semi discrete nature; each pixel is either of 0, ±π/2 or
π phase, and only belongs to the scale where the energy is maximal. The features
we want should on the contrary allow a slight overlap in scale space, and have
responses in a small spatial range near the characteristic phases.

3.2 Sparse feature maps in a scale hierarchy

Most feature generation procedures employ filtering in some form. The outputs
from these filters tell quantitatively more about the filters used than the struc-
tures they were meant to detect. We can get rid of this excessive load of data,
by allowing only certain phases of output from the filters to propagate further.
These characteristic phases have the property that they give invariant structural
information rather than all the phase components of a filter response.

We will now generate feature maps that describe image structure in a specific
scale, and at a specific phase. The distance between the different scales is one
octave (i.e. each map has half the centre frequency of the previous one.) The
phases we detect are those near the characteristic phases 0, π, and ±π/2. Thus,
for each scale, we will have three resultant feature maps (see figure 3.2).
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Figure 3.2: Scale hierarchies.

This approach touches the field of scale-space analysis pioneered by Witkin [63].
See [39] for a recent overview of scale space methods. Our approach to scale space
analysis is somewhat similar to that of Reisfeld [54]. Reisfeld has defined what
he calls a Constrained Phase Congruency Transform (CPCT), that maps a pixel
position and an orientation to an energy value, a scale, and a symmetry phase (0,
π, ±π/2, or none). We will instead map each image position, at a given scale, to
three complex numbers, one for each of the characteristic phases. The argument of
the complex numbers indicates the dominant orientation of the local image region
at the given scale, and the magnitude indicates the local signal energy when the
phase is near the desired one. As we move away from the characteristic phase, the
magnitude will go to zero. This representation will result in a number of complex
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valued images that are quite sparse, and thus suitable for pattern detection.

3.2.1 Phase from line and edge filters

For signals containing multiple frequencies, the phase is ambiguous, but we can
always define the local phase of a signal, as the phase of the signal in a narrow
frequency range.

The local phase can be computed from the ratio between a band-pass filter
(even, denoted fe) and it’s quadrature complement (odd, denoted fo). These
two filters are usually combined into a complex valued quadrature filter, f =
fe + ifo [23]. The real and imaginary parts of a quadrature filter correspond to
line, and edge detecting filters respectively. The local phase can now be computed
as the argument of the filter response, q(x), or if we use the two real-valued filters
separately, as the four quadrant inverse tangent; arctan(qo(x), qe(x)).

To construct the quadrature pair, we start with a discretised lognormal filter
function, defined in the frequency domain.

Ri(ρ) =


e

− ln2(ρ/ρi)
ln 2 if ρ > 0

0 otherwise
(3.1)

The parameter ρi determines the peak of the lognorm function, and is called
the centre frequency of the filter. We now construct the even and odd filters as the
real and imaginary parts of an inverse discrete Fourier transform of this filter.2

fe,i(x) = Re(IDFT{Ri(ρ)}) (3.2)
fo,i(x) = Im(IDFT{Ri(ρ)}) (3.3)

We write a filtering of a sampled signal, s(x), with a discrete filter fk(x) as
qk(x) = (s ∗ fk)(x), giving the response signal the same indices as the filter that
produced it.

3.2.2 Characteristic phase

By characteristic phase we mean phases that are consistent over a range of scales,
and thus characterise the local image region. In practise this only happens at local
magnitude peaks of the responses from the even and odd filters.3 In other words,
the characteristic phases are always one of 0, π, and ±π/2.

Only some occurrences of these phases are consistent over scale though (see
figure 3.3). First, we can note that band-pass filtering always causes ringings in
the response. For isolated line and edge events this will mean one extra magnitude

2Note that there are other ways to obtain spatial filters from frequency descriptions that, in
many ways produce better filters [35].

3A peak in the even response will always correspond to a zero crossing in the odd response,
and vice versa, due to the quadrature constraint.



3.2 Sparse feature maps in a scale hierarchy 15

10 20 30 40 50 60 70

0

0.5

1

10 20 30 40 50 60 70

−0.2

−0.1

0

0.1

0.2

10 20 30 40 50 60 70

−0.2

−0.1

0

0.1

0.2

Figure 3.3: Line and edge filter responses in 1D.
Top: A one-dimensional signal.

Centre: Line responses at ρi = π/2 (solid), and π/4 and π/8 (dashed)
Bottom: Edge responses at ρi = π/2 (solid), and π/4 and π/8 (dashed)

peak (with the opposite sign) at each side of the peak corresponding to the event.
These extra peaks will move when we change frequency bands, and consequently
they do not correspond to characteristic phases. Second, we can note that each line
event will produce one magnitude peak in the line response, and two peaks in the
edge response. The peaks in the edge response, however, are not consistent over
scale. Instead they will move as we change frequency bands. This phenomenon
can be used to sort out the desired peaks.

3.2.3 Extracting characteristic phase in 1D

Starting from the line and edge filter responses at scale i: qe,i, and qo,i, we now
define three phase channels:

p1,i = max(0, qe,i) (3.4)
p2,i = max(0,−qe,i) (3.5)
p3,i = abs(qo,i) (3.6)

That is, we let p1,i constitute the positive part of the line filter response,
corresponding to 0 phase, p2,i, the negative part, corresponding to π phase, and
p3,i the magnitude of the edge filter response, corresponding to ±π/2 phase.

Phase invariance over scale can be expressed by requiring that the signal at
the next lower octave has the same phase:

p1,i = max(0, qe,i · qe,i−1/ai−1) · max(0, sign(qe,i)) (3.7)
p2,i = max(0, qe,i · qe,i−1/ai−1) · max(0, sign(−qe,i)) (3.8)
p3,i = max(0, qo,i · qo,i−1/ai−1) (3.9)



16 Lines and edges in scale space

The first max operation in the equations above will set the magnitude to zero
whenever the filter at the next scale has a different sign. This operation will
reduce the effect of the ringings from the filters. In order to keep the magnitude
near the characteristic phases proportional to the local signal energy, we have
normalised the product with the signal energy at the next lower octave ai−1 =√
q2e,i−1 + q2o,i−1. The result of the operation in equations 3.7-3.9 can be viewed

as a phase description at a scale in between the two used. These channels are
compared with the original ones in figure 3.4.

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

Figure 3.4: Consistent phase in 1D. (ρi = π/4)
p1,i, p2,i, p3,i according to equations 3.4-3.6 (dashed), and equations 3.7-3.9 (solid)

We will now further constrain the phase channels in such a way that only re-
sponses consistent over scale are kept. We do this by inhibiting the phase channels
with the complementary response in the third lower octave:

c1,i = max(0, p1,i − αabs(qo,i−2)) (3.10)
c2,i = max(0, p2,i − αabs(qo,i−2)) (3.11)
c3,i = max(0, p3,i − αabs(qe,i−2)) (3.12)

We have chosen an amount of inhibition α = 2, and the base scale, ρi =
π/4. With these values we successfully remove the edge responses at the line
event, and a the same time keep the rate of change in the resultant signal below
the Nyquist frequency. The resultant characteristic phase channels will have a
magnitude corresponding to the energy at scale i, near the corresponding phase.
These channels are compared with the original ones in figure 3.5.
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Figure 3.5: Phase channels in 1D. (ρi = π/4, α = 2)
p1,i, p2,i, p3,i according to equations 3.4-3.6 (dashed), and equations 3.10-3.12
(solid).

As we can see, this operation manages to produce channels that indicate lines
and edges without any unwanted extra responses. An important aspect of this



3.2 Sparse feature maps in a scale hierarchy 17

operation is that it results in a gradual transition between the description of a
signal as a line or an edge. If we continuously increase the thickness of a line,
it will gradually turn into a bar that will be represented as two edges.4 This
phenomenon is illustrated in figure 3.6.
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Figure 3.6: Transition between line and edge description. (ρi = π/4)
Top: Signal Centre: c1,i phase channel
Bottom: c3,i phase channel.

3.2.4 Local orientation information

The filters we employ in 2D will be the extension of the lognorm filter function
(equation 3.1) to 2D [23]:

Fki(u) = Ri(ρ)Dk(û) (3.13)

Where

Dk(û) =

{
(û · n̂k)2 if u · n̂k > 0
0 otherwise

(3.14)

We will use four filters, with directions n̂1 = ( 0 1 )t, n̂2 = (
√

0.5
√

0.5 )t,
n̂3 = ( 1 0 )t, and n̂4 = (

√
0.5 −√

0.5 )t. These directions have angles that
are uniformly distributed modulo π. Due to this, and the fact that the angular
function decreases as cos2 ϕ, the sum of the filter-response magnitudes will be
orientation invariant [23].

Just like in the 1D case, we will perform the filtering in the spatial domain:

(fe,ki ∗ pki)(x) ≈ Re(IDFT{Fki(u)}) (3.15)
(fo,ki ∗ pki)(x) ≈ Im(IDFT{Fki(u)}) (3.16)

4Note that the fact that both the line, and the edge statements are low near the fourth event
(positions 105 to 125) does not mean that this event will be lost. The final representation will
also include other scales of filters, which will describe these events better.
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Here we have used a filter optimisation technique [35] to separate the lognorm
quadrature filters into two approximately one-dimensional components. The filter
pki(x), is a smoothing filter in a direction orthogonal to n̂k, while fe,ki(x), and
fo,ki(x) constitute a 1D lognorm quadrature pair in the n̂k direction.

Using the responses from the four quadrature filters, we can construct a local
orientation image. This is a complex valued image, in which the magnitude of each
complex number indicates the signal energy when the neighbourhood is locally one-
dimensional, and the argument of the numbers denote the local orientation, in the
double angle representation [23].

z(x) =
∑

k

aki(n̂k1 + in̂k2)2 = a1i(x) − a3i(x) + i(a2i(x) − a4i(x)) (3.17)

where aki(x), the signal energy, is defined as aki =
√
q2e,ki + q2o,ki.

3.2.5 Extracting characteristic phase in 2D

To illustrate characteristic phase in 2D, we need a new test pattern. We will use
the 1D signal from figure 3.6, rotated around the origin (see figure 3.7).
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Figure 3.7: A 2D test pattern.

When extracting characteristic phases in 2D we will make use of the same
observation as the local orientation representation does: Since visual stimuli can
locally be approximated by a simple signal in the dominant orientation [23], we
can define the local phase as the phase of the dominant signal component.

To deal with characteristic phases in the dominant signal direction, we first
synthesise responses from a filter in a direction, n̂z, compatible with the local
orientation.5

n̂z = ( Re(
√

z) Im(
√

z) )t (3.18)

5Since the local orientation, z, is represented with a double angle argument, we could just as
well have chosen the opposite direction. Which one of these we choose does not really matter,
as long as we are consistent.
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The filters will be weighted according to the value of the scalar product between
the filter direction, and this orientation compatible direction.

wk = n̂t
kn̂z (3.19)

Thus, in each scale we synthesise one odd, and one even response projection
as:

qe,i =
∑

k

qe,i,kabs(wk) (3.20)

qo,i =
∑

k

qo,i,kwk (3.21)

This will change the sign of the odd responses when the directions differ more
than π, but since the even filters are symmetric, they should always have a positive
weight. In accordance with our findings in the 1D study (equations 3.7-3.9, 3.10-
3.12), we now compute three phase channels, c1,i, c2,i, and c3,i, in each scale.

No responses

Figure 3.8: Characteristic phase channels in 2D. (ρi = π/4)
Left to right: Characteristic phase channels c1,i, c2,i, and c3,i, according to equa-
tions 3.10-3.12 (α = 2). The colours indicate the locally dominant orientation.

The characteristic phase channels are shown in figure 3.8.6 As we can see,
the channels exhibit a smooth transition from describing the white regions in the
test pattern (see figure 3.7) as lines, and as two edges. Also note that the phase
statements actually give the phase in the dominant orientation, and not in the
filter directions, as was the case for CPCT [54].

3.2.6 Local orientation and characteristic phase

An orientation image can be be gated with a phase channel, cn(x), in the following
way:

6The magnitude of lines this thin can be difficult to reproduce in print. However, the magni-
tudes in this plot should vary just like in figure 3.6.
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zn(x) =




0 if cn(x) = 0
cn(x) · z(x)

|z(x)| otherwise
(3.22)

We now do this for each of the characteristic phase statements c1,i(x), c2,i(x),
and c3,i(x), in each scale. The result is shown in figure 3.9. The colours in the
figure indicate the locally dominant orientation, just like in figure 3.8. Notice for
instance how the bridge near the centre of the image changes from being described
by two edges, to being described as a bright line, as we move through scale space.

Figure 3.9: Sparse feature hierarchy. (ρi = {π/2, π/4, π/8, π/16})
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3.2.7 Concluding remarks

The strategy of this approach for low-level representation is to provide sparse, and
reliable statements as much as possible, rather than to provide statements in all
points.

Traditionally, the trend has been to produce compact, descriptive components
as much as possible; mainly to reduce storage and computation. As the demands
on performance are increasing it is no longer clear why components signifying
different phenomena should be mixed. An edge is something separating two regions
with different properties, and a line is something entirely different.

The use of sparse data representations in computation leads to a mild increase
in data volume for separate representations, compared to combined representa-
tions.

Although the representation is given in discrete scales, this can be viewed as a
conventional sampling, although in scale space, which allows interpolation between
these discrete scales, with the usual restrictions imposed by the sampling theorem.
The requirement of a good interpolation between scales determines the optimal
relative bandwidths of filters to use.
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Chapter 4

Channel representation

4.1 Channel coding

4.1.1 Compact representations

Compact representations (see chapter 2) such as numbers, generic object names
(house, door, Linda) are useful for communicating precise pieces of information.
One example of this is the human use of language.

However, compact representations are not well suited to use as input for a
system that should learn a complex and unknown relationship between two sets
of data. Inputs in compact representations tend to describe temporally and/or
spatially distant events as one thing, and thus the actual meaning of an input
cannot be established until we have seen the entire training set. A better approach
is to study the problem locally. An other motivation for local learning is that most
complex functions can be sufficiently well approximated as locally linear, and linear
relationships are easy to learn (see chapter 6 for more on local learning).

4.1.2 Channel representation of scalars

The channel representation [21, 7, 47] is a good first step towards a better repre-
sentation of the inputs. When moving from a compact, numerical representation
to the channel representation, we project our number onto a set of band-pass
functions, ψn(s). These functions are zero along most of the real axis, and raise
smoothly to 1 near a specific scalar value n:

ψn(s) =
{

cos2 (ω(s− n)) |s− n| < π
2ω

0 otherwise (4.1)

If we distribute our basis functions with unit distance, i.e. n ∈ N, the param-
eter ω can be used to control the correlation (or overlap), between neighbouring
channel values. For this reason the ω parameter is called the channel overlap.

A concrete example is always illustrative, and we will thus now encode the
scalar s = 5.23, with ω = π/3 (See figure 4.1).
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Figure 4.1: Channel encoding.
The basis functions ψ4(s) through ψ6(s) are plotted, along with the scalar s (ω =
π/3).

We will place the resultant coefficients in a channel value vector c:

c =
(
ψ1(s) ψ2(s) ψ3(s) ψ4(s) ψ5(s) ψ6(s) ψ7(s) ψ8(s)

)
=

(
0 0 0 0.0778 0.9431 0.4791 0 0

)
Since the values of the basis functions only depend on the distance between

the scalar s, and the channel centres (i.e. the basis functions are symmetric), we
could also view the process as a sampling of a basis function with the centre at
the scalar value (See figure 4.2).
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1

Figure 4.2: Channel encoding.
A basis function ψs(x) is sampled at the channel centres x = 1, 2, 3 . . . .

As we can see in figure 4.2, the basis function will always activate several
samples. As long as there is more than one active sample, reconstruction of the
scalar should be possible. This corresponds to situations when the frequency of
the wave function, within it’s non-zero window, is below the Nyquist frequency.
Using the sampling theorem as a heuristic we can conclude that reconstruction is
possible as long as ω ≤ π/2.1 In practise however, a higher degree of redundancy
is preferable, since this will improve our robustness to noise in the reconstruction.

1The reason for this is that cos2(ω(x − n)) = 1
2
(1 + cos(2ω(x − n))) i.e. the frequency is

f = 2ω
π

. The frequency requirement f ≤ 1 gives ω ≤ π
2
. See also theorem A.2 for a relation

between the number of activated channels, N , and the overlap, ω.
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The fact that reconstruction is possible is important, since this guarantees that
we have not destroyed any information when encoding our scalar.

Each of the channel values in c states something much more specific than the
original scalar s did. Mere activity of a channel means that we know approximately
where s lies. This fact makes the channel representation very useful in associative
learning, as we will see in chapter 6.

4.1.3 Metamerism

Since each scalar will only activate channels in a limited range, most of the channels
in a channel value vector will usually be zero. This means that for a large channel
value vector, there is room for more than one scalar. This is an important aspect
of the channel representation, that gives it an advantage compared to compact
representations.

Consider the case where you have trained a system to estimate the horizontal
position of a face in an image. What happens when this system encounters two
faces in the same image? A compact representation can only give one response,
and in theory it could choose to respond with either of the two locations, but in
practise it will most likely return their average. And what should the system do
when there is no face in the image?

Both these problems are dealt with in an elegant manner by the channel repre-
sentation. If the faces are far enough apart, the system could return two responses
in the same channel value vector. If, on the other hand, there was no face in the
image, the channel values would simply drop to zero.

There is an interesting parallel to multiple responses in biological sensory sys-
tems. If someone pokes two fingers in your back, you can feel where they are
situated if they are a certain distance apart. If they are too close however, you
will instead perceive one poking finger in-between the two. A representation where
this phenomenon can occur is called metameric, and the states (one poking finger,
or two close poking fingers) that cannot be distinguished in the given representa-
tion are called metamers.

The smallest distance between sensations that the system can handle is called
the metameric distance, and is limited by the distance between the sensors (or in
our case, the channels).

4.2 Local reconstruction

In order to evaluate the performance of a learning system, we need to be able to
perform reconstruction. That is, we need to be able to tell what scalar, or scalars,
the channel value vector represents.

4.2.1 Reconstruction using wavelet theory

If we use wavelet terminology, the encoding of a scalar as a channel value vector can
be seen as a set of scalar products with analysing wavelets or dual basis functions.
If we define the scalar to be encoded as a Dirac,
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gs(x) = δ(x− s) (4.2)

and use the scalar product

〈 f(x) | g(x) 〉 =
∫

f(x)g(x) dx (4.3)

the scalar product between the scalar function, gs(x), and an analysing wavelet
ψk(x) becomes

〈 gs(x) |ψk(x) 〉 =
∫
δ(x− s)ψk(x) dx = ψk(s) (4.4)

The channel encoding can thus be expressed as

c =
( 〈 gs(x) |ψ1(x) 〉 〈 gs(x) |ψ2(x) 〉 . . . 〈 gs(x) |ψK(x) 〉 )

(4.5)

Since the scalar encoding process in general is a non-orthogonal transform
(except when ω = π/2) reconstruction of the scalar should be performed through
a weighted summation of the channel values, and the reconstruction wavelets or
basis functions2, ψ̃n(x):

g(x) =
N∑

n=1

unψ̃n(x) (4.6)

The basis functions, ψ̃n(x), can be computed as linear combinations of the dual
basis functions, ψn(x):




ψ̃1(x)
ψ̃2(x)

...
ψ̃N (x)


 = G−1




ψ1(x)
ψ2(x)

...
ψN (x)


 (4.7)

The weights in the linear combination are given by:

G =




〈ψ1 |ψ1 〉 〈ψ1 |ψ2 〉 . . . 〈ψ1 |ψN 〉
〈ψ2 |ψ1 〉 〈ψ2 |ψ2 〉 . . . 〈ψ2 |ψN 〉

...
...

. . .
〈ψN |ψ1 〉 〈ψN |ψ2 〉 . . . 〈ψN |ψN 〉


 (4.8)
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Figure 4.3: An analysing wavelet, and the corresponding reconstructing wavelet.
Top: An envelope function with ω = π/3.

Bottom: The corresponding reconstruction function.

For an orthogonal basis, only the elements in the diagonal of G will be non-
zero, since all other scalar products are zero by definition. Thus, for orthogonal
bases, the basis is identical to the dual basis, except for a scaling.

An example of a reconstruction function is shown in figure 4.3. Here a set
of envelope functions, ψk(s), with ω = π/3, were constructed, and corresponding
reconstruction functions were computed according to equations 4.7 and 4.8. As
we can see, the resultant reconstruction functions have much larger support than
the original functions.

The reason for this is that the channel envelope function (see figure 4.2) has
unlimited frequency content due to its finite spatial support, and thus cannot be
represented by conventional sampling. The reconstruction function in figure 4.3
will thus reconstruct the projection of the envelope function onto the subspace of
band-limited functions.

The envelope functions can in fact never be represented well using this termi-
nology since they are non-zero only in a limited interval, and thus cannot be band
limited.

4.2.2 The need for a local inverse

Reconstruction using wavelet theory can be made to work when the channel values
correspond to one event. However, we want to be able to store several values
within a channel set, and the reconstruction should naturally be able to extract

2The channel values are coordinates in this basis. Since our annotations are based on the
channel values, this is the basis, and the analysing wavelets constitute the dual basis.
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them all. As soon as there is more than one event, the events will interfere and
cause reconstruction errors, no matter how far apart the events are.

We can easily see that there is a better way, if we look at how a scalar is
projected onto the basis functions. For any value of the overlap we can decompose
the real axis into non-overlapping intervals in which exactly N basis functions are
active at one time (see figure 4.4). Since only these N basis functions are needed
to describe this local region, the reconstruction of a scalar within that region need
only consider these N basis functions.

In fact, if we want to allow several hypotheses, we should only consider these N
basis functions, since we will otherwise introduce unnecessary interference between
the hypotheses.

             k k+1 k+2             
−1.5
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[k+0.5,k+1.5]

Figure 4.4: Valid range for local inverse. (ω = π/3)

We will term the operation of performing reconstruction within one of these
intervals a local inverse, a reconstruction that is only valid within a limited range
of scalar values.

4.2.3 Computing a local inverse

The local inverse can be computed using an idea illustrated in figure 4.5. The
channel values are now seen as samples from an envelope function which peaks
at the scalar value s. Before we can present the solution however, we have to
introduce some notations.
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1

Figure 4.5: Example of channel values.
In this example, ω = π/3, and s = 5.23
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The first active channel will be called k (in the figure we have k = 4), and the
number of active channels will be called N (in the figure we have N = 3).

In the computation of the local inverse, we will allow the channel values to
be scaled by a factor α, since this will increase the robustness of the scalar re-
construction. For the N non-zero channels we can now formulate the following
equation:

c =
1
α




ck
ck+1

...
ck+N−1


 =




ψk(s)
ψk+1(s)

...
ψk+N−1(s)


 (4.9)

We will now transform an arbitrary row in a number of steps:

ck+d = ψk(s) = cos2(ω(s− k − d)) (4.10)
ck+d = 0.5 + 0.5 cos(2ω(s− k − d)) (4.11)

2ck+d = 1 + cos(2ω(s− k)) cos(2ωd) + sin(2ω(s− k)) sin(2ωd) (4.12)

2ck+d − 1 =
(

cos(2ωd) sin(2ωd)
) (

cos(2ω(s− k))
sin(2ω(s− k))

)
(4.13)

And thus the entire equation system can be written as:




2ck − 1
2ck+1 − 1

...
2ck+N−1 − 1




︸ ︷︷ ︸
b

=




cos(2ω0) sin(2ω0)
cos(2ω1) sin(2ω1)

...
...

cos(2ω(N − 1)) sin(2ω(N − 1))




︸ ︷︷ ︸
A

(
cos(2ω(s− k))
sin(2ω(s− k))

)

(4.14)

This system can be solved using a least-squares fit:

(
cos(2ω(s− k))
sin(2ω(s− k))

)
=

(
d1

d2

)
= (AtA)−1(Atb) (4.15)

Finally, the sought scalar can be computed as:

s = k +
1
2ω

arg [d1 + id2] (4.16)

Now we have to remember that this is a local inverse. The solution is thus only
valid in a limited range. In theorem A.1 in the appendix the valid range is shown
to be k +N − 1 − π

2ω ≤ s ≤ k + π
2ω .
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The scaling factor α in equation 4.9 will be reflected in the magnitude of the
vector d1 + id2:

α = |d1 + id2| (4.17)

If the channel value vector is the output of an associative learning network,
this value can be used as a confidence measure for this local solution.

4.2.4 Local bases

We will now reconnect to wavelet theory by viewing the local inverse (equation
4.16) as a projection of coordinates onto basis functions.

The transpose of the matrix A (equation 4.14) can be seen as the dual basis
matrix for the coordinates b.3 Each row in A can be seen as a complex exponential.
The full dual basis can thus be visualised as vectors on a spiral (see figure 4.6)
where each function only sees other functions within its horizon, or local range.
The local dual basis (i.e. At) is thus a cut-out of this spiral, corresponding to the
interval we want to investigate for a solution.

Figure 4.6: Complex exponentials viewed as vectors on a spiral.

The matrix (AtA)−1At from equation 4.15 can be viewed as consisting of the
basis vectors corresponding to the coordinates {b1, b2, . . . bN}. These can be
transformed into complex vectors vd as follows:

B = (AtA)−1At , vd = B1,d + iB2,d (4.18)

The local inverse can now be written as:

3The coordinates b correspond to our channel values as b = 2c − 1 (see equation 4.14).
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s = k +
1
2ω

arg

[
N∑

d=1

bdvd

]
(4.19)

For all local inverses that depend on the same number of channel values, the
matrix B will be identical, so it only has to be computed once.

4.2.5 A local tight frame

There is an interesting special case for which the local inverse becomes very simple.
Whenever ω = π/N for integers N ≥ 3, AtA becomes N

2 I. This means that, the
basis, B, is a mere scaling of the dual basis At, more precisely B = 2

N At.
A basis is called a tight frame if it equals its dual globally, except for a scaling

[10]. In the same spirit we will call this a local tight frame. Since the norm of the
channel values is constant for ω = π/N where N is an integer N ≥ 3 (see theorem
A.4), our local tight frames are true tight frames as well, as long as there is only
one scalar encoded in the channel vector.

Since B = 2
N At, we can compute the local inverse as a local weighted summa-

tion of the original basis functions:

h(s) =
k+N−1∑

n=k

unψn(s) (4.20)

Now the complex numbers vd in equation 4.19 can be expressed directly as
exponentials, using the definition of A in equation 4.14:

vd = cos(2ωd) + i sin(2ωd) = ei2ωd (4.21)

This approach is quite similar to the scalar reconstruction used in [47]. How-
ever, our reconstruction is local whereas the one described in [47] is global, and
thus only allows one hypothesis.

An other important thing that occurs when ω = π
N is that all valid ranges

for groups of N channel values become the same size, and they only overlap at a
single scalar value (see theorem A.1). This means that we could implement the
reconstruction as a for loop where all consecutive groups of N channel values are
checked for a solution.

4.3 Some other local model techniques

We will now have a look at two classes of similar techniques that have evolved
in parallel to the channel representation. The description of the two techniques
(Radial Basis Function networks, and adaptive fuzzy control) are not meant to
be exhaustive, the purpose of the presentation is merely to acknowledge their
existence, and to highlight how they differ from the channel representation.
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4.3.1 Radial Basis Function networks

The fact that an increased input dimensionality with localised inputs simplifies
learning problems has also been exploited in the field of Radial Basis Function
(RBF) networks [50, 29]. RBF networks have a hidden layer with localised Gaus-
sian models, and an output layer which is linear. In effect this means that RBF
networks learn a hidden representation which in principle is equivalent to the chan-
nel representation. The advantage with this is that the locations, and sizes of the
channels (or RBFs) adapt to the data. The obvious disadvantage compared to
using a fixed set of localised inputs is of course longer training time, since the
network has two layers that have to be learned.

Related to RBF networks are hierarchies of local Gaussian models. Such net-
works have been investigated by for instance Landelius in [38]. His setup allows
new models to be added where needed, and unused models to be removed.

4.3.2 Adaptive fuzzy control

To reduce learning time it is advantageous to define the localised inputs before-
hand. One example of pre-defined sets of local inputs in learning is adaptive
controllers in the field of fuzzy control, see for instance [51] for and overview of
fuzzy control. In fuzzy control a set of local rules between measurements, and
desired outputs are established. These are in a form suitable for linguistic commu-
nication, for instance: IF temperature(warm) THEN power(reduce). The linguistic
states (“warm” and “reduce” in our example) are defined by localised membership
functions. The IF-THEN rules can be learned by a neural network, see for instance
[42]. This kind of learning is however only able to solve function-approximation-
like problems, since the methods implicitly assume one global response in the
scalar reconstruction (or defuzzification) phase. They also require that each local
state on the input side can be defined by a single feature function (or IF-part
membership function).



Chapter 5

Soft histograms

We will now describe an application of the channel representation called soft his-
tograms. Soft histograms is a special case of the kernel density estimators de-
veloped by Parzen and Rosenblatt [55, 52]. The presentation given here is not
meant to be a rigorous theoretical framework, but rather a description of how soft
histograms can be used in engineering-like situations.

5.1 Background

The purpose of a histogram is to estimate how the values of a variable is distributed
across a certain range, i.e. to estimate a probability density function (PDF). The
most common use of histograms in image analysis is estimation of the intensity
distribution.

When computing a conventional histogram, the range of values for the data
is separated into a set of disjoint bins. For each bin one counts the number of
samples that fall into its range. If we call the bin centres mk, and the bin width
(and bin distance) d, the histogram value for bin number k can be written as:

hk =
N∑

n=1

Hk(sn) where Hk(sn) =

{
1 if |sn −mk| < d/2
0 otherwise

(5.1)

Here sn are samples of the variable under study, and N is the number of sam-
ples of this variable. The histogram creation procedure can be seen as an initial
quantisation of the samples sn, followed by a summation. Unless the variable
under study is already quantised (as is normally the case for image intensities),
the histogram creation introduces an effect similar to aliasing. We can see this by
viewing the histogram creation as a band limitation of the PDF, followed by a sam-
pling. The equivalent of a band-limitation function is Hk(s), which corresponds
to a sinc() in the Fourier domain.

The fact that the above described histogram creation in some sense violates the
sampling theorem limits the uses of a histogram. We will now describe a method
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to generate more useful histograms, and to illustrate some ways they can be put
to use.

5.1.1 Dithering

Since the histogram creation process contains an inherent quantisation, it could
probably benefit from dithering [26]. Dithering is the process of adding a small
amount of noise (with certain characteristics) to a signal prior to the quantisation.
Dithering is commonly used in image reproduction with a small number of available
intensities or colours, as well as in quality improvement of digital audio [31].

The initial probability for a sample to fall into a certain bin is 1 inside the bin
interval (see figure 5.1, left). However, when we add triangular noise, or TPDF
noise1 (see figure 5.1, right) we end up with stochastic bins, with PDFs that are
smooth, and slightly overlapping (see figure 5.1, centre).
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Figure 5.1: Stochastic bins.
Left: Estimated PDFs of bins 1 . . . 3.

Centre: Estimated PDFs when noise is added before quantisation.
Right: Estimated PDF of added noise.

5.1.2 Overlapping bins

It is interesting to note that the shape of the stochastic bins in figure 5.1 show
a strong resemblance to the cos2() envelope functions in the previous section.
However, they are not quite identical. The theoretical shape of the PDF is that
of a rectangular PDF convolved with a triangular one, and this shape can be
represented using piecewise second order polynomials. They are however of similar
shape, and are both spatially limited.

In quantisation we are usually forced to choose one bin, due to the compact
representations of numbers. For such situations, changing the bins into stochastic
bins is a good idea, since on the average we will get overlapping bins, and thus
reduced amount of “aliasing”.

However, since we are now creating histograms, we could just as well generate
deterministic, but overlapping bins. For this purpose we will employ the channel

1TPDF noise is designed to de-correlate the power spectrum of the quantisation error and
that of the signal [31]. It can be generated by summation of two uniformly distributed random
variables.
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representation, and compute what is called soft histograms.
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Figure 5.2: Overlapping “bins”.

Instead of letting each sample fall into one of the bins, we will allow it to fall
into two or more neighbouring bins, but only partially (see figure 5.2). Using the
same notation as in equation 5.1, the histogram value for bin (or rather channel)
number k is now written as:

hk =
N∑

n=1

ψk(sn) where ψk(sn) =

{
cos2

(
π
2w (sn −mk)

)
if |sn −mk| < d

0 otherwise
(5.2)

This approach falls into the class of kernel density estimators [55, 52] developed
in the late 50’s and early 60’s by Rosenblatt and Parzen. Parzen prescribes a
general kernel function instead of the rectangular function Hk(s) in equation 5.1.

In relation to the original channel definition in equation 4.1, equation 5.2 has
the equivalent of a channel overlap of ω = π

2 .
Note that, contrary to the conventional approach we have not destroyed any

information when letting sn fall into two bins. We can see this by reconstructing
the sample sn from the two non-zero ψk(sn) contributions. If the two bins with
non-zero contributions are denoted k, and k + 1, the difference between their
contributions can be written as:

ψk(sn) − ψk+1(sn) = cos2
( π

2d
(sn −mk)

)
− cos2

( π

2d
(sn −mk+1)

)
=

= cos2
( π

2d
(sn −mk)

)
− sin2

( π

2d
(sn −mk)

)
=

= cos
(π
d

(sn −mk)
)

since mk+1 = mk + d. The sample value can thus be reconstructed as:

sn = mk +
d

π
arccos(ψk(sn) − ψk+1(sn)) (5.3)

As soon as we start to use more than one sample in equation 5.2 however, there
is no way back.

If we already have computed a full conventional histogram, with bins h1, h2, . . . hK ,
and corresponding bin centres m1,m2, . . .mK , it can easily be converted into a soft
histogram c1, c2, . . . cL, according to:
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cl =
K∑

k=1

hkψl(mk) (5.4)

That is, we compute the value of each envelope function, ψl(x), once for each
bin in the conventional histogram, and multiply the result with the number of
times this bin was visited. This is normally much faster than a full soft histogram
computation, since the number of bins in the full histogram, K, usually is much
smaller than the number of samples, N . If we ensure that K is significantly larger
than the number of bins, L, the quantisation effects in the original histogram will
be negligible.

5.1.3 Aliasing in conventional histograms

Figure 5.3 illustrates the “aliasing effect” of conventional histogram computation.
Both graphs show 10 superimposed histograms (with 50 bins each) that only differ
in construction by a displacement. As can be seen, the soft histogram varies
smoothly with the bin-centre displacement, while conventional histograms exhibit
abrupt jumps in the bin values. This effect is quite similar to what happens during
sampling with insufficient band-limitation.
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Figure 5.3: Comparison of conventional and soft histograms.
Left: Image histogram with 256 bins.

Centre: 10 superimposed soft histograms with 50 bins each.
Right: 10 superimposed conventional histograms with 50 bins each.

The extent of the aliasing effects depend highly on the characteristics of the
underlying distribution. Cases where the effect is either smaller or more severe
than shown in figure 5.3 are easy to find.

5.2 Finding peaks in a soft histogram

In many applications it is of interest to know at which values we have local peaks in
a distribution. Due to the aliasing-like effects in conventional histograms, a local
peak in the histogram does not necessarily correspond to a peak in the distribution.
Provided that we have detected a peak, mk, in the histogram, we can only say that
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it is likely that the PDF peak lies somewhere in the range [mk − d/2,mk + d/2].
If we were using conventional histograms, we would have to reduce the bin sizes
and increase the number of samples in order to improve the accuracy, something
which is not always possible.

With soft histograms however, the location of the peaks can be found with
an accuracy that is higher than the bin distance. The bin distance mainly limits
how close two peaks may be. If they are too close (within the metameric distance,
see section 4.1.3), they will tend to interfere, and eventually their average will be
found instead.

As we saw in equation 5.3 it would be sufficient to use two neighbouring bin
values for reconstruction if we only had one sample of the distribution. However,
for other situations we have to consider at least three consecutive bin values. We
only have to consider bin triplets for which the middle bin value is larger than its
neighbours, and for those cases we can find the peak by modelling a local interval
of the PDF as a second order polynomial:

h = l1s
2 + l2s+ l3 (5.5)

For convenience, we label the position of the middle bin in the triplet mp, and
centre the polynomial around it, by using the variable m = s−mp. This gives us
the bin positions −d, 0, and d. We can now find the unknown parameters l1, l2,
and l3, using the positions and values of the histogram bins p − 1, p, and p + 1.
This gives us the following equation system:


 hp−1

hp

hp+1


 =


 d2 −d 1

0 0 1
d2 d 1





 l1

l2
l3


 (5.6)

This system has the following closed solution:


 l1

l2
l3


 =


 1

2d2
−1
d2

1
2d2

−1
2d 0 1

2d
0 1 0




︸ ︷︷ ︸
D


 hp−1

hp

hp+1


 (5.7)

The advantage of this formulation is that the matrix D can be reused as long
as d stays constant, i.e. at least throughout the entire histogram.

The peak of the polynomial defined by l1, l2, and l3 can be found by detecting
when the derivative is zero:

h = m2l1 +ml2 + l3 ⇒ ∂h

∂m
= 2ml1 + l2 = 0 ⇒ m = − l2

2l1

We can now locate the extreme point to:
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ŝ = m+mp (5.8)

Since we have limited our search to bin triplets where the middle bin is larger
than its neighbours, we know that this is a maximum.

Figure 5.4 illustrates the application of this peak detection scheme to soft
histograms with 13, 25, 50, and 100 bins respectively. Note how the peaks near
s = 215 are seen as one peak in the first histogram, and gradually change into
three peaks in the last one.
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Figure 5.4: Detection of histogram peaks using soft histograms.
Top row: Detected peaks plotted in a 256-bin histogram.

Bottom row: Soft histograms used (13, 25, 50, and 100 bins respectively).

The accuracy of the result is of course highly dependent on the number of
samples, N . Given the same set of samples, the accuracy should however always
be at least as good as that of a conventional histogram.

5.3 Soft histograms of vector fields

An other application of soft histograms is detection of image rotation. This can be
done using a property that is equivariant with rotation, such as local orientation
(see chapter 3), or the DIV features described in [34]. We will now illustrate the
method using soft histograms of local orientation, but DIV features work just as
well.

We can construct a soft histogram (with K bins) of the double-angle local
orientation feature zn = mne

iϕn as follows:

hk =
N∑

n=1

mnψk(ϕn) (5.9)
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where ψk(ϕn) =

{
cos2

(
ω
d (ϕn − αk)

)
if adist(ϕn − αk) < πd

2ω

0 otherwise

α0(0) α1    α2    α3    α4    α0(2π)
0

0.5

1

Figure 5.5: Modular channels (ω = π/2).

That is, we weight the contribution from each orientation value, ϕn, with the
local orientation magnitude mn. Since the angle ϕn only assumes values in the
range [0, 2π[, we specify our bin distances as:

d =
2π
K

and our bin centres as αk = d(k − 1)

Note that since ϕn is a modular variable, we have replaced the absolute distance
in equation 5.2 with the angular distance. This implies that the first, and the last
channels are neighbours (see figure 5.5).

If we have two such orientation histograms from two images that differ only by
a rotation, we can compute this rotation from the phases of the discrete Fourier
transforms of the two histograms. For this application it is important that the
channel overlap ω is chosen to be ω = π/n where n is an integer n ≥ 2, since
this will ensure that the total amount of contribution is independent of the actual
sample location (see theorem A.3), and thus that the energy of the histogram is
rotation independent.

Note that finding the correct rotation of the histogram, only means that we
have found the image rotation modulo π, due to the double angle nature of local
orientation. Full 360◦ rotation can however be found using soft histograms of the
DIV operator described in [34].

5.3.1 Alignment of cyclic histograms

We can find out how we should rotate a cyclic histogram in order to align it with
another one using the discrete Fourier transforms of the two histograms. The
method to be described produces results with a resolution considerably higher
than what is indicated by the number of bins in the two histograms. The idea is
a derivative of the disparity estimation method described in Signal Processing for
Computer Vision [23], section 7.4. Alignment of cyclic histograms has been used
to speed up fractal image coding, as documented in [17].

The method utilises the Fourier coefficients in the positive half of the Fourier
domain, i.e. for a cyclic histogram {h1, h2, . . . , hN} we will use the coefficients



40 Soft histograms

wk(h) =
N∑

n=1

hne
−i2πk(n−1)/N for k = 1, 2 . . . bN/2c (5.10)

If we have two histograms h1, . . . hN , and g1, . . . gN , with similar shape, but
different shifts, the phase difference of the Fourier coefficients can give an estimate
of how much the histograms have been shifted. However, since only the first
coefficient pair can give a [0, 2π] estimate (the others are given modulo π, modulo
π/2 and so on), we will have to use it to move the others into place. The shift as
seen by the first coefficient pair appears as the argument of the following complex
number:

c1 = w1(h) conj(w1(g)) (5.11)

The next shift estimate can be moved into place (or unwrapped) using this
estimate as follows:

c̃2 = w2(h) conj(w2(g)) (5.12)

ϕ2 = ϕ1 + arg(c̃2e
i2ϕ1)/2 (5.13)

c2 = |c̃2|eiϕ2 (5.14)

Here ϕ1 and ϕ2 are the arguments of c1 and c2 respectively. We keep the
magnitude of the complex number, since it contains a measure of the two signal
energies at the current frequency. Using the two shift estimates c1 and c2, we can
construct an estimate that takes the energy at the two frequencies into account:

θ2 = arg(c1 + c2) (5.15)

For the next pair of Fourier coefficients it would thus be better to use this
estimate to unwrap the phase. We will thus use the following algorithm:

c̃k = wk(h) conj(wk(g)) (5.16)

ϕk = θk−1 + arg(c̃ke
ikθk−1)/k (5.17)

ck = |c̃k|eiϕk (5.18)

θk = arg

[
k∑

l=1

cl

]
(5.19)

The final value of θk will be our estimate of the rotation.
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5.4 Experiments

We will now evaluate the performance of the rotation estimation, and tune some
of its parameters. We will compute orientation histograms of pairs of images that
differ only by a rotation, and compare the estimated and the known rotations.

5.4.1 Band limitation

One of the images is computed from the other one using bi-cubic interpolation.
In order to avoid aliasing effects due to the fact that higher frequencies can be
represented in diagonal directions, we have to band limit the image to π. In the
experiments to follow, we have applied a Gaussian low-pass filter with σ = 1.5
before using the images.

5.4.2 Example

Figure 5.6 shows an example of orientation histogram computation. Two circu-
lar regions, their local orientation images, and the corresponding histograms are
shown. As can be seen, K = 9 soft bins have been used in this example.

In figure 5.7 we have computed the rotation according to equations 5.16-5.19,
and rotated the second image such that the estimated rotation is undone. This
means that we rotate the image an angle ϕ = θk/2, since the orientation represen-
tation uses the double angle. As can be seen in the difference image, we do not
quite get the original image back.

5.4.3 Comparison between soft and conventional histograms

Our first experiment is meant to illustrate the advantage with overlapping bins
in rotation estimation. As input feature to the soft histograms we will use local
orientation vectors computed from the orientation tensors described in [12]. The
tensor estimation uses 9 one-dimensional filters oriented along the horizontal and
vertical axes, all with a spatial extent of 9 pixels. We thus have a total of 81
coefficients. The standard deviation of the Gaussian applicability is σ = 1.23.

From the orientation tensors, we compute a complex valued double angle image
z(x) as follows:

z(x) = t11 − t22 + i2t12

Where tij are the components of the 2×2 tensor. This expression is equivalent
to (λ1 − λ2)ẑ1 where λ1 ≥ λ2 are the two eigenvalues, and ẑ1 = ei2ϕ is a double
angle representation of the principal subspace.

We compute local orientation of an image, and the same image rotated varying
amounts about the origin. We then use all orientation responses for which x2+y2 =
r2 < 90 to compute modular soft histograms according to equation 5.9 (see figure
5.6).
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Figure 5.6: Soft histograms of local orientation.
Left to right: Intensity images, Local orientation images z, and soft histograms of
two rotations of an image.

Figure 5.7: Images after alignment, and the difference image.
The colourmap in the difference image goes from black for large negative values to
white for large positive values.

We will use an overlap of ω = π/3, and vary the number of soft bins K. As a
performance measure, we will use the absolute estimation error averaged over 45
different rotations in the range (−π/2, π/2), and 6 different image regions. The
result is compared with conventional histograms in the diagrams of figure 5.8. As
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can be seen, the accuracy is between 20 and 100 times better for the same number
of bins.

An interesting observation is that the error is very small for soft histograms
with just 3 bins. This is because the bins used span the entire range of the rotation
angle, resulting in a histogram that only contains one single frequency component.
For more realistic situations this kind of bins will not be useful, since they require
an almost exact correspondence between the two images to match.
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Figure 5.8: Errors in estimation of rotation angle (radians).
Rotation estimation using conventional histograms (left) and soft histograms
(right). Single image errors (dotted) and average (solid). Note the different scal-
ings of the axes.

5.4.4 Soft histograms with varied overlap

In order to find a good choice of bin overlap we will now try four different values
of ω. In all other respects, this experiment is identical to the one in section 5.4.3.
The result is plotted in figure 5.9. Note that for ω = π/q we have to use at least
K = q bins. As can be seen in the plots, we have quite small errors each time
K = q. As mentioned in section 5.4.3 this is in general not a good thing, since
these histograms will only contain one frequency component, and the estimation
will thus require that the two images are identical except for the rotation.

The most notable difference between the plots is the much increased average
error when the overlap is set to ω = π/2. We can also see that we should avoid
using fewer than K = 10 bins when ω = π/3.

Higher degrees of overlap will lead to less varied frequency content in the his-
tograms, and thus less total information content. A good choice thus seems to be
a value of ω = π/3 with K ≥ 10. This also corresponds to the overlaps obtained
for the stochastic bins in dithering (see section 5.1.1).

5.4.5 Evaluation of orientation estimations

We now evaluate three different methods to estimate local orientation. We will
vary the number of bins. We will also look at what happens if we do not band-limit
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Figure 5.9: Errors for different overlaps (radians).
Top: ω = π/2 and π/3. Bottom: ω = π/4 and π/5.

our image before rotation. All used orientation estimations have approximately
the same spatial extent, in order to ensure that they are comparable. We will now
briefly introduce the three methods.

• The first method computes an estimate of the double angle vector using edge
filters only:

z0(x) = (s ∗ ex ∗ gy)(x) + i(s ∗ ey ∗ gx)(x)

z(x) = z0(x)2/|z0(x)|

Here ex and ey are differentiating Gaussian filters in the horizontal and
vertical directions respectively, and gx, and gy are Gaussian low-pass filters.
The filters have a standard deviation of σ = 1.23, and each filter has 9 real
valued coefficients. We thus have a total of 4 × 9 = 36 coefficients for this
method. This orientation estimation was also used in [17].

• The second orientation estimation method is the one suggested in chapter 3
of [23]. This method is also used in chapter 3 of this thesis:



5.4 Experiments 45

z(x) =
4∑

k=1

|(s ∗ fk)(x)|ei(k−1) π
2

Here fk is a set of four log-normal quadrature filters with a centre frequency
of 1.11 and a relative bandwidth of B = 2. The filters are made separable
using a filter optimisation technique described in [35]. The horizontal and
vertical quadrature filters consist of complex filters with 2 × 9 coefficients
plus real filters with 7 coefficients. The diagonal filters use complex filters
with 2×19 coefficients, and real filters with 5 coefficients. The total number
of coefficients is thus 2(2 × 9 + 7) + 2(2 × 19 + 5) = 136.

• The third method is the polynomial method used in the experiment in section
5.4.3. As mentioned earlier this method uses 81 coefficients.
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Figure 5.10: Mean absolute error as function of number of bins.
Left: Edge filters. Centre: Log-normal quadrature filters.
Right: Polynomial filters.
Dashed curves show the error when no band-limitation has been made.

As can be seen in figure 5.10 the estimation using polynomial filters gives
the most accurate result in this application. It is also significantly faster than
the quadrature filter method, since it uses less than two thirds the number of
coefficients, but slower than the edge filter method which uses less than half of its
number of coefficients.

Clues to what is causing the small errors in the estimation appear if we instead
compute the average for each rotation angle (see figure 5.11). There are probably
several factors causing the periodic variation seen in these plots. Part of the
periodic variations are probably due to the inexactness of the bi-cubic interpolation
used when rotating the images.

There is also an other likely cause: In the edge filter method we have used
horizontal and vertical filters only, but in the quadrature filter method we have
used four filters in evenly distributed directions. As we can see in the figure, the
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Figure 5.11: Mean absolute error as function of angle.
Left: Edge filters. Centre: Log-normal quadrature filters.
Right: Polynomial filters.
Dashed curves show the error when no band-limitation has been made.

periodic variation of the error seems to be, at least partially determined by the
number of filter directions.

All these errors are however quite small. The average error of 0.0015rad ob-
tained in the polynomial filter method corresponds to 0.086◦.



Chapter 6

Associative learning

6.1 A linear network with localised inputs

This chapter contains some experiments on the performance and behaviour of
associative networks with inputs and responses that are monopolar and localised.
First however, we will introduce the associative network concept.

6.1.1 A two phase system

A system that is able to learn through interaction with its environment should
ideally be able to learn continuously, and behave in such a way that it actively
explores new situations that it decides to learn. In this chapter we will however
assume the more modest goal of a batch mode learning system. This kind of system
interacts with the world in two phases:

• Exploratory phase. Initially the system will perform a guided exploration
of the external world. This includes finding out how the sensors and actuators
work. The result of this phase is an estimated functional relationship between
the stimuli and responses.

• Reactive phase. After the initial phase, the learning will end, and the sys-
tem will act as a stimuli-response automata. That is, it will receive stimuli,
and generate responses (act) according to these.

Note that this setup is not an adequate basis for designing a completely au-
tonomous system, but it can be used as a crude model of the two modes of op-
eration that an autonomous system must have [24]. A fully autonomous system
will have to be able to continuously explore, and react interchangeably. The above
mentioned setup will however allow us to explore many aspects of learning for
autonomous systems. It also has many useful applications in itself since it al-
lows design of systems through examples of desired behaviour, instead of through
explicit behavioural specification (i.e. programming).

There are evidences that subsystems of biological organisms work in this two
phase manner. For instance the information processing taking place in the retina
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and low levels of the visual system of mammals is learned at an early stage of
development, and once learnt, it stays constant [4].

6.1.2 Input representations in learning

Inputs to artificial learning systems are often in the form of compact variables.
For instance an input representation of temperature might be a single node with
a signalling strength proportional to the actual temperature. The reasons for this
input representation is mainly convenience (most computer systems have support
for this representation built in, and data usually arrives to the system in this form),
and memory utilisation. There are however several problems associated with the
use of plain variable inputs:

• Unless the problem to be solved is linear, we will have to use multiple lay-
ers in our network. This was shown by Minsky and Papert in their book
Perceptrons[41].

• The more layers we add to a network, the longer it takes for it converge.

• For good performance, the size of a multi-layer network will have to be
adjusted to make sure that the number of nodes in the second (hidden) layer
is right.

These problems can be overcome if we change the representation of our stimuli.
If we ensure that our stimuli are represented in such a way that they are localised
in the response domain, we can solve problems that are locally linear, but globally
non-linear, using a single network layer (see figure 6.1).

response

Figure 6.1: Weighted inputs (solid), and their sum (dashed).

6.1.3 Linear networks

In the reactive phase, the system will thus generate response functions {uk(s)}K
1

as a weighted sum of feature functions, {ah(s)}H
1 :

uk(s) =
H∑

h=1

ckhah(s) , k = 1, 2 . . . K
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Or in matrix notation:

uk(s) = cka(s) (6.1)

The argument, s, is meant to indicate that ah and uk are views, or representa-
tions of the underlying state of the external world. The matrix ck implements a
static reactive memory, and contains a set of weights that will be generated during
the training phase. The response variable, uk(s), and the reactive memory matrix,
ck, are indexed, since the network will usually have several outputs.

6.1.4 Localised inputs

As stated earlier, a linear, single-layer network can solve non-linear problems if we
ensure that the inputs are localised in the response dimension (see figure 6.1). If
we know that the input data is in compact form, we can increase the locality by
applying channel coding (see chapter 4).

For situations where we can expect several simultaneously active features, and
features that are active in more than one local region of the response dimension, it
might also be advantageous to look at coincidences, or covariant combinations of
sensor channels. Covariant combinations are constructed from the sensor channel
vector, x, which is simply a list of the sensor channel values {xs}S

1 . The feature
vector, a, is constructed from x as all unique combinations of sensor outputs:

{ah}H
1 = {xixj : 1 ≤ i < j ≤ S} (6.2)

This corresponds to the top right half of the outer product matrix:

xxt =




x1x1 x1x2 x1x3 . . . x1xS

x2x1 x2x2 x2x3 . . . x2xS

x3x1 x3x2 x3x3 . . . x3xS

...
...

...
. . .

...
xSx1 xSx2 xSx3 . . . xSxS




For a network where features are constructed as covariant combinations of
sensor channel values, the number of features, H, is related to the number of
sensor channels, S, as:

H = S(S − 1)/2

6.1.5 Localised outputs

The example of response generation in figure 6.1 works fine if the stimuli originate
from a channel coded compact variable. However, the fact that the response we
have generated is a compact variable could lead to complications.
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If the system is an object recognition system with image features as stimuli,
each response state could be seen as a description of the object at a certain view.
By prescribing a compact response, we would force the system to merge all views
at varying strengths. This will lead to poor robustness, and sensitivity to noise.

We could instead use localised responses by channel coding the desired re-
sponse. Each response can now be seen as a template for a specific view of the
object.

As discussed in chapter 4, channel coding of a response is an elegant way to
design a system that can deal with multiple hypotheses, as well as give a “no re-
sponse” statement when appropriate. The channel coded responses will be grouped
in a vector u of size K. This vector is called a response mode, and there will usually
be several such response modes within one system.

By specifying that the responses should be localised, we can improve the robust-
ness of the system, since only a few features will be used to define each response.
This means that a random disturbance on the input side will only have a local
influence on the response. An other reason why the robustness is improved is that
when the response functions are overlapping, the actual response statement will
be distributed across a few of the responses. This means that a random error can
be averaged out during the scalar reconstruction, as we will see in the experiments
to follow.

6.2 Batch mode training setup

During the exploratory phase (see section 6.1.1) we passively collect training data,
which will be used to find the weights in the C matrix during a batch mode training.
During the batch mode training, we can thus assume that we have access to a set
of training data that enables the system to learn how to react in all situations it
might encounter:

U =


 u1 · · · uN


 A =


 a1 · · · aN




The rows in A and U can be seen as samples from feature functions, ah(s),
and response functions, uk(s). Each row in A will be denoted ah, and each row in
U, uk. These vectors contain samples that describe the mapping we want to find.
Individual elements of the matrices U and A are denoted ahn and ukn respectively.

6.2.1 Learning as a search

The batch mode training can be seen as a search for a solution to the equation:

U = CA (6.3)

The solution we want to find is, as we shall see, not the conventional least
squares solution.
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In order to reduce the amount of data we have to handle simultaneously, we
will exploit the fact that this problem can be solved one response at a time, i.e:

uk = ckA (6.4)

This sub-problem is visualised in figure 6.2: We want to model a response
function as a weighted sum of feature functions.

response

Figure 6.2: Desired response (dashed), and the feature functions (solid).

Note however that figure 6.2 does not show the whole truth. Since the space
in which a feature function is defined generally is multidimensional, figure 6.2 just
shows the special case of a one-dimensional trajectory in stimulus space.

The solution to the training problem is visualised in figure 6.3. Note that since
the feature functions have a slight overlap in this example, the individual feature
functions are always lower in magnitude than the response function.

response

Figure 6.3: Weighted feature functions (solid) and their sum (dashed).

6.2.2 Sparse and non-negative coefficients

If we should decide to solve the optimisation problem (equation 6.3) as a regular
least square fit, we would end up with a matrix, C, that is filled with mostly non-
zero coefficients, of both excitatory (positive), and inhibitory (negative) nature.
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The coefficients in the matrix will also typically be quite large, since adjacent
features of excitatory and inhibitory nature will compete. While such a matrix
would usually produce a very accurate result for the samples within the training
set, the interpolating abilities of the network is not necessarily that good.

The ability to interpolate can be improved by restricting the coefficients in C
to positive values. This will in effect exclude all inhibition, and thus remove the
competition between excitatory and inhibitory features. An other advantage with
non-negative coefficients is that we typically end up with fewer non-zero coefficients
than we do when we allow negative weights. For typical learning situations the
amount of non-zero coefficients in C will be below 10%.

One problem is still left though. We can easily end up with quite large values
for some coefficients. This typically indicates that the samples of the feature
function in question lie far from the receptive field centre. In other words, the
samples we have do not sufficiently well describe the shape of the feature, and for
samples outside the training set, we could encounter responses that are way above
the desired response, specified during training. This phenomenon is referred to as
supernormal stimuli in biology. To reduce this effect, we simply impose an upper
limit on the coefficients.

min
0≤ck≤ε

‖uk − ckA‖ (6.5)

We have now arrived at a bounded least-squares problem (see equation 6.5).
Such a problem can be solved by a bounded least-squares optimiser, such as
sblsreg [1].

6.2.3 Notes on system size

In principle there are three parameters that influence the size of a training problem:
The number of samples N , the number of features H, and the number of responses
K.

In practise, we have to make sure that the number of samples is at least as
large as the number of responses, i.e. N ≥ K. There is however no such restriction
relating the number of features with the number of samples, since we will usually
have lots of features active simultaneously.

6.3 Feature selection

The number of sensor channels needed to describe an aspect of an image sufficiently
well will usually result in a large number of features. For a network where features
are constructed as covariant combinations of sensor channel values, the number of
features, H, is related to the number of sensor channels, S, as H = S(S − 1)/2.

Thus, even for one-dimensional input data, the size of the feature vector a can
be quite large (most learning problems of interest have H values that are above
1000).
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Due to the large size of the learning problems, direct application of a bounded
least-squares optimiser will in many cases be very time consuming. Thus, we will
now present a method to reduce the size of the optimisation problem.

If we look at figures 6.2 and 6.3, it is immediately apparent that those feature
functions that lie outside the non-zero range for the response function should
always have zero coefficients. It is even reasonable to assume that those features
that have the major part of their non-zero values outside the non-zero range for
the response function are not useful to model the response. We will now put
this simple observation to practical use, as a means of reducing the optimisation
problem (equation 6.5).

Using the step function:

us(x) =
{

1 x ≥ 0
0 otherwise (6.6)

we can express how large a part of a feature function ah(s) is within the non-
zero range of the response function uk(s) that we want to model:

mh+ =
∫

us(uk(s))ah(s) (6.7)

In the same way we can find out how large a part of the feature function ah(s)
is outside this range (see figure 6.4):

mh− =
∫

(1 − us(uk(s)))ah(s) (6.8)

Using the samples from the feature and response functions, we estimate mh+

and mh− as:

mh+ ≈
∑

us(ukn)ahn = us(uk)aT
h (6.9)

mh− ≈
∑

(1 − us(ukn))ahn = (1 − us(uk))aT
h (6.10)

Now we have a measure of which features we can safely ignore when solving
equation 6.5; we simply ignore all features for which mh− is larger than mh+ (see
figure 6.4).

In order to reduce the equation system, and to be able to expand it again in a
simple way, we first create an identity mapping of size H ×H:

I =


 1 0 · · ·

0 1 · · ·
...

...
. . .




From this matrix we now remove those rows in which the difference mh+−mh−
is negative. We will call the resultant matrix a feature selection matrix:
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Figure 6.4: Criterion for feature selection.
The top graph shows a response, and the bottom graph shows how the feature
function is split in two halves (with integrals mh+ and mh−).




...
mh+ − mh−

...


 =




−0.12
·

−0.05
−0.82

...


 ⇒ Rk =




1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .




The problem we had to solve for each response (equation 6.5) can now be
reduced to:

min
0≤cR

k ≤ε

∥∥uk − cR
k AR

k

∥∥ (6.11)

Where cR
k and AR

k are reduced variants of ck and A created using the feature
selection matrix, Rk:

cR
k = ckRT

k , AR
k = RkA

Once the equation solver has found a solution cR
k we can inflate this to find

the corresponding row in C:

ck = cR
k Rk
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If the system setup is such that we have an abundance of features, we could
even afford to remove all features that are active outside the non-zero range of the
response. That is, we could remove all features for which mh− > 0.

6.4 The Hebb rule

We will now present a quick, and very simple way of finding an approximate
solution to the weights in the C matrix, based on the Hebb rule. The Hebb rule
is the principle that if two cells are active simultaneously their connections should
be strengthened [30]. In our case this means that if a feature and a response are
active simultaneously, the response can be modelled using the feature.

Most implementations of the Hebb rule involve making an adjustment to the
weights proportional to the product of the feature and the response. This is
commonly referred to as the outer product rule or the generalised Hebb rule [2]. If
we assume that one feature and response sample (u, a) is enough to calculate the
weight matrix, C, we can derive the generalised Hebb rule as:

u = Ca (6.12)

uaT = CaaT = C‖a‖2 (6.13)

C =
uaT

‖a‖2
(6.14)

When combining several samples, we simply average contributions of this form:

C =
N∑

n=1

ηunaT
n = ηUAT (6.15)

That is, we sum a set of Hebbian contributions, each scaled by η. The scaling
has to be computed afterwards, since it, amongst other things depends on the
number of samples, N . For this reason this variant of the Hebb rule is clearly in-
appropriate as an on-line rule. However, in batch mode we could still use equation
6.15 as a coarse initial solution.

The scaling, η, can be found in a fairly straightforward manner once we have
made the summation. We can then simply make a “test run” of the system to find
out how we should scale the coefficients in C:

C∗ = UAT

U∗ = C∗A

If we assume that this response U∗ is correct, except for the scaling η, we can
now find η through a least-squares fit for each response:
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uk = ηu∗
k

η =
uku∗T

k

u∗
ku

∗T
k

(6.16)

6.4.1 Uneven sample and feature density

The application of the generalised Hebb rule has the advantage that the solution is
very quickly computed. Often however, it can produce results that do not resemble
the shape of the response signal very well. Three common situations when this
happens are:

1. when features are unevenly spread out across the response domain, with
much higher density in some places. (See figure 6.5, left)

2. when the samples are unevenly distributed among the features. (See figure
6.5, right)

3. when there are too few samples, especially when there are no samples near
the peaks of the feature functions.
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Figure 6.5: Uneven feature density, and uneven sample density.
Left: Top graph shows the positions of the feature function peaks. Bottom graph
shows the desired response (solid), and the actual response (dashed) with the feature
function density above.
Right: Top graph shows the sum of all samples for each feature. Bottom graph
shows the response obtained from the outer product rule (dashed) compared with
the desired response (solid) with the sample sums above.

Application of a bounded least squares solver does not have these problems,
and we shall see in a later section how we might extend the outer product rule
approach to account for these situations as well.

However, the existence of these phenomena (at least cases 2 and 3) might not
be all bad though. If the magnitude of the response is used to encode the certainty
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of the response, the outer product rule is actually very accurate. When we have a
high density of feature functions, we actually know with higher certainty that the
response is correct, and a larger magnitude in the response can be used to reflect
this.

We actually know very little about those features that have no samples near
their peaks. For instance, in the one-dimensional case we do not know whether
the peak is to the right, or to the left of the sample. Choosing not to include this
feature much (as will happen with the outer product rule) might actually be a
wise move, since the feature might otherwise invoke a much stronger response for
stimuli we have not yet encountered.

If our system was an active autonomous system, it could detect the lack of
samples, and then actively explore the response state in question.

6.4.2 Correlation and causation
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Figure 6.6: The flattening phenomenon when applying the outer product rule.
The response obtained using the outer product rule (dashed) compared with the
desired response (solid).

An other problem with the generalised Hebb rule is that even for the most
simple cases the net will produce response curves that are slightly flattened out.
(See figure 6.6).

The reason for the flattening is that a feature-response correlation does not
always imply that a feature is useful for modelling a response. This is a well known
phenomenon in statistics, and is usually formulated as follows: Correlation does
not imply causation.

The problem is most easily understood if we take a look at the cause-effect
diagram (See figure 6.7). The outer product rule considers only the case {A,A},
when both feature and response are active simultaneously. However, stating that
a feature can model a response involves all four quadrants of the diagram. For
instance, a feature might occasionally be active simultaneously with the response
(case {A,A}) but is also active when the response is not (case {I,A}).

The conclusion to be drawn from the cause-effect diagram, is that choosing to
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Figure 6.7: The cause-effect diagram.

use a feature to model a response should also consider the case when the response
is inactive and the feature is active. A feature-response relationship can always be
said to either belong more to case {A,A} or more to case {I,A}. In the former
case we should have a weight in the corresponding row of C, in the latter case we
should not.

The other two cases ({I, I} and {A, I}) need not bother us now, we can only
hope that an other feature can model the response in those cases.

The flattening phenomenon can be dealt with using the feature selection de-
scribed in section 6.3, or using an iterative optimisation scheme.

6.4.3 An iterative learning scheme

The learning scheme used in the experiments to follow has been developed by
Granlund [19]. Basically it’s an iterative scheme where the response errors are
“sampled” by the feature functions in the same way as the response is “sampled”
by the feature functions in the generalised Hebb rule (see equation 6.15). The
optimisation is quite fast, provided that the sparsity of the inputs and outputs is
utilised, and in general it converges after a few hundred iterations.
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6.5 Experiments with COIL-100

The experiments described in this section use the COIL-100 database [45]. This
database (see http://www.cs.columbia.edu/CAVE) contains 100 objects of vary-
ing shape and colour (see figure 6.8). Each object has been placed on a motorised
turntable, and has been photographed at 72 different views, 5◦ apart, and stored
as 128× 128 pixel RGB bitmaps. The COIL-100 database has previously [45, 64]
been used to evaluate object recognition systems.

Figure 6.8: Images in the COIL-100 database.
Objects are numbered row by row, from 1 to 100, starting at the top-left corner.

Rather than discrimination between different objects, we have chosen to illus-
trate a more subtle problem within view centred modelling: Continuous description
of the orientation of an object.

None of the experiments have utilised the colour information present in the
images, in order to demonstrate the power of the shape features used.
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Figure 6.9: Four views of COIL-100 object #60.

Figure 6.10: Input DIV features.
Left: Magnitude of DIV responses for the first view. Centre: Interpretation of
DIV response argument. Right: The complex number at local maxima is shown as
a vector.

6.5.1 Initial experiment

To illustrate the performance of the associative network, we have used object #60,
a telephone (see figure 6.9).

In the training phase, the system is shown every fourth view of the object, and
learns to associate the features at each view with a desired response, which in this
case is the rotation angle of the turntable. Object #60 was chosen since it is fairly
complex, which also makes each view sufficiently different from the others.

6.5.2 Input features

As input to the associative network we have used responses from a DIV operator
[34] designed to find high curvature points in image transforms describing local
orientation. This is a descriptor which is well suited to associative learning, as it
is sparse and very robust.

The spatial size the operator used is σ = 5.5 (The σ parameter corresponds to
the standard deviation of a Gaussian kernel applied on the original image). These
responses are down-sampled to 32 × 32, yielding a total of 1024 feature values.
The response for the first view of object #60 is shown in figure 6.10. The response
from the DIV operator is a complex number, with the magnitude describing the
amount of curvature in the local image region. The argument defines a vector that
points in the corner direction.

The DIV responses are then channel coded, by separating each complex number
in the real and imaginary parts, and further into positive and negative parts. This
gives us a total of 4×1024 = 4096 input features to the associative network. These
features are stored in a vector a. This may appear like a great deal of data, but
it really is not, since the responses from the DIV operator are sparse, and thus
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most points do not require any values to be stored. The sparse matrix toolbox in
Matlab has been used to utilise the sparsity of the data.

6.5.3 Specified responses

The desired response for the system is the angle from which we view the object, ϕ.
This response is also channel coded as cos2() responses in a modular arrangement.
Initially we will use K = 5 channels with an angular overlap of ω = π/3:

uk(ϕ) =

{
cos2(ωd(ϕ− ϕk)) adist(ϕ,ϕk) < π

2ωd

0 otherwise

where

d =
K

2π
and ϕk =

k − 1
d

The parameter d specifies the channel distance, and ϕk are the channel centres,
distributed along the angular interval [0, 2π[. The function adist(ϕ1, ϕ2) returns
the angular distance between the arguments.

These channels form the desired response vector u =
(
u1 u2 . . . uk

)
.

6.5.4 Training

The network is trained on every fourth view, and evaluated on all views. The
network responses are shown in figure 6.11.
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Figure 6.11: Network responses.
Top plot shows desired response no 2 (dashed), and the network output (solid).
Bottom plot shows all five responses.



62 Associative learning

The individual response channels might not look too impressive. The final
estimated angle however, takes the partially redundant data from three consecutive
channels into account, and the resultant reconstruction is consequently much more
robust to variations within the feature set (see chapter 4 for details on how to
perform the reconstruction). The reconstructed view angle is plotted in figure
6.12. As can be seen, the error is always less than 15◦.

The bottom plot of figure 6.12 shows the response magnitude, i.e. the estimated
height of the peak. When the system lacks input features, this value will drop.
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Figure 6.12: Reconstruction error.
Top plot shows desired view angle (dashed), and the network output (solid). The
error is always less than 15◦. Bottom plot shows the response magnitude, which is
an indication of confidence.

The training time, using a fast iterative algorithm, for 5 response channels and
300 iterations is 51 seconds on a SUN Ultra-60 at 296 MHz. The training time
is roughly proportional to the number of response channels, the average number
of non-zero feature channels, and to the number of samples. If we set low feature
values to zero, the training time will be reduced considerably, since the features
are sparse and thus mostly close to zero anyway. Removal of low feature values
normally do not have noticeable effects on accuracy.

6.5.5 Varied number of responses

The number of response channels can be tuned to the particular training situation
to increase the robustness of the system. Figure 6.13 shows RMSE (Root Mean
Square Error), MAE (Mean Absolute Error), and how often the absolute error has
deviated further than 5◦, as a function of the number of response channels K.

All estimates obtained lie well inside the 20◦ error limit.
The extreme case of K = 18 response channels in figure 6.13 corresponds to

one channel for each example in the training set. As can be seen in the figure, the
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Figure 6.13: Reconstruction error as function of K.
Left to right: RMSE, MAE, and number of times error exceeds 5◦

reconstruction is quite accurate for a much smaller number of response channels.

6.5.6 Varied sample density

A crucial aspect of the network is its ability to interpolate between the views
it has been shown during the training phase. Since the responses are slightly
overlapping, they can be said to define a metric or a local measure of distance to
a set of prototypes. Provided that everything works as it should, we should have
a gradual decrease in performance, as we decrease the number of views.
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Figure 6.14: Varied sample density (ω = π/3).
Left to right: RMSE, MAE, and number of times error exceeds 5◦.
Thick: training on all views. Thin: 10◦, 15◦, 20◦, 25◦, and 30◦ view distance.

As can be seen in figure 6.14 the network performance is acceptable until the
view distance becomes greater than 20◦. The abrupt change at 25◦ is probably
due to the fact that a rotation 25◦ moves the extent of a DIV response more than
one grid distance away in the 32 × 32 feature array.

6.5.7 Continuous function mapping

As a comparison we will now illustrate the advantage with localised, partially
redundant responses. Figure 6.15 shows the response after training with a contin-
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uous response (the straight dashed lines in the plots). The response in these tests
has been set to the view angle in radians plus a constant offset of 1.

First we should note that it is far from obvious that this training procedure
should work at all. The fact that it does work is most likely due to the DIV
features being a very good choice of inputs. As previously stated, a good feature
should be localised in state-space. In the present setup this means that a feature
should not reappear in several of the views, unless they are adjacent.
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Figure 6.15: Continuous function mapping.
Left to right: 5◦, 10◦, 15◦, and 20◦ view distance.
Dashed: desired response. Solid: network response.

We now compute the error measures previously used for these graphs as well:

Distance 5◦ 10◦ 15◦ 20◦

RMSE 0.200026 0.324995 0.379816 0.501304
MAE 0.107731 0.12961 0.196327 0.276713

AE > 5◦ 31 28 33 40
AE > 20◦ 2 3 12 19

If we compare these numbers with the graphs in figure 6.14, we see that the
error when the system is shown all views is now actually greater than the error
with a 20◦ view distance in figure 6.14. As we reduce the number of samples it
gets even worse.

The increased robustness with localised, distributed responses can be much
attributed to the fact that the response is represented in a distributed form, shared
over several channels at a time. Since the individual errors in the responses tend
not to correlate, their influence will be reduced in the reconstruction. The same
phenomenon is used in noise reduction through averaging.

6.5.8 Non-zero coefficient ratio

An important aspect of the associative networks is that the connections should be
sparse. The degree of sparsity of the C matrix can be measured using the non-zero
coefficient ratio r, which is defined as follows:

r =
1

HK

∑
k

∑
h

h(chk) where h(chk) =

{
1 if chk > 0
0 otherwise

(6.17)
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Figure 6.16 (Left) shows a plot of the non-zero coefficient ratio against the
number of responses K for three different values of the overlap, ω.1 As we can
see, the number of non-zero coefficients drops when the number of responses is
increased. This phenomenon can be used to control the sparsity of an associative
network.
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Figure 6.16: Non-zero ratio as function of K.
Left: r as a function of K Right: rK as function of K.
Solid, dashed, and dash-dotted lines correspond to ω = π/3, π/4, and π/5 respec-
tively.

If we multiply the non-zero ratio, r, with the number of responses, K, we
obtain the plots in the right half of figure 6.16. As we can see, the relationship
after an initial dip, is approximately linear. For the current experiment, we obtain
the following relationships through least-squares estimation in the linear section
of the plots:

Overlap Relationship
π/3 rK ≈ 0.4810 + 0.0123K
π/4 rK ≈ 0.6452 + 0.0100K
π/5 rK ≈ 0.7508 + 0.0135K

The reason why the product rK is not constant is probably the fact that
the response channels are overlapping. As more response channels are added,
individual features will tend to be used to model more than one response. Note
that no significant change in the slope of the curves can be attributed to the
overlap, ω. Rather, experiments on other objects indicate that the slope is object
dependent. We can also note that the amount of non-zero coefficients seems to be
linearly dependent on ω.

6.5.9 Increased overlap

As we saw in section 6.5.7, a distributed representation improves the robustness of
the network. The question is, will an even more distributed representation work
still better? In order to find out we will now try other values of the overlap ω.
Figure 6.17 shows plots corresponding to the ones in figure 6.14, but with ω = π/4,
and π/5. As can be seen, the improvement is negligible until the view distance
exceeds 20◦. Since increased overlap normally means more non-zero coefficients in

1For these plots the network has been trained using all 72 views. If fewer number of views
are used, similar but increasingly noisy curves will be obtained.
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the network (see section 6.5.8) we conclude that, at least for this relatively noise
free data-set, overlaps larger than π/3 are not worth the cost.
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Figure 6.17: Varied sample density (ω = π/4, and π/5).
Left to right: RMSE, MAE, and number of times error exceeds 5◦.
Top: ω = π/4. Bottom ω = π/5.
Thick: training on all views. Thin: 10◦, 15◦, 20◦, 25◦, and 30◦ view distance.

6.5.10 Other COIL-100 objects

In order to show that the associative networks work on other objects than #60,
we will now try a selection of other objects from the COIL-100 database. Just
as we did with #60 in figure 6.13, we will vary the number of channels between 3
and 18, but keep the view distance fixed at 20◦, and the overlap at ω = π/3.

For many of the objects it is impossible to tell the views apart, even for a
human viewer, since they look the same from several different views. The error
measures for some of the objects that have sufficiently different views, are shown
in figure 6.18.

The error measures for some of the objects that did not work are shown in
figure 6.19 (top). These objects look very similar in different views, but there are
de-facto differences. The results can thus be improved by showing the network
all 72 views. The network will then be able to detect features that reappear in
several views more reliably, and exclude them from the linkage vector, C. The
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Figure 6.18: Reconstruction error class 1 and 2.
Top: Objects #3, #60, and #85, plotted as solid, dashed, and dash-dotted.

Bottom: Objects #14, #52, and #74, plotted as solid, dashed, and dash-dotted.
Left to right: RMSE, MAE, and number of times error exceeds 5◦.

result when the network is shown all views for the same three objects is shown in
figure 6.19 (bottom).
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Figure 6.19: Reconstruction error class 3.
Objects #02, #10, and #68 are plotted as solid, dashed, and dash-dotted.

Top row: Training with 20◦ view distance.
Bottom row: Training on all 72 views.
Left to right: RMSE, MAE, and number of times error exceeds 5◦.
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Note that even though the examples shown here do work, a specification of the
response as view angle is dangerous, as it is often an ill posed problem, especially
for many synthetic objects.

6.5.11 Pruning of input features

We will now investigate the effect of setting input features below a certain threshold
to zero. Figure 6.20 shows average estimated PDFs for the DIV features of object
#60. As can be seen, the features are mostly zero.
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Figure 6.20: Estimated PDF of DIV features.
Left: Soft histograms of the DIV features for object #60.

Right: Logarithmic plot of same data.
Solid lines are average PDFs for all features, dashed lines are average PDFs for
those features that at some point raise above 0.95.

We will now perform a pruning of the input features. i.e.

âk =

{
0 if ak < thr
ak otherwise

We will vary the value of thr in the range [0, 1], and look at some of the
performance measures used before. The results of this experiment are plotted in
figure 6.21.

As we can see, the training time can be much reduced by applying even a low
pruning threshold. As mentioned earlier, the sparse matrix toolbox in Matlab
has been used for these experiments, and this merely tell us that the Matlab
routines work as they should. From the plots we can also see that the increase in
mean absolute error (MAE) is relatively small until the threshold rises above 0.5.
The number of outliers (AE > 5◦) however rises more quickly, and thus pruning
should be used with care if the processing to follow does not deal with outliers in
some way.

The plots of the non-zero coefficient ratio (r) all exhibit an interesting peak.
The reason why we have an initial rise in r is most likely that the feature functions
will tend to get a more localised support through the pruning. Due to the improved
localisation, more features are likely to be useful for modelling each response.
However, when we raise the pruning threshold above the peak of a feature function,
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the associative network will not see the feature at all, and thus no linkage coefficient
will be generated.
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Figure 6.21: Result of pruning on objects #60, #03, and #85.
Left to right: Training time (sec), MAE, AE > 5◦, and r plotted against the
pruning threshold.
Top to bottom: results for objects #60, #03, and #85.
Line styles: Solid, dashed, dash-dot, and dotted correspond to 5◦, 10◦, 15◦, and
20◦ view distance respectively.
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6.6 Experiments with views of a model car

We will now evaluate the associative networks on another data set, a model of a
car rendered in a number of different views and scales. These views were generated
during a master’s thesis at CVL [57]. Each image in the dataset is a 256 RGB
bitmap.

Figure 6.22: Different views of the model car.
Figure courtesy of Robert Söderberg [57].

The car is situated at the coordinate system origin, and the camera (always
pointing at the origin), is moved along part of the surface of a sphere (see figure
6.22). The camera location is specified through the angular coordinates φ, and θ,
which are defined as shown in the figure. The angle θ varies from 45◦ to 90◦ in 5◦

steps, while φ varies from 50◦ to −45◦ in 5◦ steps (see figure 6.23). This gives a
total of 20 × 10 = 200 views.
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Figure 6.23: Variations of the angles φ and θ.
Left and Right: φ and θ as functions of the sample number.

The advantage with this data set is that the views define a two dimensional
surface in state space, and not just a trajectory, as the views of the COIL-100
objects do.

6.6.1 Initial experiment

As a first test we define the responses using 10 channels for each response variable
(see figure 6.24). Just like in the experiments with the COIL-100 objects, we use
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DIV responses separated in four monopolar values as inputs. Again we go down to
a 32×32 array, this corresponds to a spatial size of σ = 11.1 for the DIV operator.
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Figure 6.24: Channel encoding of the angles φ and θ.
Left and Right: φ and θ channels.
Most channels are plotted as dotted in order to ease their discrimination.

We thus have N = 200 samples, K1 + K2 = 20 responses, and H = 4096
features. If we train our network with these data, and evaluate on the same
inputs, we obtain the results shown in figure 6.25. Note that the samples have
been rearranged in the φ plot in order to ease the estimation of performance.
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Figure 6.25: Reconstruction error for the angles φ and θ.
Left and Right: Reconstructed φ and θ responses.

We also calculate some of the performance measures used in the previous sec-
tion. To ease comparison, RMSE and MAE are computed in radians:

Variable r RMSE MAE AE > 5◦

φ 0.0629 0.0145 0.0112 0
θ 0.0621 0.0280 0.0220 1

As we can see, the non-zero coefficient ratio, r, is within the same range as in
the COIL-100 experiments, and the average errors, RMSE and MAE, are both
less than 1◦ for φ, and less than 2◦ for θ. The average errors are quite acceptable,
however, the fact that the estimation of θ fails to estimate the correct view even
though the training set equals the evaluation set is clearly unacceptable.

6.6.2 Covariant components

If we instead compute covariant components of the features, as suggested in section
6.1.4, we will end up with H = 4096×(4096−1)/2 = 8386560 features. This might
sound like a lot of data, but we can get away with this by thresholding the features
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before computing covariant combinations. The DIV responses normally lie in the
range [0, 1], and we now set all values below 0.1 to zero.

Before this operation we have a non-zero coefficient ratio of 0.4295 for the A
matrix. Afterwards we have r = 0.0644. After computing covariant combinations
we end up with a 8386560 × 200 matrix that is very sparse, r = 0.0041.

Using these inputs we obtain the results shown in figure 6.26. The performance
measures are collected in the table below.

Variable r RMSE MAE AE > 5◦

φ 0.0115 0.0021 0.0012 0
θ 0.0069 0.0074 0.0058 0

As can be seen, the use of covariant components greatly improves the ability
of the network to discriminate between different views. However, they should be
used with care, since they also make the feature functions much more localised, and
thus reduce the interpolating ability of a network. Evaluation of the interpolating
ability of an outer product network is left for future research.
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Figure 6.26: Reconstruction error for the angles φ and θ.
Left and Right: Reconstructed φ and θ responses.



Chapter 7

Sparse template matching

7.1 Product sums on sparse data

In chapter 2 we noted that biological vision systems seem to make use of sparse
coding of their inputs. We also stated that sparse coding reduces template storage
requirements, and improves matching performance. We are now going to examine
these claims more thoroughly by comparing matching results on some different
kinds of data.

A common artificial neuron model consists of a number of inputs and one
output (see figure 7.1). The computation of the output is a weighted summation
of the inputs, followed by a non-linear function. The computation performed by
such an artificial neuron can be seen as a form of template matching, where the
template consists of the weights, and the inputs are the data we compare with the
template.
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Figure 7.1: Simple neuron model.

The response of the neuron can be viewed as a degree of match. Ideally one
would like to have the maximum response when the input equals the template,
and a gradual decrease as they become more different. As we shall see, the repre-
sentation of the inputs, ak, matters a great deal for the performance of this kind
of matching.

7.1.1 Intensity based matching

We will now try to recognise an image region containing a car using various repre-
sentations of the inputs. We cut out a small region around the car in the intensity
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image (see figure 7.2), and use it as a template. (This corresponds to the weights,
wk, in the neuron model in figure 7.1). We then try to match all possible cut outs
of the intensity image with the template using a plain product sum (see equation
7.1). We have omitted the non-linear function s(m) (see figure 7.1) at this stage,
since it in general is a monotonous function, and thus only of interest when the
response is fed to another neuron.

match =
∑

k

wkak (7.1)
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Figure 7.2: Intensity image and template.

The result of this matching is illustrated in figure 7.3 (left). As can be seen,
product sums are very sensitive to the magnitude of the signal values. If we invert
the intensity values in both image and template, we end up with the match in the
next figure of the plot. This phenomenon (i.e. the fact that product sum matching
results in high match values at locations with high values, regardless of how the
template looks) is a serious problem.
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Figure 7.3: Intensity based matching.
Left to right: Product sum, Product sum with inverted intensity, Normalised
product sum, Normalised product sum with inverted intensity, SSD (inverted
colourmap).

One way to deal with this problem is to normalise the matching, i.e.

match =
∑

k wkak∑
k wk

∑
k ak

(7.2)

In this way the intensity relative to neighbouring intensities will be important,
instead of the actual values. This operation can be simplified somewhat by nor-
malising the weights wk beforehand, to ensure that they sum to 1. The division
by

∑
k ak however, has to be performed in each matching, and thus adds an extra
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computational cost. The normalised matching described here is a special case of
normalized convolution [36, 61, 12], where the response strength equals the re-
sponse certainty. The third and fourth images in figure 7.3 show the result of
normalised product sum matching. As can be seen, this result is much better.

An other way to reduce the influence of high intensities is to subtract the
average before matching:

match =
∑

k

(wk −mk)(ak −mk) where mk =
wk + ak

2
(7.3)

This expression can be rewritten into
∑

k −0.25(wk − ak)2. That is, we look
at the squared difference of image and template values. If we remove the constant
−0.25 we have arrived at an operation that is commonly known as Sum of Squared
Difference, SSD.

match =
∑

k

(wk − ak)2 (7.4)

The result of this operation is shown in figure 7.3 (right). Since good matches
are represented by low values in this method, we have inverted the palette to aid
comparison.

As can be seen in figure 7.3, the horizontal structure in the input image is also
present in the response of all the intensity based matching techniques.

7.1.2 Difference of Gaussian based matching

As mentioned in chapter 2, the centre-surround cells (or M-type ganglion cells)
of the mammalian retina perform an operation that is usually modelled as a Dif-
ference of Gaussian (DoG) computation. That is, each response is computed as
a difference between two low-pass filtered versions of the input. From an evolu-
tionary point of view, this computation must be to some kind of advantage to the
organism. One possible advantage is, as we shall see, that it aids product sum
matching.

Centre-surround cells are somewhat similar in function to SSD, since both look
at deviations from the average intensity value. An important difference however
is that centre-surround cells distinguish between locations above and below the
average. The use of this kind of monopolar signals seems to be widespread in
biological vision systems (see chapter 2), but is rarely found in machine vision. It
has however been advocated in [20].

We can model the behaviour of the centre-surround cells with the following
responses:

y0(x) = (s ∗ g1)(x) − (s ∗ g2)(x) (7.5)
y1(x) = max(0, y0(x))
y2(x) = max(0,−y0(x))
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Here g1 is a broad-band Gaussian1 kernel, while g2 is mainly of low frequency.
The resultant responses y1(x) and y2(x) are thus the positive and negative parts
of a band-pass response. We now attempt the same kind of operation as in the
intensity based matching: We compute DoG on the images and select templates
in the region corresponding to the car location (see figure 7.4). Note that since we
have two kinds of responses, we will have two templates, and two feature images
to match.
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Figure 7.4: DoG responses and templates.
Left: y1(x) and y2(x) images. Right: the two resultant templates.

The result of the matching is shown in figure 7.5. The first two responses are
the matching of individual templates with the corresponding images. The third
response is their sum, and the fourth is their product. The use of a product
can conceptually be seen as a requirement of match of both the positive and the
negative templates.
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Figure 7.5: DoG based matching.
Left to right: Positive centre-surround matching, Negative centre-surround match-
ing, sum of matches, product of matches.

As can be seen, the responses are more selective than those obtained from
intensity based matching, especially when the two matches are combined as a
product. However, the horizontal structure in the input image is also present in
the responses at this level.

It is interesting to note that the normalisation (see equation 7.2) in a sense is
similar to applying a difference of Gaussian operation before the matching. If we
see the normalisation as a preprocessing step:

1For efficient implementation, Gaussian kernels should be separated into two one-dimensional
kernels in the horizontal and vertical directions respectively.
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r0(x) = (s ∗ g1)(x) (7.6)
r1(x) = (s/r0)(x)

which is followed by a plain product sum matching, we note that large values in
the surrounding region will cause the response, r1(x), to drop. The same applies
to the DoG computation in equation 7.5. However, DoG is linear, while the
normalisation (see equation 7.6 above) is not.

7.1.3 Edge based matching

The next level of mammalian visual processing is usually modelled as Gabor type
wavelets. The approximate Gabor wavelets in the mammalian visual processing
exhibit variations in scale, orientation, and phase, but we will here settle for one
scale, horizontal and vertical orientations, and the ±π/2 phases.2 For computa-
tional efficiency we will also replace the Gabor wavelets with differentiating Gaus-
sians. A differentiating Gaussian filter in the x-direction can be separated into a
Gaussian low-pass filter3 gx and a small differentiating kernel dx = [ −1 0 1 ].
To improve the robustness of the result we also want to low-pass filter the result
with a Gaussian gy in the y-direction. If we make the two low-pass filters gx and gy

the same size, we can implement edge filtering in the x and y directions as a sep-
arable Gaussian low-pass filtering followed by a small differentiating convolution
for each direction:

e1(x) = (s ∗ gx ∗ dx ∗ gy)(x)
e2(x) = (s ∗ gy ∗ dy ∗ gx)(x)

⇓

e0(x) = (s ∗ gx ∗ gy)(x)
e1(x) = (e0 ∗ dx)(x)
e2(x) = (e0 ∗ dy)(x)

The standard deviation parameter, σ, of the Gaussian filters can be used to ad-
just the scale of these edge filters. Figure 7.6 shows the positive and negative parts
of e1(x) and e2(x) respectively, and figure 7.7 shows the corresponding templates.

The result of matching on this type of input is shown in figure 7.8. As can
be seen in the rightmost image, product matching on this kind of inputs produce
responses that are quite selective, yet they show a smooth transition from match
to non-match.

Thus, we can see that sparse inputs improve the quality of the matching, at
the cost of an extra preprocessing stage.

2One motivation for choosing ±π/2 phases is that they are potentially characteristic phases,
and thus likely to be stable over scale, see chapter 3.

3A Gaussian low-pass filter is a truncated and discretised representation of the function

gx(x) = 1
σ
√

2π
e
− x2

2σ2 .
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Figure 7.6: Edge responses.
Left to right: Positive horizontal, negative horizontal, positive vertical, negative
vertical.
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Figure 7.7: Edge templates.
Left to right: Positive horizontal, negative horizontal, positive vertical, negative
vertical.

7.1.4 Sparse template matching

As mentioned in chapter 2, the higher levels of mammalian visual processing tend
to employ increasingly sparse representations. As can be seen in figure 7.6, edge
responses are quite sparse. We will now illustrate that sparse coding the inputs,
not only improves the performance of the matching, but in many applications it
also reduces the computational load.

The key idea of sparse template matching is illustrated in figure 7.9. In the
intensity representation we have to verify the correspondence between image and
template in all template positions, but at the sparse feature representation we
only have to compare those features that are active in the template.
The reason for this is that in a product sum match (see equation 7.1) the template
coefficients, wk, with large magnitudes will dominate the result completely. Thus,
a pruning, or removal of low-magnitude coefficients in the templates will have little
impact on the result.
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Figure 7.8: Edge based matching.
Left to right: Sum of horizontal responses, Sum of vertical responses, Sum of all
responses, Product of horizontal and vertical responses.
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Figure 7.9: Sparse template matching.

In the next section we will demonstrate that the edge templates shown in
figure 7.7 can be made much more sparse, in a way that will hardly affect the
performance of the matching at all. The degree of sparsity is directly proportional
to the total computational load of the matching. If we for instance only use 1/50
of the template locations, the matching will be 50 times faster.

Note however that the sparse template matching approach is only useful when
the computational cost of sparse coding the image and template is smaller than
the cost of performing the matching. This is definitely the case in applications
where we want to match several templates to one image, since the sparse coded
image will only have to be computed once. Most template-matching based systems
of any degree of complexity will naturally require comparison of several templates
to the image.

7.2 Sparse adaptive templates for fast matching

This section contains material from the paper “Sparse adaptive templates for fast
matching”4, which describes an application of sparse template matching. Some
parts of the material has been left out, since it has already been covered in the
preceding sections.

The paper describes a window matching technique for use in estimation of ego-
motion (Ego-motion is the camera motion as computed from a sequence of camera
images) in a system with a moving camera. A major issue for such systems is the
real time requirement. We perform window matching by transforming image data
into sparse features, and apply a computationally efficient matching technique in
the sparse feature space. The gain in execution time for the matching is roughly
25 times compared to full window matching techniques such as SSD, MSD, and
MAD, but the total execution time for the matching also involves computation
of an edge image. The proposed matching technique is increasingly advantageous
when the number of regions to keep track of increases, and when the size of the
search window increases.

4The paper is currently under review.
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7.2.1 Introduction

This paper describes a window matching technique that has been developed for
the purpose of ego-motion estimation in the scope of the WITAS project [25].
Ego-motion is a well studied problem, and a common way to accomplish it is by
means of keeping track of local image regions [33].

Region tracking is the problem of estimating the displacements of local image
regions in a sequence of camera images. If we know the displacements of local
image patches, we can estimate the change in perspective, and with the additional
knowledge of some camera parameters, we can finally compute the camera motion.

The problem setup in ego-motion estimation provides us with a great deal
of useful a priori information. Region tracking is a much simpler problem than
general template matching, and correspondence in general. Some important as-
sumptions that can be made are:

• Due to the inertial constraints of the real world, it is reasonable to assume
that the displacements of image regions between two frames is limited, and
that the change of scale is gradual.

• Illumination changes in the scene can be assumed to be gradual, and in the
cases when they are sharp (for instance shadows) they will not change all of
the scene at once.

• Not all regions in the scene exhibit the aperture problem.

We thus start our region tracking by selecting a set of neighbourhoods that do
not exhibit the aperture problem (more on this later). Some representation of the
selected neighbourhoods is stored as templates, and these templates are used as
long as possible. When the mismatch between template and scene becomes too
large (for instance due to occlusion, illumination changes or scale change), a new
template is selected.

Region tracking is often performed by block matching methods, such as SSD5

(Sum of Squared Difference of the pixels in both regions), for instance in video
coding applications [46]. We will instead make a transformation of the image data,
and then apply a less computationally intensive matching technique.

7.2.2 Sparse coding

Sparse coding is a way to transform data in such a way that patterns are easy to
detect. Typically inputs and outputs are represented in a channel representation
[22]. That is, signals are limited, and positive. A non-zero channel value signifies
something, while a zero response means “no information”. In our case the input
is an intensity image. Here each pixel can be viewed as a channel, and a non-zero
response indicates that light has hit the corresponding sensor.

David Field [13] discusses sparse coding of natural images in depth, and con-
trasts it to compact coding techniques such as PCA. The goal of compact coding

5An equivalent term is MSD (Mean Squared Difference). Another similar method is called
MAD (Mean Absolute Difference).
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is to minimise the number of output nodes, by concentrating the signal entropy in
a small number of nodes. Sparse coding, on the other hand tries to concentrate
the information content in the active nodes. The total number of nodes is allowed
to remain the same as in the input, or even to increase.

There are several proposed optimisation schemes to find sparse transforms for
a given set of input data, for instance [14, 48, 5]. The mammalian retina and
primary visual cortex also seem to make use of a similar optimisation technique
[13].

The result of sparse coding is a representation of the input as a combination of
a few commonly occurring sub-patterns or independent components. For natural
images, these sub-patterns consist of line and edge segments in a number of scales
[48, 5], and this is our motivation for choosing edge detection as a first filtering
of our input. Other kinds of sparse data, such as the divergence and rotational
symmetries computed in [34] could of course also be used by the template matcher.

7.2.3 Edge images

The sparse features we will use are edge filter responses. To compute an edge
image is fairly straight-forward, and it can be made computationally efficient if
we use separable differentiating Gaussian filters (see section 7.1.3). The following
computations are needed:

e0(x) = (s ∗ gx ∗ gy)(x)
e1(x) = (e0 ∗ dx)(x)
e2(x) = (e0 ∗ dy)(x)

The standard deviation parameter, σ, of the Gaussian filters can be used to
adjust the scale of these edge filters. Throughout this paper σ = 2.0 has been used.
The resultant Gaussian filter has 15 real coefficients, and thus our edge filtering
involves a total of 15 + 15 + 2 + 2 = 34 coefficients.

The sum of the magnitudes of the edge responses, e(x) = abs(e1(x))+abs(e2(x)),
is plotted in figure 7.10. This plot illustrates an important property of the infor-
mation representation in the edge images. As we can see, only a small fraction
of the image positions will have large magnitudes. If the matching of this kind of
data is performed as a product sum, a small fraction of the template coefficients
will have a dominating influence on the result. Thus, a pruning, or removal of
low-magnitude coefficients in the templates will have little impact on the result.

7.2.4 Template construction

Edge-image based matching is nothing new, but it has traditionally involved an
additional distance map computation [18]. The purpose of the distance map com-
putation is to obtain metric—a measure of how close we are to an edge in each
image position. By summing the distances to edges in all positions indicated as
edges in the template, we can obtain a measure that increases smoothly as we
move away from the location of the best match.
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s(x) e1(x) e2(x) e(x)

Figure 7.10: Edge image construction.
e1 and e2 have a colour map which displays positive values as bright, and negative
values as dark.

However, an edge image computed at low frequency already has a local dis-
tance metric: The highest values are always found at the edge location, while the
response magnitude slowly decreases as we move away from the edge. Thus, we
can avoid the distance map computation by using low frequency edge responses
instead.

An other difference in our approach is that we will not perform the matching
on the compact feature map e(x), but instead on four sparse feature maps, or
feature channels. When combining e1(x) with e2(x) to form e(x) we introduce
unnecessary confusion, and remove information that could aid the matching. Our
sparse feature maps are instead constructed as the positive and negative parts of
e1(x) and e2(x):

c1(x) = max(0, e1(x))
c2(x) = max(0,−e1(x))
c3(x) = max(0, e2(x))
c4(x) = max(0,−e2(x))

Here c1(x) and c2(x) signify dark-to-bright and bright-to-dark edges in the
x-direction respectively, while c3(x) and c4(x) signify edges in the y-direction.

To illustrate the sparse template construction, we start from a region in the
scene that does not have the aperture problem (see figure 7.11).
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Figure 7.11: A region without the aperture problem.
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Such a region can be found by first constructing a tensor image T(x):

T(x) =
(

e1(x)
e2(x)

)
· ( e1(x) e2(x)

)
We then average the tensor components in local image regions (this can be

implemented as a separable low-pass filtering) and select points with two large
eigenvalues [43]. This is equivalent to the Harris corner detector [28].

For 2× 2 matrices, the eigenvalues λ1 and λ2 (with λ1 ≥ λ2) can be computed
as:

a =
√

‖T‖2 + 2det|T|
b =

√
abs(‖T‖2 − 2det|T|)

λ1 = (a+ b)/2
λ2 = (a− b)/2

Since we know that λ1 ≥ λ2, points with two large eigenvalues can easily be
found by looking at local peaks in a λ2 image.

The positive and negative parts of the edge filter responses for the region
shown in figure 7.11 are shown in the top row of figure 7.12. The first step in the
sparsification of the templates is a directed non-max-suppression in each of the
templates. That is, we loop over the two vertical templates, and set all positions
that are smaller than either the neighbour above or below, to zero. The same
procedure is performed on the horizontal templates, but here the left and right
neighbours are checked.6

The directed non-max-suppression operation can be seen as a crude approxi-
mation of the lateral inhibition mechanisms found in biological vision systems.

A less crude, but more computationally demanding way to obtain this result
could be to detect characteristic phase as was done in chapter 3.

To control the sparseness of the templates, the remaining non-zero positions
are sorted according to magnitude, and those belonging to the largest percentile
are kept. In this process the two vertical templates are sorted together, as are the
two horizontal. We thus know that after the sparsification N1 + N2 = N3 + N4

(where Nk is the number of remaining coefficients in template k).
The bottom row of figure 7.12 shows the templates after directed non-max-

suppression and removal of everything except the top 2% percentiles of the hor-
izontal and vertical templates respectively. As can be seen, the operation will
produce a template in which the spatial extent of the ridges are kept, even for
very sparse templates.

This degree of sparsity works fine for smaller templates as well 7, and results in a
matching that is roughly 25 times faster than SSD. The total execution time for the

6Note that non-max-suppression destroys the local metric in the templates only. There still
are continuous variations in the edge responses we match the templates with, and this is what
gives us continuous responses.

7The limit seems to be about 15 × 15 for 2% templates. This implies a total of 5 + 5 = 10
coefficients, less is apparently not enough to describe the shape of the ridges.
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Figure 7.12: Sparsification of a template.

window matching algorithm should of course also include the edge-image creation.
However, an important thing to note here is that the execution time for sparse
template matching is not as sensitive to the size of the search window as SSD. Nor is
the number of windows to match as important, and this fact is especially important
for estimation of perspective changes, where more displacement estimates mean
more robust estimations.

7.2.5 Sparse template matching

From e1 and e2 we extract the template regions t1 and t2. The corresponding
template channels are denoted tc1 . . . tc4. To formulate the matching procedure
we also add a conceptual index n, that loops over the template coefficients left
after the sparsification. We can now write the product-sum matching as:

mv =
N1∑

n=1

tc1(xn)c1(x0 + xn) +
N2∑

n=1

tc2(xn)c2(x0 + xn)

=
N1+N2∑

n=1

max(0, t1(xn)e1(x0 + xn)) and: (7.7)

mh =
N3+N4∑

n=1

max(0, t2(xn)e2(x0 + xn)) (7.8)

Since the product sum can be written using e1, and e2, we do not have to store
the positive, and negative parts of the edge responses separately. The separation
is only conceptual.

The only thing that now makes this operation different from a plain product
sum is the max operation in equations 7.7 and 7.8. The meaning of this max
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operation would be that mismatches are not ranked (see figure 7.13). This is a
characteristic property of monopolar product-sum matching.

Template:

× × ×

Image:

m = max(0, tnen(x)) m > 0 m = 0 m = 0

Figure 7.13: Edge image matching.

It turns out however, that the removal of the max operation hardly affects the
response near a peak at all. In order to save some time, we will thus compute the
matches as:

mv = max(0,
N3+N4∑

n=1

t1(xn)e1(x0 + xn)) (7.9)

mh = max(0,
N3+N4∑

n=1

t2(xn)e2(x0 + xn)) (7.10)

That is, we move the max operation outside the sum. The compound match
can now be computed as:

match = mv · mh (7.11)

This compound match requires a high degree of match for features in both
vertical and horizontal direction. As we can see, the max operations in equations
7.9 and 7.10 are needed, since large mismatches in both horizontal and vertical
directions would otherwise result in a high total match.

The result of this matching technique with the templates in the bottom row
of figure 7.12 is shown in figure 7.14. The leftmost image in the figure shows the
frame in which the matching has been performed (not the same as the one from
which the template was extracted), and the centre and right images show the mv

and mh responses respectively.
The compound matching result is shown in figure 7.15 together with the re-

sponse from a full edge-image product sum, and SSD. The SSD result has a colour-
map with low values shown as bright in order to aid comparison. Details of this
figure are shown in figure 7.16. This will hopefully illustrate that sparse template
matching produces results that are at least as useful as SSD. Both methods pro-
duce results that gradually increase near the peak–a sign of graceful degradation.
The smoothness of the peak in figure 7.16 is controlled by the σ parameter of the
initial low-pass filters gx and gy. The figures in this paper all use σ = 2.0.
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Figure 7.14: Matches in vertical and horizontal directions.

Figure 7.15: Sparse template matching response compared with edge-image prod-
uct sum, and SSD.

In a region tracking situation, we would like to keep our templates as long as
possible, since each time we select a new template we introduce an error. If we do
not use sub-pixel resolution coordinates, this error is in the range [−0.5, 0.5] pixel
in each dimension. Graceful degradation is very useful here, since we can use the
degree of match as an indication of when to select a new template. In the current
implementation new templates are selected when the degree of match deviates too
much from the expected value, i.e.:

Keep template if
match(T, I)
match(T,T)

∈
[
ε,

1
ε

]
(7.12)

Where ε = 0.9 or similar. Since match(T,T) is constant for each template, we
could simply divide all template coefficients with this value beforehand to simplify
the comparison. The normalisation described here is an approximation of the
normalised product sum described in section 7.1.1. Ideally we should divide the
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Figure 7.16: Detail of figure 7.15. Sparse template matching and SSD responses.
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match by the coefficient sums of the template and the image region, but since the
image content varies, this is computationally expensive.

The gradual increase near the peak in the response image implies that we could
use the response image to find the displacement with sub-pixel resolution. This
has been done, for instance in [43] and [18]. See appendix B for a description of
how this is done.

7.2.6 Sigmoid-like function

A common problem with product sums on edge images is that very sharp edges
will get very high responses, and will thus tend to dominate the result completely.
This problem can be dealt with by using normalised product sums (see section
7.1.1), but these have the disadvantage of increasing the computational load. It
is also dealt with to some extent by the directed non-max-suppression treatment
of the templates (see section 7.2.4), since this will tend to make the shape of the
edge ridges more important than their actual values.

An approach that is less computationally demanding than the normalised prod-
uct sums is to apply a sigmoid-like function on the edge image responses before
they are used. An example of such a function that has been found to be satisfactory
is:

n(x) = e1(x)2 + e2(x)2

f1(x) = sign(e1(x))e1(x)2/(500 + n(x))

f2(x) = sign(e2(x))e2(x)2/(500 + n(x))

The parameter 500 in the denominator applies to images in the range [0 . . . 255],
and Gaussian filters gx and gy that sum to 1.

The main advantage with this function is that it preserves the symmetrical
shape of the matching response near the peaks (see figure 7.16), contrary to most
non-linear functions operating on e1 and e2 separately.
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Figure 7.17: Sigmoid-like function (f1(e1) for e2 = 0).

The sigmoid-like function can be seen as a soft threshold of the edge data. I.e.
once the edge response is above a certain threshold it does not matter much how
much above the threshold it is (see figure 7.17). Since the variations in edge image
magnitude will become smaller when a sigmoid is applied, the decision threshold
for changing template will also have to be raised (see equation 7.12).
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One reason for not using a sigmoid-like function is the small amount of com-
putational overhead it adds. In the current implementation this is approximately
20% of the time needed to compute the edge responses. An advantage, compared
to the directed non-max-suppression approach is that non-max-suppression seems
to degrade the performance of subsequent sub-pixel-resolution methods slightly.

Of course there is also the option to use both a sigmoid-like function and
directed non-max-suppression. If a fast stable window matcher without sub-pixel
accuracy is sought, this is the way to go.



Chapter 8

Future research directions

8.1 End notes

As can be seen by browsing this thesis, this is a work in progress. At the moment,
there are two main directions in which the work is planned to progress.

8.1.1 Ego-motion estimation

The first area that will be investigated is development and expansion of ego-motion
estimation methods. This work will build on the sparse template matching tech-
nique described in chapter 7, as well as on a preliminary study of camera parameter
updates [15].

8.1.2 Associative networks

The second area to investigate is augmentation of the associative networks de-
scribed in chapter 6.

Temporal continuity and contextual information

The first area that will be addressed here is addition of temporal continuity con-
straints and contextual information. The networks described in this thesis are all
static1, and for more complex problems this is not a realistic approach.

Intermediate level network responses and place cells

The second issue to address within the area of associative networks is generation
of intermediate level network responses. For more complex problems this will be
a necessity. Intermediate responses should probably have a more relaxed specifi-
cation than those at the final level. They should however be guided by a need to

1They are static in the sense that they do not take the temporal order of things into account.
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model specific system states, and thus amongst others, the approaches described
in [3] and [38] will be investigated further.



Appendices

A Some theorems concerning cos2() channels

We will now have look at the values of a set of channels, and derive some general
results concerning channel encoding. We will use the same notations as earlier,
i.e. the first active channel will be called k, and the number of active channels will
be called N .

k k+1 k+N−1

Figure A.1: Valid range.
Valid range for local reconstruction.

Theorem A.1 If the channels ψk(s) through ψk+N−1(s) can be activated by a
single scalar, the scalar has to lie within the range k +N − 1 − π

2ω ≤ s ≤ k + π
2ω .

The validity of this statement is motivated by figure A.1. The lowest scalar
value that could have activated the channels ψk(s) through ψk+N−1(s) is one for
which the envelope function ψs(x) is just above zero at position x = k + N − 1.
This happens when the function just about touches the point k+N −1. Since the
function extends π

2ω in both directions from s, this happens when s ≥ k+N−1− π
2ω .

In the same manner we can see that the highest channel value occurs when the
envelope function only just touches the point k. This leads to an upper limit of
s ≤ k + π

2ω .
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Note 1 If we want to check consecutive groups of N channel values for a solution,
we should set one of the range limits to a strict inequality, to avoid duplicate
solutions when the channel value is exactly on the boundary of two intervals.
Note 2 If ω 6= π

n where n ∈ N+ we will have two types of intervals (see theorem
A.2). For these cases, every other solution interval will involve Nl channel values,
and Nh respectively. Since a large support solution is more robust, it is preferable,
the valid interval for small support solutions should thus be restricted to the range
between two large support regions. i.e. π

2ω − 1 ≤ s ≤ N − π
2ω .

Theorem A.2 The number of channels N activated by one scalar is related to
the overlap ω according to π

N+1 ≤ ω < π
N−1 .

If we look at the definition of the envelope function (equation 4.1) we see that
its non-zero interval is n+ π

2ω < s < n− π
2ω . The length of this interval is π

ω . Since
the start and the end of the interval has the function value zero, the worst case is
to let the interval start at an integer position, and end at an integer position. In
this case, the number of non-zero channel values becomes N ≥ π

ω − 1. The best
case is when the range is expanded an infinitesimal amount in each direction. This
leads to two more non-zero values, and the (now strict) inequality N < π

ω + 1.
This gives the following restriction on N :

π

ω
− 1 ≤ N <

π

ω
+ 1 (A.1)

This can be rewritten as a restriction of ω in a number of steps:

π

ω
− 1 ≤ N <

π

ω
+ 1 (A.2)

−1 −N ≤ −π
ω
< 1 −N (A.3)

N + 1 ≥ π

ω
> N − 1 (A.4)

1
N + 1

≤ ω

π
<

1
N − 1

(A.5)

π

N + 1
≤ ω <

π

N − 1
(A.6)

And we have arrived at the expression stated in theorem A.2.

Theorem A.3 The sum of a channel value vector
(
ψ1(s) ψ2(s) . . .

)
does not

depend on the value of s if ω = π/N , where N is an integer N ≥ 2.

To prove this theorem, we first define a complex valued function as:

vk(x) = ei2ω(x−k) (A.7)

With the properties:



A Some theorems concerning cos2() channels 93

Re [vk(x)] = cos(2ω(x− k)) (A.8)
Im [vk(x)] = sin(2ω(x− k)) (A.9)

The envelope function can now be rewritten as:

ψk(s) = cos2(ω(s− k)) = 0.5 + 0.5 cos(2ω(s− k)) =
= 0.5 + 0.5Re [vk(s)]

We can now rewrite the sum of a set of channel values:

N−1∑
n=0

ψk+n(s) =
N

2
+

1
2
Re

[
N−1∑
n=0

vk+n(s)

]
(A.10)

The complex sum in this expression can be rewritten as:

N−1∑
n=0

vk+n(s) =
N−1∑
n=0

ei2ω(x−k−n) = ei2ω(x−k)
N−1∑
n=0

(
e−i2ω

)n

(A.11)

for e−i2ω 6= 11 this geometric sum can be written as:

N−1∑
n=0

(
e−i2ω

)n

=
1 − e−i2ωN

1 − e−i2ω
(A.12)

The numerator of this expression is zero exactly when ω = nπ/N , for integers
n and N , N ≥ 2. Due to the constraint in theorem A.2, we can see that n must
be 1, and thus ω = π/N . From this follows that the exponential sum in equation
A.10 will become zero for these values as well.

We can now reformulate equation A.10 as:

N−1∑
n=0

ψk+n(s) =
N

2
for ω = π/N where N ∈ N, and N ≥ 2. (A.13)

Theorem A.4 The sum of a squared channel value vector
(
ψ2

1(s) ψ2
2(s) . . .

)
does not depend on the value of s if ω = π/N , where N is an integer N ≥ 3.

The proof of this theorem is similar to the proof of theorem A.3.
We first rewrite the squared envelope function as:

1In practice this does not happen, since this is equivalent to ω 6= nπ where n ∈ N, and such
solutions gives a basis that is under-complete.
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ψ2
k(s) = cos4(ω(s− k)) =

3
8

+
1
2

cos(2ω(s− k)) +
1
8

cos(4ω(s− k))

We then rewrite the sum of squares of our channel values:

N−1∑
n=0

ψ2
k+n(s) =

3N
8

+
1
2
Re

[
N−1∑
n=0

vk+n(s)

]
+

1
8
Re

[
N−1∑
n=0

v2
k+n(s)

]
(A.14)

The first complex sum in this expression is zero for ω = π/N , where N is an
integer N ≥ 2 (see equations A.11 and A.12).

The second sum can be written as:

N−1∑
n=0

v2
k+n(s) =

N−1∑
n=0

ei4ω(x−k−n) = ei4ω(x−k)
N−1∑
n=0

(
e−i4ω

)n

(A.15)

For e−i4ω 6= 1 (that is, ω 6= nπ/2 where n ∈ N)2, this geometric sum can be
written as:

N−1∑
n=0

(
e−i4ω

)n

=
1 − e−i4ωN

1 − e−i4ω
(A.16)

The numerator of this expression is zero exactly when ω = nπ
2N , for integers n,

and N , but again we can see that n = 2 must hold, according to theorem A.2.
Thus we again have ω = π

N , and the constraints on equation A.16 further restricts
this to N ≥ 3.

We can now reformulate equation A.14 as:

N−1∑
n=0

ψ2
k+n(s) =

3N
8

for ω = π/N where N ∈ N, and N ≥ 3. (A.17)

2In effect this excludes the solutions N = 1, and N = 2.
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B Sub-pixel peak location from a feature image

If the signal within a feature image varies slowly, the location of a peak in the
image is easily found by looking for the point with the highest match.

We can refine the peak location by looking at the ratios of the peak value, and
its eight immediate neighbours (see figure B.1). In order to do so however, we
must first assume a local signal model.

d

c(x  y )c

Figure B.1: Finding a peak with sub-pixel accuracy.

The model we will use is that the response, m(x, y) is proportional to the
Euclidean distance to the peak i.e.

m2(x, y) = M + α(x− xc)2 + α(y − yc)2 (B.1)

where M is an unknown offset, α is the proportionality constant, and (xc, yc)
is the sought peak location.

This gives us the following expression:

m2(x, y) =
(
x2 + y2 −2x −2y 1

) (
α αxc αyc M + α(x2

c + y2
c )

)t

(B.2)

Assuming a pixel distance of d as in figure B.1, and a coordinate origin at the
centre pixel location, we get the following equation system:




m2(−d,−d)
m2(−d, 0)
m2(−d, d)
m2(0,−d)
m2(0, 0)
m2(0, d)

m2(d,−d)
m2(d, 0)
m2(d, d)




︸ ︷︷ ︸
m

=




2d2 2d 2d 1
d2 2d 0 1
2d2 2d −2d 1
d2 0 2d 1
0 0 0 1
d2 0 −2d 1
2d2 −2d 2d 1
d2 −2d 0 1
2d2 −2d −2d 1




︸ ︷︷ ︸
W




α
αxc

αyc

M + α(x2
c + y2

c )




︸ ︷︷ ︸
p

(B.3)

With the solution:

p = W∗m (B.4)
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Where W∗ is the pseudoinverse of W. The advantage with this approach is
that W∗ stays constant as long as d does. For d = 1, we get

W∗ =
1
36




6 −3 6 −3 −12 −3 6 −3 6
3 3 3 0 0 0 −3 −3 −3
3 0 −3 3 0 −3 3 0 −3
−4 8 −4 8 20 8 −4 8 −4




Finally, we can compute the sub-pixel offset (xc, yc) as:

(
xc

yc

)
=

1
p1

(
p2

p3

)
(B.5)

Note that we actually only need the first three rows of W∗.
An other interesting observation is that p2 and p3 can be identified as first

order moments in the x and y directions respectively.
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SE-581 83 Linköping, Sweden, March 1999. Thesis No. 755, ISBN 91-7219-
441-3.

[13] D. J. Field. What is the goal of sensory coding? Neural Computation, 1994.
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