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1 Abstract

This report describes how the choice of kernel affects a non-parametric density estimation.
Methods for accurate localisation of peaks in the estimated densities are developed for
Gaussian and cos2 kernels. The accuracy and robustness of the peak localisation methods
are studied with respect to noise, number of samples, and interference between peaks.
Although the peak localisation is formulated in the framework of non-parametric density
estimation, the results are also applicable to associative learning with localised responses.

2 Introduction

Assume that we have a set of measurements, sn, which are drawn from a discrete distri-
bution contaminated with additive noise. The measurements are known to only assume
values in a limited range of the real axis i.e. sn ∈ [L1, L2]. Such a distribution will have
a probability density function (PDF) that looks something like figure 1. We now want to
estimate the distribution of the discrete variable in a robust and accurate manner. As we
shall see, an effective way to perform this estimation is to determine the locations of the
peaks in the distribution of sn.
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Figure 1: Example of PDF.
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Since we have no a priori knowledge of the distribution of the measurements, we make
a non-parametric density estimation, commonly referred to as a histogram computation.
When computing a histogram, we want to find a representation of the PDF as a set of
bin values, {hk}K

1 . Each bin value is the sum of a kernel function, Hk(sn), applied on the
samples.

hk =
N∑

n=1

Hk(sn) for each k = 1 . . . K (1)

For ease of computation the kernel function is often chosen as a rectangular function

Hk(sn) =


1 when |sn − ck| < L2 − L1

2(K − 1)

0 otherwise
(2)

Where {ck}K
1 is the set of bin centres, usually uniformly distributed across the range,

[L1, L2], of the variable under study (sn in our case).
The kernel function in equation 2 is undesirable, since bin value computation for a

single sample lacks a unique inverse (it is not injective), thus the reconstruction of peak
locations can not be very accurate when the number of samples, N , is low.

If the kernel function is known, we can make use of this knowledge in the estimation of
peak locations. This is evident from the expectation value of the bin values. For samples
sn ∈ F with the associated PDF f(x) the expected value of bin k is:

E

{
hk

N

}
= E {Hk(x)} =

∫
Hk(x)f(x)dx (3)

According to the definition of expectation value for a function of a variate, see for instance
[4]. This expression can be rewritten as a convolution:

E {Hk(x)} =

∫
H(ck − x)f(x)dx = (H ∗ f)(ck) (4)

where H(x) is a mirrored1 kernel function centred around x = 0, and ck is the current
bin centre. If we view the bin values {hk}K

1 as samples from the continuous function f(x),
we see that the rectangular kernel in equation 2 is undesirable, since it implies a violation
of the sampling theorem in the expectation sense (see also [1]). On the other hand, an
excessively smooth kernel will remove a lot of the details of the distribution f . Like in
other linear estimation methods we encounter a lower limit on the product of uncertainty
in position and in property. For this reason a common trade off is to use a Gaussian
kernel, since it is known have the smallest uncertainty product [2].

1Normally the kernel is symmetric, which makes the mirroring an identity operation.
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A kernel with a finite support directly implies a violation of the sampling theorem as
mentioned above, but if we choose to look only at peak locations, instead of the entire
density function, there is a way around this conflict. The cos2 kernels used in the channel
representation [5, 3], both have a compact support and a known inverse with respect to
peak locations [1], properties that seem promising for the application to our problem. In
the following sections we will make a comparison of peak localisation and interference
properties when using cos2, Gaussian, and the rectangular kernels in equation 2.

3 Local Scalar Reconstruction

If we want to detect several peaks in the PDF we have to make a local scalar reconstruction,
and to minimise the interference between different peaks, the support of the reconstruction
should be as small as possible. We will now derive such local scalar reconstructions for
both cos2 functions and Gaussians.

3.1 Local cos2 reconstruction

The channel representation is a unified way to represent a signal s, and an associated
relevance measure r, using localised band-pass functions. Each of the basis functions
ψk(s, r) has compact support (they are zero along most of the real axis) and raise smoothly
to a value r (the relevance measure) as the signal s comes near a specific scalar value k:

ψk(s, r) =

{
r cos2 (ω(s− k)) |s− k| < π

2ω

0 otherwise
(5)

If we distribute our basis functions with unit distance, i.e. k ∈ Z, the parameter ω can
be used to control the correlation (or overlap), between neighbouring channel values. For
this reason the ω parameter is called the channel overlap.

The local peak can be computed using an idea illustrated in figure 2. The channel
values are now seen as samples from an envelope function which peaks at the scalar value
s. The index of the first active channel is denoted l (in the figure we have l = 4). For
overlaps of ω = π/N where N = 3, 4, 5 . . . , the number of channels related to a specific
scalar becomes2 N (in the figure we have N = 3).

If we assume that the channel values of the N active channels conform to the basis
function shape ψk(s, r), we obtain N equations:




hl

hl+1
...

hl+N−1


 =




ψl(s, r)
ψl+1(s, r)

...
ψl+N−1(s, r)


 (6)

2Actually the number of related channels becomes N − 1 at regularly occurring locations, but this
does not affect the resultant reconstruction.
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Figure 2: Example of channel values.
In this example, ω = π/3, and s = 5.23

We will now transform an arbitrary row of this system in a number of steps:

hl+d = ψl+d(s, r) = r cos2(ω(s− l − d)) (7)

hl+d = r/2(1 + cos(2ω(s− l − d)) (8)

hl+d = r/2(1 + cos(2ω(s− l)) cos(2ωd) + sin(2ω(s− l)) sin(2ωd)) (9)

hl+d =
(

1
2
cos(2ωd) 1

2
sin(2ωd) 1

2

) 
 r cos(2ω(s− l))

r sin(2ω(s− l))
r


 (10)

And thus the entire equation system can be written as:




hl

hl+1
...

hl+N−1




︸ ︷︷ ︸
h

=
1

2




cos(2ω0) sin(2ω0) 1
cos(2ω1) sin(2ω1) 1

...
...

...
cos(2ω(N − 1)) sin(2ω(N − 1)) 1




︸ ︷︷ ︸
A


 r cos(2ω(s− l))

r sin(2ω(s− l))
r




︸ ︷︷ ︸
d

(11)

This system can be solved using a least-squares fit:


 r cos(2ω(s− l))

r sin(2ω(s− l))
r


 =


 d1

d2

d3


 = (ATA)−1(ATh) (12)

Finally, the scalar estimate can be computed as:

ŝ = l +
1

2ω
arg [d1 + id2] (13)

For the relevance estimate, we have two solutions:

r̂1 = |d1 + id2| and r̂2 = d3 (14)
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When they are equal, we have a local interval of of channel values {hl, hl+1, . . . , hl+N−1}
that originate from a single sample sn. Thus, the discrepancy between r̂1 and r̂2 could be
used to estimate of the degree of signal model violation.

Now we have to remember that the solution in equation 13 is a local inverse. It is thus
only valid in a limited range. In [1] (theorem A.1 on page 91) the valid range is shown to
be l +N − 1 − π

2ω
≤ s ≤ l + π

2ω
.

For values of ω = π/N where N = 3, 4, 5 . . . , the matrix ATA becomes diagonal, and
we can compute the local inverse as a local weighted summation of complex exponentials:

ŝ = l +
1

2ω
arg

[
l+N−1∑

k=l

hke
i2ω(k−l)

]
(15)

Although this reconstruction assumes that the channel values hk have been generated
directly from equation 5 it is surprisingly robust to noise, partly due to the fact that
scalings will be reflected in the relevance r̂ alone.

The assumption that the channel values originate from cos2 functions with a certain
ω value is unfortunate, since the shape of the reconstructed function should look like
the PDF convolved with the kernel function (see section 2). If we have high amounts of
measurement noise, the PDF peak will become less distinct, and the channels will tend
to have a larger de facto overlap than what is indicated by the kernel function, leading to
systematic errors in the peak estimation.

One way to deal with this problem, at least partially could be to perform the recon-
struction for a set of different ω values, and choose the reconstruction with the smallest
difference r̂2 − r̂1.

3.2 Local Gaussian reconstruction

If we use Gaussian kernels, the contribution to a bin from a single sample looks like this:

ϕk(s, r) = hk = re
−(s− k)2

2σ2 (16)

Here we have added a parameter r that corresponds to the sample relevance, i.e. we
allow each sample to be assigned a weight. This is normally not done in PDF estimation,
but we introduce it here to show the similarities to the channel representation in the
previous section. Combined with a local reconstruction, the introduction of a relevance
measure is all that is needed for Gaussians to become an alternative to cos2 functions in
associative learning.

If we look at three neighbouring bins around k = l, we obtain three equations:


 hl−1

hl

hl+1


 =


 ϕl−1(s, r)

ϕl(s, r)
ϕl+1(s, r)


 (17)
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The logarithm of an arbitrary row can be written as:

lnhl+d = ln r − (s− l − d)2

2σ2
(18)

=
(

1 d d2
) (

ln r − (s−l)2

2σ2
s−l
σ2 − 1

2σ2

)T

︸ ︷︷ ︸
p

(19)

We now have an equation system of the form:

lnh = Dp (20)

with the solution

p =


 0 1 0

−1
2

0 1
2

1
2

−1 1
2




︸ ︷︷ ︸
D−1

lnh (21)

From the solution p we can find the estimates ŝ, σ̂, and r̂ as:

ŝ = l − p2

2p3

σ̂ =

√
− 1

2p3

r̂ = e
p1 − p2

2

4p3

It is interesting to note that we can now find a direct estimate of standard deviation for
the measurement noise (using the addition theorem for variances) as σ̂noise =

√
σ̂2 − σ2.

The r̂-value of the reconstruction can be seen as a measure of how much sample relevance
we have near the reconstructed peak. For a high confidence in a peak location we should
thus have a small σ̂noise and a large relevance r̂.

Note that the σ-parameter is estimated directly here, contrary to the ω parameter of
the cos2 channels, which is assumed to be known a priori. To be able to estimate the
dispersion directly is a potential advantage.

4 Noise Generation

A uniform noise can be generated from the following distribution:

fR(x) =

{
1/a when − a/2 ≤ x ≤ a/2

0 otherwise
(22)

Where a is a parameter that controls the variance of the distribution. Unit variance
is obtained when a =

√
12, and thus an arbitrary standard deviation σ can be obtained

by setting a = σ
√

12.
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Figure 3: PDFs of D1, D2, and D3 with σ = 1.

We can generate increasingly Gaussian-like noise as sums of samples drawn from R:

dK =
K∑

k=1

rk where rk ∈ R (23)

The obtained distribution DK has a PDF that equals the convolution of the individual
PDFs. For instance we have fD3(x) = (fR ∗ fR ∗ fR)(x). Figure 3 shows the obtained
distributions D1, D2, and D3. As can be seen, we are able to successively move closer to
a normal distribution by increasing K. In fact, according to the central limit theorem we
obtain a normal distribution at the limit K → ∞ (see e.g.[4]).

The variance of a sum equals the sum of the individual variances. This means that

var(DK) = K × var(R) (24)

and thus we can control the standard deviation of DK by setting a = σ
√

12/K.
To illustrate the histogram generation we have generated a set of N = 1000 samples

from D1 and computed histograms of s = d1 + l for l = 4, 4.25, 4.5, 4.75. The result is
shown in figure 4.
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Figure 4: Histograms from cos2 kernels.
Left to right: cos2 histograms with ω = π/3 and samples centred around 4, 4.25, 4.5, and
4.75. Noise is D1 with σ = 0.3. The histograms use bins with centres at 0, 1, . . . 12.

The estimated peaks using equation 15 are: 4.0068, 4.2497, 4.5073, and 4.7436. As a
definition of the correct peak location we will use the sample average:

s̄ =
1

N

N∑
n=1

sn (25)

The corresponding sample averages are 4.0059, 4.2474, 4.5079, and 4.7467. As we can
see, the peak detection is quite accurate.
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5 Experiments on varied noise and bin shape

In the first experiment we will look at how the number of samples influence the accuracy
of the peak detection. We set each sample to be

sn = l + dn where dn ∈ D3 (26)

The offset l is varied in the interval [4, 6] with steps of 0.005, giving a total of 401
different positions. We then vary the number of samples N between 1 and 100, and
compute the root-mean-squared-error (RMSE) between the estimated peak location and
the sample mean. The results are shown in figure 5 for cos2 kernels (left) and Gaussian
kernels (right). Thin dotted curves show the error for rectangular bins as a comparison.
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Figure 5: RMSE under varied number of samples.
Left: cos2 histograms with ω = π/3 (solid) and ω = π/4 (dashed). Right: Gaussian
histograms with σ = 0.60 (solid) and 0.80 (dashed). Noise is D3 with σ = 0.5. Each error
is the average over 401 positions. Thin dotted curves show the error for rectangular bins
as a comparison.

As these plots hopefully illustrate, the error levels off at a value above zero. This
indicates that we have an inherent error in the peak detection algorithm. As can be
expected, the error for the rectangular histograms is considerably larger than for the other
methods, and as we shall see later, the chosen noise level of σ = 0.5 actually reduces the
error for this bin shape drastically. The Gaussian kernels used in the right part of figure
5 have σ values 0.6 and 0.8. These are chosen to give kernel functions with the same area
as the cos2 kernels with ω values π/3 and π/4 tried in the left plot. Same areas for the
kernels are obtained when σ =

√
π/8/ω.

5.1 Position Dependency of Estimation Errors

We will now look at how the peak estimation error varies with peak position. Just like
in the previous experiment we let l vary in the interval [4, 6] with steps of 0.005. The
estimation error ŝ− s̄ is plotted against the sample averages s̄ in figure 6. As can be seen,
there is a periodic variation with position. Apparently the error is smaller for peaks near
integer positions, which is where the bin centres are located.

By increasing the number of samples, we can get rid of the random disturbance, and
see the shape of the periodic error function better. This is done in figure 7. We have
tried the three noise distributions D1, D2, and D3 with σ = 0.3. The error for the cos2
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and a Gaussian with corresponding area are compared. For the cos2 we can see that
the shape of the error function changes with the noise, with a slight preference for the
uniform distribution D1. The maximum error however, appears to stay the same. For the
Gaussian on the other hand, we can see that the error drops sharply as the error tends
toward a normal distribution.
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−0.005
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Figure 6: Position dependency of error in peak estimation.
Error in peak detection for cos2 histograms with ω = π/3. Noise is D3 with σ = 0.3.
Position is varied in steps of 0.005. Number of samples N = 100.
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Figure 7: Position dependency of error in peak estimation.
Left to right: Noise D1, D2, and D3 with σ = 0.3. Solid curves are cos2 bins with ω = π/3.
Dashed curves are Gaussian bins with σ = 0.6. Position is varied in steps of 0.01. Number
of samples N = 100 000.
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Figure 8: Noise shape dependency of error in peak estimation.
Left: cos2 bins with ω = π/3 (solid) and ω = π/4 (dashed). Right: Gaussian bins with
σ = 0.6 (solid) and σ = 0.8 (dashed). Noise is varied from D1, through D12 with σ = 0.3.
Position is varied in steps of 0.01. Number of samples N = 100 000.

These trends continue as the noise tends toward the normal distribution. Figure 8
shows the RMS error for D1 through D12 with σ = 0.3. Note however that the very low
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estimation errors for Gaussian bins with near normal distributed noise are due to the very
large number of samples (N = 100 000) used in this experiment. For lower number of
samples the curves level off at higher error rates.

5.2 Varied noise level

We will now have a look at what happens when the noise level is varied. Like before, the
offset is varied in the range [4, 6] in steps of 0.005. The noise distribution is set to D3,
with the standard deviation varied in the range [0, 1] in steps of 0.01.

The left and centre plots of figure 9 shows the error for cos2 bins and Gaussian bins
with the corresponding reconstruction. As can be expected, the peak accuracy decreases
with the noise level. We can also see that larger kernel support appears to give slightly
smaller errors. However, most interesting is perhaps the behaviour for the rectangular
bins shown in the right plot. As can be seen in the plot, the optimal noise level is actually
above zero. This is due to the expectation of the bin values being the convolution of the
kernel and the noise PDF (see section 2). The added noise thus results in a smoother
PDF sampling. The same effect motivates the use of dithering noise for relaxation of
quantisation errors [1]. Finding the optimal choice of noise given a kernel function will
be called the dithering problem.
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Figure 9: RMSE of reconstruction as function of noise level.
Left: cos2 bins with ω = π/3 (solid) and ω = π/4 (dashed). Centre: Gaussian bins with
σ = 0.6 (solid) and σ = 0.8 (dashed). Right: rectangular bins (note the different scaling
of the y-axis). Noise is D3, with σ ∈ [0, 1]. Position is varied in steps of 0.01. Number of
samples N = 1 000.

Another interesting observation from figure 9 is that above a certain noise level, the
three methods have errors of the same order of magnitude. For a given non-zero level
of sensor noise, there appears to be considerable freedom in choosing kernel shape and
still get small errors. Since a small support for a kernel is also desirable, due to reduced
interference between competing hypotheses, one could actually suspect that the optimal
kernel among these is the one with the smallest support. Such a kernel would of course
cause considerable aliasing in the noise-free case. The choice of kernel given a certain
noise can be seen as the dual to the dithering problem, and will thus be called the inverse
dithering problem.

Biological neurons are known have binary responses (i.e. at a given time instant they
either fire or don’t fire). They are able to convey graded information by having the
rate of firing depend on the sum of the incoming (afferent) signals. This behaviour
could be modelled as (temporally local) histogram computations with noise added before
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application of the bin function. If the temporal averaging in the neurons is larger than
just a few samples, it would be reasonable to expect that biological neurons implicitly
have solved the inverse dithering problem.

5.3 Aliasing due to small support

For small bin sizes the local Gaussian reconstruction will encounter an aliasing-like effect.
To demonstrate this we will now encode single scalars and reconstruct them. We vary
the bin size parameter σ in the range [0, 0.5] in steps of 0.002. For each σ-value, the
spatial position is varied in the range [5, 6] in steps of 0.05. The absolute error of the
reconstruction is averaged over spatial position, and plotted against the σ-value in the
left part of figure 10. The position dependency of the error is shown in the right part of
the figure.
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Figure 10: Aliasing for small bin sizes.
Left: Average absolute reconstruction error as function of bin size. Right: absolute re-
construction error as function of scalar position. σ = 0.05 (solid), σ = 0.08 (dashed)
σ = 0.11 (dash-dot).

As can be seen from this experiment, the reconstruction error is negligible for bin
sizes larger than σ = 0.2. For smaller bin sizes, the reconstruction becomes increasingly
more unfair toward positions far from integer or half-integer positions. Note that this
experiment also corresponds to the case of Gaussian bins and Gaussian noise in the
expectation sense (see section 2).

6 Experiments on peak interference

The purpose of the local estimation is detection of multiple peaks, and we will now have
a look at how the presence of other peaks influence the estimation.

We construct a new variable sn as:

sn = l1bn + l2(1 − bn) + dn dn ∈ D3 bn ∈ {0, 1} (27)

where bn is a binary variable, assuming the values 0 and 1 with equal probability, and
dn ∈ D3. The variable sn should have marked density peaks near the values l1 and l2.

Initially we will have a constant position l1 = 5.5 and vary the position of l2 in the range
[1, 10] with steps of 0.1. As an illustration of the peak interference we will now compute
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histograms from cos2 kernels (ω = π/3), with bin centres ck = {−1, 0, . . . 11, 12}, and plot
the estimated peak positions (see figure 11, right).

1 2 4 5.5 7 9 10
1

2

4

5.5

7

9

10

1 2 4 5.5 7 9 10
1

2

4

5.5

7

9

10

Figure 11: Interference for cos2 kernels.
Left: s̄1 (solid) s̄2 (dashed) plotted against l2. Right: estimated peak locations, peak closest
to l1 (solid) and closest to l2 (dashed), plotted against l2. Bins are cos2 with ω = π/3,
noise is D3 with σ = 0.5, and number of samples N = 1 000

In order to estimate the accuracy of the peak detection we will also compute the
reference averages s̄1 and s̄2 as the averages of sn when bn is equal to 0 and 1 respectively:

s̄1 =

∑
(l1 + dn)bn∑

bn
s̄2 =

∑
(l2 + dn)(1 − bn)

N − ∑
bn

(28)

The sample averages are plotted in figure 11, left. As we can see from the figure, the
peaks are not distinguished if |l1−l2| < 2. This minimum distance is called the metameric
distance in [1]. In the experiments to follow, we will investigate the metameric distance
in more detail.

6.1 Space variant metameric distance

We are now going to investigate how the metameric distance behaves under varying po-
sition of the peaks. Due to the symmetry of the generated signal (see equation 27),
{l1 = a, l2 = b} is equivalent to {l1 = b, l2 = a}. Thus it will suffice to let l1 vary in the
range [1, 10], and l2 in [l1, 10]. The missing results {l1 = a, l2 = b, b < a} can be copied
from the equivalent {l1 = b, l2 = a} if needed.

We start by redoing the experiment of section 6, but this time we vary both l1 and l2.
The absolute errors for the reconstructed scalars are shown in figure 12, left and centre.
The sum of the errors is shown in the right plot of the figure. As can be seen from
this experiment, the metameric distance is space variant. The metameric distance is the
largest when one of the peaks is located exactly between two bin centres.

12



1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

Figure 12: Absolute error for cos2 kernel with varying peak positions.
Left to right: Absolute errors for reconstructions closest to l1, and l2, and the error sum.
High intensities correspond to large errors. Bins are cos2 with ω = π/3, noise is D3 with
σ = 0.5, and number of samples N = 1 000

6.2 Varied bin overlap

We will now demonstrate how the metameric distance varies with the overlap of the bins.
In order to isolate the effect of the bin overlap, we will only encode two scalars, sum them,
and reconstruct. Note that this also corresponds to the expectation values of Gaussian
bins with Gaussian noise according to section 2. We vary the locations l1 and l2 of the
scalars in the range [3, 8] in steps of 0.02, and vary the bin size σ in the range [0.1, 1.2] in
steps of 0.1. The results are shown in figure 13.

3 4 5 6 7 8

3

4

5

6

7

8
3 4 5 6 7 8

3

4

5

6

7

8
3 4 5 6 7 8

3

4

5

6

7

8
3 4 5 6 7 8

3

4

5

6

7

8
3 4 5 6 7 8

3

4

5

6

7

8
3 4 5 6 7 8

3

4

5

6

7

8

3 4 5 6 7 8

3

4

5

6

7

8
3 4 5 6 7 8

3

4

5

6

7

8
3 4 5 6 7 8

3

4

5

6

7

8
3 4 5 6 7 8

3

4

5

6

7

8
3 4 5 6 7 8

3

4

5

6

7

8
3 4 5 6 7 8

3

4

5

6

7

8

Figure 13: Reconstruction errors for Gaussian kernels.
Left to right, top to bottom: Sum of absolute reconstruction errors for Gaussian kernels
with σ = 0.1, 0.2 . . . 1.2

As can be seen from these plots, the metameric distance becomes less space variant
as we increase the bin overlap. We can also note that the largest metameric distance
is no longer found when one of the peaks is between two bin centres for bin sizes above
σ = 0.5. A good choice might thus be to stop at σ = 0.5. This value also gives ∂2

∂s2 (ϕk(s)+
ϕk+1(s)) = 0 for s = k+0.5), which means that the sum of the bin values is less dependent
on the actual location of the peak. We can also note that the reconstruction aliasing
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investigated in section 5.3 is visible in the first plot.

6.3 Other bin shapes

As a comparison to the Gaussian kernels we now try the same experiment with cos2

(ω = π/3, π/4, π/5, and π/6), and rectangular kernels. The results are shown in figure
14.
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Figure 14: Reconstruction errors for cos2 and rectangular kernels.
Left to right: Sum of absolute reconstruction errors for cos2 (ω = π/3, π/4, π/5, and
π/6) and rectangular kernels.

If we compare the reconstruction errors in figure 14 with those in figure 13, we can note
that the behaviour for ω = π/3 is roughly equivalent to σ = 0.6, while the metameric
distance is significantly larger for ω = π/4, π/5, and π/6 than for the corresponding
σ-values (0.8, 1.0, and 1.2). This is explained by the fact that the reconstruction for
cos2 bins use increasingly more adjacent values in the reconstruction, while the Gaussian
reconstruction always uses three.

As can be seen from the rightmost plot in figure 14, the metameric distance for the
rectangular bins is quite small. However, the overall localisation ability is considerably
affected by this bin shape. The rectangular bins can thus be said to allow peaks to be told
apart at smaller distances at the price of an overall less exact localisation. Note however
that the aliasing effect is avoided for the Gaussian kernels in figure 13, while still keeping
the metameric distance down, so this is not a motivation for the use of rectangular bins.

7 Concluding remarks

A HiperLearn network [3] is a linear mapping using signals in the channel representation
(see section 3.1). The response signal model for a HiperLearn network is more com-
plicated than the sum of a discrete and a continuous localised distribution used in this
report. However, the networks use localised response functions, which can roughly be
seen as corresponding to the localised kernels used in this report. The local reconstruc-
tion presented here is identical to the one used in HiperLearn networks in the cos2 kernel
case, and the Gaussian kernels presented here is the missing component that allows the
Gaussian kernels to be used as an alternative to cos2 functions in HiperLearn.

It is also interesting to note that the optimisation of the linkage matrix in HiperLearn
is related to a discrete version of the inverse dithering problem (see section 5.2). To be

14



more precise, we have to view each weighted sum of feature function values as a sample
from the distribution, and since the response functions are prescribed in HiperLearn we
end up with an equivalence to a deconvolution in the expectation sense.
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